Reconfigurable polarization processor based on coherent four-port micro-ring resonator
Polarization processors with versatile functionalities are needed in optical systems, which use or manipulate polarized light. In this paper, we propose and realize an integrated polarization processor based on a coherent 4-port micro-ring resonator. The arbitrary unknown polarization state is input...
Ausführliche Beschreibung
Autor*in: |
Yi Dan [verfasserIn] Luan Jiapeng [verfasserIn] Wang Yi [verfasserIn] Tsang Hon Ki [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Nanophotonics - De Gruyter, 2016, 12(2023), 22, Seite 4127-4136 |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2023 ; number:22 ; pages:4127-4136 |
Links: |
---|
DOI / URN: |
10.1515/nanoph-2023-0031 |
---|
Katalog-ID: |
DOAJ091111595 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ091111595 | ||
003 | DE-627 | ||
005 | 20240413081122.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240412s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1515/nanoph-2023-0031 |2 doi | |
035 | |a (DE-627)DOAJ091111595 | ||
035 | |a (DE-599)DOAJe2c2d3120908470fb216cb02a786cb02 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QC1-999 | |
100 | 0 | |a Yi Dan |e verfasserin |4 aut | |
245 | 1 | 0 | |a Reconfigurable polarization processor based on coherent four-port micro-ring resonator |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Polarization processors with versatile functionalities are needed in optical systems, which use or manipulate polarized light. In this paper, we propose and realize an integrated polarization processor based on a coherent 4-port micro-ring resonator. The arbitrary unknown polarization state is input to the polarization processor via a 2-dimensional grating coupler (2DGC), which serves as a polarization beam splitter. The coherent 4-port micro-ring resonator (MRR) operates as a unitary processor and is formed by one crossbar micro-ring resonator and two thermally tunable phase shifters, one of which tunes the micro-ring while the other tunes the coherent interference between the two inputs from the 2DGC. The 4-port system can be used to control the input polarization states that appear at the two output ports and, therefore, can be used to implement a multi-function polarization processor, including polarization descrambler, polarization switch, polarizers, and polarization analyzer (both division of space (DOS) and division of time (DOT)). In this paper, we experimentally demonstrate the use of coherent 4-port MRR for polarization mode switching and for polarization mode unscrambling. The polarization unscrambler was capable of separating two polarization-multiplexed 40 GHz data lanes from the input fiber with crosstalk levels below −21 dB and is suitable for use in the receiver for polarization-multiplexed direct-detection optical communications systems. The same photonic circuit may be used as a polarization analyzer, either as a DOS polarization analyzer or a DOT polarization analyzer. The DOS polarization analyzer measured the polarization with measured deviation of the orientation angle (2ψ) varying from −0.5° to 1.3°and deviation of ellipticity angle (2χ) varying from −0.98° to 7.27°. The DOT polarization analyzer measured the polarization with a deviation of the orientation angle (2ψ) that varied from −2.93° to 3.49° and deviation of ellipticity angle (2χ) that varied from −3.5° to 3.05°. | ||
650 | 4 | |a micro-ring resonator | |
650 | 4 | |a polarization descrambler | |
650 | 4 | |a polarization switching | |
650 | 4 | |a polarization analyzer | |
653 | 0 | |a Physics | |
700 | 0 | |a Luan Jiapeng |e verfasserin |4 aut | |
700 | 0 | |a Wang Yi |e verfasserin |4 aut | |
700 | 0 | |a Tsang Hon Ki |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Nanophotonics |d De Gruyter, 2016 |g 12(2023), 22, Seite 4127-4136 |w (DE-627)720169909 |w (DE-600)2674162-3 |x 21928614 |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2023 |g number:22 |g pages:4127-4136 |
856 | 4 | 0 | |u https://doi.org/10.1515/nanoph-2023-0031 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/e2c2d3120908470fb216cb02a786cb02 |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1515/nanoph-2023-0031 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2192-8614 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 12 |j 2023 |e 22 |h 4127-4136 |
author_variant |
y d yd l j lj w y wy t h k thk |
---|---|
matchkey_str |
article:21928614:2023----::eofgrbeoaiainrcsobsdnoeetoro |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
QC |
publishDate |
2023 |
allfields |
10.1515/nanoph-2023-0031 doi (DE-627)DOAJ091111595 (DE-599)DOAJe2c2d3120908470fb216cb02a786cb02 DE-627 ger DE-627 rakwb eng QC1-999 Yi Dan verfasserin aut Reconfigurable polarization processor based on coherent four-port micro-ring resonator 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Polarization processors with versatile functionalities are needed in optical systems, which use or manipulate polarized light. In this paper, we propose and realize an integrated polarization processor based on a coherent 4-port micro-ring resonator. The arbitrary unknown polarization state is input to the polarization processor via a 2-dimensional grating coupler (2DGC), which serves as a polarization beam splitter. The coherent 4-port micro-ring resonator (MRR) operates as a unitary processor and is formed by one crossbar micro-ring resonator and two thermally tunable phase shifters, one of which tunes the micro-ring while the other tunes the coherent interference between the two inputs from the 2DGC. The 4-port system can be used to control the input polarization states that appear at the two output ports and, therefore, can be used to implement a multi-function polarization processor, including polarization descrambler, polarization switch, polarizers, and polarization analyzer (both division of space (DOS) and division of time (DOT)). In this paper, we experimentally demonstrate the use of coherent 4-port MRR for polarization mode switching and for polarization mode unscrambling. The polarization unscrambler was capable of separating two polarization-multiplexed 40 GHz data lanes from the input fiber with crosstalk levels below −21 dB and is suitable for use in the receiver for polarization-multiplexed direct-detection optical communications systems. The same photonic circuit may be used as a polarization analyzer, either as a DOS polarization analyzer or a DOT polarization analyzer. The DOS polarization analyzer measured the polarization with measured deviation of the orientation angle (2ψ) varying from −0.5° to 1.3°and deviation of ellipticity angle (2χ) varying from −0.98° to 7.27°. The DOT polarization analyzer measured the polarization with a deviation of the orientation angle (2ψ) that varied from −2.93° to 3.49° and deviation of ellipticity angle (2χ) that varied from −3.5° to 3.05°. micro-ring resonator polarization descrambler polarization switching polarization analyzer Physics Luan Jiapeng verfasserin aut Wang Yi verfasserin aut Tsang Hon Ki verfasserin aut In Nanophotonics De Gruyter, 2016 12(2023), 22, Seite 4127-4136 (DE-627)720169909 (DE-600)2674162-3 21928614 nnns volume:12 year:2023 number:22 pages:4127-4136 https://doi.org/10.1515/nanoph-2023-0031 kostenfrei https://doaj.org/article/e2c2d3120908470fb216cb02a786cb02 kostenfrei https://doi.org/10.1515/nanoph-2023-0031 kostenfrei https://doaj.org/toc/2192-8614 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2023 22 4127-4136 |
spelling |
10.1515/nanoph-2023-0031 doi (DE-627)DOAJ091111595 (DE-599)DOAJe2c2d3120908470fb216cb02a786cb02 DE-627 ger DE-627 rakwb eng QC1-999 Yi Dan verfasserin aut Reconfigurable polarization processor based on coherent four-port micro-ring resonator 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Polarization processors with versatile functionalities are needed in optical systems, which use or manipulate polarized light. In this paper, we propose and realize an integrated polarization processor based on a coherent 4-port micro-ring resonator. The arbitrary unknown polarization state is input to the polarization processor via a 2-dimensional grating coupler (2DGC), which serves as a polarization beam splitter. The coherent 4-port micro-ring resonator (MRR) operates as a unitary processor and is formed by one crossbar micro-ring resonator and two thermally tunable phase shifters, one of which tunes the micro-ring while the other tunes the coherent interference between the two inputs from the 2DGC. The 4-port system can be used to control the input polarization states that appear at the two output ports and, therefore, can be used to implement a multi-function polarization processor, including polarization descrambler, polarization switch, polarizers, and polarization analyzer (both division of space (DOS) and division of time (DOT)). In this paper, we experimentally demonstrate the use of coherent 4-port MRR for polarization mode switching and for polarization mode unscrambling. The polarization unscrambler was capable of separating two polarization-multiplexed 40 GHz data lanes from the input fiber with crosstalk levels below −21 dB and is suitable for use in the receiver for polarization-multiplexed direct-detection optical communications systems. The same photonic circuit may be used as a polarization analyzer, either as a DOS polarization analyzer or a DOT polarization analyzer. The DOS polarization analyzer measured the polarization with measured deviation of the orientation angle (2ψ) varying from −0.5° to 1.3°and deviation of ellipticity angle (2χ) varying from −0.98° to 7.27°. The DOT polarization analyzer measured the polarization with a deviation of the orientation angle (2ψ) that varied from −2.93° to 3.49° and deviation of ellipticity angle (2χ) that varied from −3.5° to 3.05°. micro-ring resonator polarization descrambler polarization switching polarization analyzer Physics Luan Jiapeng verfasserin aut Wang Yi verfasserin aut Tsang Hon Ki verfasserin aut In Nanophotonics De Gruyter, 2016 12(2023), 22, Seite 4127-4136 (DE-627)720169909 (DE-600)2674162-3 21928614 nnns volume:12 year:2023 number:22 pages:4127-4136 https://doi.org/10.1515/nanoph-2023-0031 kostenfrei https://doaj.org/article/e2c2d3120908470fb216cb02a786cb02 kostenfrei https://doi.org/10.1515/nanoph-2023-0031 kostenfrei https://doaj.org/toc/2192-8614 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2023 22 4127-4136 |
allfields_unstemmed |
10.1515/nanoph-2023-0031 doi (DE-627)DOAJ091111595 (DE-599)DOAJe2c2d3120908470fb216cb02a786cb02 DE-627 ger DE-627 rakwb eng QC1-999 Yi Dan verfasserin aut Reconfigurable polarization processor based on coherent four-port micro-ring resonator 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Polarization processors with versatile functionalities are needed in optical systems, which use or manipulate polarized light. In this paper, we propose and realize an integrated polarization processor based on a coherent 4-port micro-ring resonator. The arbitrary unknown polarization state is input to the polarization processor via a 2-dimensional grating coupler (2DGC), which serves as a polarization beam splitter. The coherent 4-port micro-ring resonator (MRR) operates as a unitary processor and is formed by one crossbar micro-ring resonator and two thermally tunable phase shifters, one of which tunes the micro-ring while the other tunes the coherent interference between the two inputs from the 2DGC. The 4-port system can be used to control the input polarization states that appear at the two output ports and, therefore, can be used to implement a multi-function polarization processor, including polarization descrambler, polarization switch, polarizers, and polarization analyzer (both division of space (DOS) and division of time (DOT)). In this paper, we experimentally demonstrate the use of coherent 4-port MRR for polarization mode switching and for polarization mode unscrambling. The polarization unscrambler was capable of separating two polarization-multiplexed 40 GHz data lanes from the input fiber with crosstalk levels below −21 dB and is suitable for use in the receiver for polarization-multiplexed direct-detection optical communications systems. The same photonic circuit may be used as a polarization analyzer, either as a DOS polarization analyzer or a DOT polarization analyzer. The DOS polarization analyzer measured the polarization with measured deviation of the orientation angle (2ψ) varying from −0.5° to 1.3°and deviation of ellipticity angle (2χ) varying from −0.98° to 7.27°. The DOT polarization analyzer measured the polarization with a deviation of the orientation angle (2ψ) that varied from −2.93° to 3.49° and deviation of ellipticity angle (2χ) that varied from −3.5° to 3.05°. micro-ring resonator polarization descrambler polarization switching polarization analyzer Physics Luan Jiapeng verfasserin aut Wang Yi verfasserin aut Tsang Hon Ki verfasserin aut In Nanophotonics De Gruyter, 2016 12(2023), 22, Seite 4127-4136 (DE-627)720169909 (DE-600)2674162-3 21928614 nnns volume:12 year:2023 number:22 pages:4127-4136 https://doi.org/10.1515/nanoph-2023-0031 kostenfrei https://doaj.org/article/e2c2d3120908470fb216cb02a786cb02 kostenfrei https://doi.org/10.1515/nanoph-2023-0031 kostenfrei https://doaj.org/toc/2192-8614 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2023 22 4127-4136 |
allfieldsGer |
10.1515/nanoph-2023-0031 doi (DE-627)DOAJ091111595 (DE-599)DOAJe2c2d3120908470fb216cb02a786cb02 DE-627 ger DE-627 rakwb eng QC1-999 Yi Dan verfasserin aut Reconfigurable polarization processor based on coherent four-port micro-ring resonator 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Polarization processors with versatile functionalities are needed in optical systems, which use or manipulate polarized light. In this paper, we propose and realize an integrated polarization processor based on a coherent 4-port micro-ring resonator. The arbitrary unknown polarization state is input to the polarization processor via a 2-dimensional grating coupler (2DGC), which serves as a polarization beam splitter. The coherent 4-port micro-ring resonator (MRR) operates as a unitary processor and is formed by one crossbar micro-ring resonator and two thermally tunable phase shifters, one of which tunes the micro-ring while the other tunes the coherent interference between the two inputs from the 2DGC. The 4-port system can be used to control the input polarization states that appear at the two output ports and, therefore, can be used to implement a multi-function polarization processor, including polarization descrambler, polarization switch, polarizers, and polarization analyzer (both division of space (DOS) and division of time (DOT)). In this paper, we experimentally demonstrate the use of coherent 4-port MRR for polarization mode switching and for polarization mode unscrambling. The polarization unscrambler was capable of separating two polarization-multiplexed 40 GHz data lanes from the input fiber with crosstalk levels below −21 dB and is suitable for use in the receiver for polarization-multiplexed direct-detection optical communications systems. The same photonic circuit may be used as a polarization analyzer, either as a DOS polarization analyzer or a DOT polarization analyzer. The DOS polarization analyzer measured the polarization with measured deviation of the orientation angle (2ψ) varying from −0.5° to 1.3°and deviation of ellipticity angle (2χ) varying from −0.98° to 7.27°. The DOT polarization analyzer measured the polarization with a deviation of the orientation angle (2ψ) that varied from −2.93° to 3.49° and deviation of ellipticity angle (2χ) that varied from −3.5° to 3.05°. micro-ring resonator polarization descrambler polarization switching polarization analyzer Physics Luan Jiapeng verfasserin aut Wang Yi verfasserin aut Tsang Hon Ki verfasserin aut In Nanophotonics De Gruyter, 2016 12(2023), 22, Seite 4127-4136 (DE-627)720169909 (DE-600)2674162-3 21928614 nnns volume:12 year:2023 number:22 pages:4127-4136 https://doi.org/10.1515/nanoph-2023-0031 kostenfrei https://doaj.org/article/e2c2d3120908470fb216cb02a786cb02 kostenfrei https://doi.org/10.1515/nanoph-2023-0031 kostenfrei https://doaj.org/toc/2192-8614 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2023 22 4127-4136 |
allfieldsSound |
10.1515/nanoph-2023-0031 doi (DE-627)DOAJ091111595 (DE-599)DOAJe2c2d3120908470fb216cb02a786cb02 DE-627 ger DE-627 rakwb eng QC1-999 Yi Dan verfasserin aut Reconfigurable polarization processor based on coherent four-port micro-ring resonator 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Polarization processors with versatile functionalities are needed in optical systems, which use or manipulate polarized light. In this paper, we propose and realize an integrated polarization processor based on a coherent 4-port micro-ring resonator. The arbitrary unknown polarization state is input to the polarization processor via a 2-dimensional grating coupler (2DGC), which serves as a polarization beam splitter. The coherent 4-port micro-ring resonator (MRR) operates as a unitary processor and is formed by one crossbar micro-ring resonator and two thermally tunable phase shifters, one of which tunes the micro-ring while the other tunes the coherent interference between the two inputs from the 2DGC. The 4-port system can be used to control the input polarization states that appear at the two output ports and, therefore, can be used to implement a multi-function polarization processor, including polarization descrambler, polarization switch, polarizers, and polarization analyzer (both division of space (DOS) and division of time (DOT)). In this paper, we experimentally demonstrate the use of coherent 4-port MRR for polarization mode switching and for polarization mode unscrambling. The polarization unscrambler was capable of separating two polarization-multiplexed 40 GHz data lanes from the input fiber with crosstalk levels below −21 dB and is suitable for use in the receiver for polarization-multiplexed direct-detection optical communications systems. The same photonic circuit may be used as a polarization analyzer, either as a DOS polarization analyzer or a DOT polarization analyzer. The DOS polarization analyzer measured the polarization with measured deviation of the orientation angle (2ψ) varying from −0.5° to 1.3°and deviation of ellipticity angle (2χ) varying from −0.98° to 7.27°. The DOT polarization analyzer measured the polarization with a deviation of the orientation angle (2ψ) that varied from −2.93° to 3.49° and deviation of ellipticity angle (2χ) that varied from −3.5° to 3.05°. micro-ring resonator polarization descrambler polarization switching polarization analyzer Physics Luan Jiapeng verfasserin aut Wang Yi verfasserin aut Tsang Hon Ki verfasserin aut In Nanophotonics De Gruyter, 2016 12(2023), 22, Seite 4127-4136 (DE-627)720169909 (DE-600)2674162-3 21928614 nnns volume:12 year:2023 number:22 pages:4127-4136 https://doi.org/10.1515/nanoph-2023-0031 kostenfrei https://doaj.org/article/e2c2d3120908470fb216cb02a786cb02 kostenfrei https://doi.org/10.1515/nanoph-2023-0031 kostenfrei https://doaj.org/toc/2192-8614 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2023 22 4127-4136 |
language |
English |
source |
In Nanophotonics 12(2023), 22, Seite 4127-4136 volume:12 year:2023 number:22 pages:4127-4136 |
sourceStr |
In Nanophotonics 12(2023), 22, Seite 4127-4136 volume:12 year:2023 number:22 pages:4127-4136 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
micro-ring resonator polarization descrambler polarization switching polarization analyzer Physics |
isfreeaccess_bool |
true |
container_title |
Nanophotonics |
authorswithroles_txt_mv |
Yi Dan @@aut@@ Luan Jiapeng @@aut@@ Wang Yi @@aut@@ Tsang Hon Ki @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
720169909 |
id |
DOAJ091111595 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ091111595</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413081122.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240412s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/nanoph-2023-0031</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ091111595</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe2c2d3120908470fb216cb02a786cb02</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yi Dan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Reconfigurable polarization processor based on coherent four-port micro-ring resonator</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Polarization processors with versatile functionalities are needed in optical systems, which use or manipulate polarized light. In this paper, we propose and realize an integrated polarization processor based on a coherent 4-port micro-ring resonator. The arbitrary unknown polarization state is input to the polarization processor via a 2-dimensional grating coupler (2DGC), which serves as a polarization beam splitter. The coherent 4-port micro-ring resonator (MRR) operates as a unitary processor and is formed by one crossbar micro-ring resonator and two thermally tunable phase shifters, one of which tunes the micro-ring while the other tunes the coherent interference between the two inputs from the 2DGC. The 4-port system can be used to control the input polarization states that appear at the two output ports and, therefore, can be used to implement a multi-function polarization processor, including polarization descrambler, polarization switch, polarizers, and polarization analyzer (both division of space (DOS) and division of time (DOT)). In this paper, we experimentally demonstrate the use of coherent 4-port MRR for polarization mode switching and for polarization mode unscrambling. The polarization unscrambler was capable of separating two polarization-multiplexed 40 GHz data lanes from the input fiber with crosstalk levels below −21 dB and is suitable for use in the receiver for polarization-multiplexed direct-detection optical communications systems. The same photonic circuit may be used as a polarization analyzer, either as a DOS polarization analyzer or a DOT polarization analyzer. The DOS polarization analyzer measured the polarization with measured deviation of the orientation angle (2ψ) varying from −0.5° to 1.3°and deviation of ellipticity angle (2χ) varying from −0.98° to 7.27°. The DOT polarization analyzer measured the polarization with a deviation of the orientation angle (2ψ) that varied from −2.93° to 3.49° and deviation of ellipticity angle (2χ) that varied from −3.5° to 3.05°.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">micro-ring resonator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">polarization descrambler</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">polarization switching</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">polarization analyzer</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Luan Jiapeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wang Yi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tsang Hon Ki</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Nanophotonics</subfield><subfield code="d">De Gruyter, 2016</subfield><subfield code="g">12(2023), 22, Seite 4127-4136</subfield><subfield code="w">(DE-627)720169909</subfield><subfield code="w">(DE-600)2674162-3</subfield><subfield code="x">21928614</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:22</subfield><subfield code="g">pages:4127-4136</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/nanoph-2023-0031</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e2c2d3120908470fb216cb02a786cb02</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/nanoph-2023-0031</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2192-8614</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2023</subfield><subfield code="e">22</subfield><subfield code="h">4127-4136</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Yi Dan |
spellingShingle |
Yi Dan misc QC1-999 misc micro-ring resonator misc polarization descrambler misc polarization switching misc polarization analyzer misc Physics Reconfigurable polarization processor based on coherent four-port micro-ring resonator |
authorStr |
Yi Dan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)720169909 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QC1-999 |
illustrated |
Not Illustrated |
issn |
21928614 |
topic_title |
QC1-999 Reconfigurable polarization processor based on coherent four-port micro-ring resonator micro-ring resonator polarization descrambler polarization switching polarization analyzer |
topic |
misc QC1-999 misc micro-ring resonator misc polarization descrambler misc polarization switching misc polarization analyzer misc Physics |
topic_unstemmed |
misc QC1-999 misc micro-ring resonator misc polarization descrambler misc polarization switching misc polarization analyzer misc Physics |
topic_browse |
misc QC1-999 misc micro-ring resonator misc polarization descrambler misc polarization switching misc polarization analyzer misc Physics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Nanophotonics |
hierarchy_parent_id |
720169909 |
hierarchy_top_title |
Nanophotonics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)720169909 (DE-600)2674162-3 |
title |
Reconfigurable polarization processor based on coherent four-port micro-ring resonator |
ctrlnum |
(DE-627)DOAJ091111595 (DE-599)DOAJe2c2d3120908470fb216cb02a786cb02 |
title_full |
Reconfigurable polarization processor based on coherent four-port micro-ring resonator |
author_sort |
Yi Dan |
journal |
Nanophotonics |
journalStr |
Nanophotonics |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
container_start_page |
4127 |
author_browse |
Yi Dan Luan Jiapeng Wang Yi Tsang Hon Ki |
container_volume |
12 |
class |
QC1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Yi Dan |
doi_str_mv |
10.1515/nanoph-2023-0031 |
author2-role |
verfasserin |
title_sort |
reconfigurable polarization processor based on coherent four-port micro-ring resonator |
callnumber |
QC1-999 |
title_auth |
Reconfigurable polarization processor based on coherent four-port micro-ring resonator |
abstract |
Polarization processors with versatile functionalities are needed in optical systems, which use or manipulate polarized light. In this paper, we propose and realize an integrated polarization processor based on a coherent 4-port micro-ring resonator. The arbitrary unknown polarization state is input to the polarization processor via a 2-dimensional grating coupler (2DGC), which serves as a polarization beam splitter. The coherent 4-port micro-ring resonator (MRR) operates as a unitary processor and is formed by one crossbar micro-ring resonator and two thermally tunable phase shifters, one of which tunes the micro-ring while the other tunes the coherent interference between the two inputs from the 2DGC. The 4-port system can be used to control the input polarization states that appear at the two output ports and, therefore, can be used to implement a multi-function polarization processor, including polarization descrambler, polarization switch, polarizers, and polarization analyzer (both division of space (DOS) and division of time (DOT)). In this paper, we experimentally demonstrate the use of coherent 4-port MRR for polarization mode switching and for polarization mode unscrambling. The polarization unscrambler was capable of separating two polarization-multiplexed 40 GHz data lanes from the input fiber with crosstalk levels below −21 dB and is suitable for use in the receiver for polarization-multiplexed direct-detection optical communications systems. The same photonic circuit may be used as a polarization analyzer, either as a DOS polarization analyzer or a DOT polarization analyzer. The DOS polarization analyzer measured the polarization with measured deviation of the orientation angle (2ψ) varying from −0.5° to 1.3°and deviation of ellipticity angle (2χ) varying from −0.98° to 7.27°. The DOT polarization analyzer measured the polarization with a deviation of the orientation angle (2ψ) that varied from −2.93° to 3.49° and deviation of ellipticity angle (2χ) that varied from −3.5° to 3.05°. |
abstractGer |
Polarization processors with versatile functionalities are needed in optical systems, which use or manipulate polarized light. In this paper, we propose and realize an integrated polarization processor based on a coherent 4-port micro-ring resonator. The arbitrary unknown polarization state is input to the polarization processor via a 2-dimensional grating coupler (2DGC), which serves as a polarization beam splitter. The coherent 4-port micro-ring resonator (MRR) operates as a unitary processor and is formed by one crossbar micro-ring resonator and two thermally tunable phase shifters, one of which tunes the micro-ring while the other tunes the coherent interference between the two inputs from the 2DGC. The 4-port system can be used to control the input polarization states that appear at the two output ports and, therefore, can be used to implement a multi-function polarization processor, including polarization descrambler, polarization switch, polarizers, and polarization analyzer (both division of space (DOS) and division of time (DOT)). In this paper, we experimentally demonstrate the use of coherent 4-port MRR for polarization mode switching and for polarization mode unscrambling. The polarization unscrambler was capable of separating two polarization-multiplexed 40 GHz data lanes from the input fiber with crosstalk levels below −21 dB and is suitable for use in the receiver for polarization-multiplexed direct-detection optical communications systems. The same photonic circuit may be used as a polarization analyzer, either as a DOS polarization analyzer or a DOT polarization analyzer. The DOS polarization analyzer measured the polarization with measured deviation of the orientation angle (2ψ) varying from −0.5° to 1.3°and deviation of ellipticity angle (2χ) varying from −0.98° to 7.27°. The DOT polarization analyzer measured the polarization with a deviation of the orientation angle (2ψ) that varied from −2.93° to 3.49° and deviation of ellipticity angle (2χ) that varied from −3.5° to 3.05°. |
abstract_unstemmed |
Polarization processors with versatile functionalities are needed in optical systems, which use or manipulate polarized light. In this paper, we propose and realize an integrated polarization processor based on a coherent 4-port micro-ring resonator. The arbitrary unknown polarization state is input to the polarization processor via a 2-dimensional grating coupler (2DGC), which serves as a polarization beam splitter. The coherent 4-port micro-ring resonator (MRR) operates as a unitary processor and is formed by one crossbar micro-ring resonator and two thermally tunable phase shifters, one of which tunes the micro-ring while the other tunes the coherent interference between the two inputs from the 2DGC. The 4-port system can be used to control the input polarization states that appear at the two output ports and, therefore, can be used to implement a multi-function polarization processor, including polarization descrambler, polarization switch, polarizers, and polarization analyzer (both division of space (DOS) and division of time (DOT)). In this paper, we experimentally demonstrate the use of coherent 4-port MRR for polarization mode switching and for polarization mode unscrambling. The polarization unscrambler was capable of separating two polarization-multiplexed 40 GHz data lanes from the input fiber with crosstalk levels below −21 dB and is suitable for use in the receiver for polarization-multiplexed direct-detection optical communications systems. The same photonic circuit may be used as a polarization analyzer, either as a DOS polarization analyzer or a DOT polarization analyzer. The DOS polarization analyzer measured the polarization with measured deviation of the orientation angle (2ψ) varying from −0.5° to 1.3°and deviation of ellipticity angle (2χ) varying from −0.98° to 7.27°. The DOT polarization analyzer measured the polarization with a deviation of the orientation angle (2ψ) that varied from −2.93° to 3.49° and deviation of ellipticity angle (2χ) that varied from −3.5° to 3.05°. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
22 |
title_short |
Reconfigurable polarization processor based on coherent four-port micro-ring resonator |
url |
https://doi.org/10.1515/nanoph-2023-0031 https://doaj.org/article/e2c2d3120908470fb216cb02a786cb02 https://doaj.org/toc/2192-8614 |
remote_bool |
true |
author2 |
Luan Jiapeng Wang Yi Tsang Hon Ki |
author2Str |
Luan Jiapeng Wang Yi Tsang Hon Ki |
ppnlink |
720169909 |
callnumber-subject |
QC - Physics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1515/nanoph-2023-0031 |
callnumber-a |
QC1-999 |
up_date |
2024-07-03T18:28:13.011Z |
_version_ |
1803583533104496640 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ091111595</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413081122.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240412s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/nanoph-2023-0031</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ091111595</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe2c2d3120908470fb216cb02a786cb02</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yi Dan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Reconfigurable polarization processor based on coherent four-port micro-ring resonator</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Polarization processors with versatile functionalities are needed in optical systems, which use or manipulate polarized light. In this paper, we propose and realize an integrated polarization processor based on a coherent 4-port micro-ring resonator. The arbitrary unknown polarization state is input to the polarization processor via a 2-dimensional grating coupler (2DGC), which serves as a polarization beam splitter. The coherent 4-port micro-ring resonator (MRR) operates as a unitary processor and is formed by one crossbar micro-ring resonator and two thermally tunable phase shifters, one of which tunes the micro-ring while the other tunes the coherent interference between the two inputs from the 2DGC. The 4-port system can be used to control the input polarization states that appear at the two output ports and, therefore, can be used to implement a multi-function polarization processor, including polarization descrambler, polarization switch, polarizers, and polarization analyzer (both division of space (DOS) and division of time (DOT)). In this paper, we experimentally demonstrate the use of coherent 4-port MRR for polarization mode switching and for polarization mode unscrambling. The polarization unscrambler was capable of separating two polarization-multiplexed 40 GHz data lanes from the input fiber with crosstalk levels below −21 dB and is suitable for use in the receiver for polarization-multiplexed direct-detection optical communications systems. The same photonic circuit may be used as a polarization analyzer, either as a DOS polarization analyzer or a DOT polarization analyzer. The DOS polarization analyzer measured the polarization with measured deviation of the orientation angle (2ψ) varying from −0.5° to 1.3°and deviation of ellipticity angle (2χ) varying from −0.98° to 7.27°. The DOT polarization analyzer measured the polarization with a deviation of the orientation angle (2ψ) that varied from −2.93° to 3.49° and deviation of ellipticity angle (2χ) that varied from −3.5° to 3.05°.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">micro-ring resonator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">polarization descrambler</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">polarization switching</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">polarization analyzer</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Luan Jiapeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wang Yi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tsang Hon Ki</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Nanophotonics</subfield><subfield code="d">De Gruyter, 2016</subfield><subfield code="g">12(2023), 22, Seite 4127-4136</subfield><subfield code="w">(DE-627)720169909</subfield><subfield code="w">(DE-600)2674162-3</subfield><subfield code="x">21928614</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:22</subfield><subfield code="g">pages:4127-4136</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/nanoph-2023-0031</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e2c2d3120908470fb216cb02a786cb02</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/nanoph-2023-0031</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2192-8614</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2023</subfield><subfield code="e">22</subfield><subfield code="h">4127-4136</subfield></datafield></record></collection>
|
score |
7.4007425 |