A probabilistic approach for estimating spring discharge facing data scarcity
Abstract Since spring discharge, especially in arid and semiarid regions, varies considerably in different months of the year, a time series of spring discharge observations is needed to determine the firm yield of the spring and the amount of water allocated to different needs. Because most springs...
Ausführliche Beschreibung
Autor*in: |
Rasoul Mirabbasi [verfasserIn] Mohammad Nazeri Tahroudi [verfasserIn] Alireza Sharifi [verfasserIn] Ali Torabi Haghighi [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Applied Water Science - SpringerOpen, 2013, 14(2024), 2, Seite 16 |
---|---|
Übergeordnetes Werk: |
volume:14 ; year:2024 ; number:2 ; pages:16 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.1007/s13201-023-02071-5 |
---|
Katalog-ID: |
DOAJ091167558 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ091167558 | ||
003 | DE-627 | ||
005 | 20240414051401.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240412s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s13201-023-02071-5 |2 doi | |
035 | |a (DE-627)DOAJ091167558 | ||
035 | |a (DE-599)DOAJeac4d8c78d7d448da1e1a2e2fc7e072a | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TD201-500 | |
100 | 0 | |a Rasoul Mirabbasi |e verfasserin |4 aut | |
245 | 1 | 2 | |a A probabilistic approach for estimating spring discharge facing data scarcity |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Since spring discharge, especially in arid and semiarid regions, varies considerably in different months of the year, a time series of spring discharge observations is needed to determine the firm yield of the spring and the amount of water allocated to different needs. Because most springs are in mountainous and inaccessible areas, long-term observational data are often unavailable. This study proposes a probabilistic method based on bivariate analysis to estimate the discharge of the Absefid spring in Iran. This method constructed the bivariate distribution of the outflows of Absefid (AS) and Gerdebisheh (GS) springs using Copula functions. For this purpose, the fit of 11 different univariate distributions to the discharge data of each spring was tested. The results revealed that the GEV and log-normal distributions best fit the discharge data of GS and AS springs, respectively. In addition, among eight different copula functions, the Joe copula function was selected to construct the bivariate distribution of the discharge data of AS and GS springs. With the help of the created bivariate distribution and assuming a certain probability level, it is possible to estimate the discharge of Absefid spring based on the discharge of Gerdebisheh spring in a particular month. The estimated values of the discharge of the Absefid spring in the period from March 1993 to August 2022 show that with a probability of 90%, the lowest discharge of this spring is 600 L per second and occurred in June 2001. Therefore, to allocate the water from this spring for drinking purposes, this discharge value can be considered as the firm yield of this source. However, the amount of allocated water from this source should be determined by considering the ecological needs of the river downstream of this spring. | ||
650 | 4 | |a Absefid Spring | |
650 | 4 | |a Discharge estimation | |
650 | 4 | |a Copula | |
650 | 4 | |a Bivariate probability | |
650 | 4 | |a Karst spring | |
653 | 0 | |a Water supply for domestic and industrial purposes | |
700 | 0 | |a Mohammad Nazeri Tahroudi |e verfasserin |4 aut | |
700 | 0 | |a Alireza Sharifi |e verfasserin |4 aut | |
700 | 0 | |a Ali Torabi Haghighi |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Applied Water Science |d SpringerOpen, 2013 |g 14(2024), 2, Seite 16 |w (DE-627)64730242X |w (DE-600)2594789-8 |x 21905495 |7 nnns |
773 | 1 | 8 | |g volume:14 |g year:2024 |g number:2 |g pages:16 |
856 | 4 | 0 | |u https://doi.org/10.1007/s13201-023-02071-5 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/eac4d8c78d7d448da1e1a2e2fc7e072a |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1007/s13201-023-02071-5 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2190-5487 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2190-5495 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 14 |j 2024 |e 2 |h 16 |
author_variant |
r m rm m n t mnt a s as a t h ath |
---|---|
matchkey_str |
article:21905495:2024----::poaiitcprahoetmtnsrndshre |
hierarchy_sort_str |
2024 |
callnumber-subject-code |
TD |
publishDate |
2024 |
allfields |
10.1007/s13201-023-02071-5 doi (DE-627)DOAJ091167558 (DE-599)DOAJeac4d8c78d7d448da1e1a2e2fc7e072a DE-627 ger DE-627 rakwb eng TD201-500 Rasoul Mirabbasi verfasserin aut A probabilistic approach for estimating spring discharge facing data scarcity 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Since spring discharge, especially in arid and semiarid regions, varies considerably in different months of the year, a time series of spring discharge observations is needed to determine the firm yield of the spring and the amount of water allocated to different needs. Because most springs are in mountainous and inaccessible areas, long-term observational data are often unavailable. This study proposes a probabilistic method based on bivariate analysis to estimate the discharge of the Absefid spring in Iran. This method constructed the bivariate distribution of the outflows of Absefid (AS) and Gerdebisheh (GS) springs using Copula functions. For this purpose, the fit of 11 different univariate distributions to the discharge data of each spring was tested. The results revealed that the GEV and log-normal distributions best fit the discharge data of GS and AS springs, respectively. In addition, among eight different copula functions, the Joe copula function was selected to construct the bivariate distribution of the discharge data of AS and GS springs. With the help of the created bivariate distribution and assuming a certain probability level, it is possible to estimate the discharge of Absefid spring based on the discharge of Gerdebisheh spring in a particular month. The estimated values of the discharge of the Absefid spring in the period from March 1993 to August 2022 show that with a probability of 90%, the lowest discharge of this spring is 600 L per second and occurred in June 2001. Therefore, to allocate the water from this spring for drinking purposes, this discharge value can be considered as the firm yield of this source. However, the amount of allocated water from this source should be determined by considering the ecological needs of the river downstream of this spring. Absefid Spring Discharge estimation Copula Bivariate probability Karst spring Water supply for domestic and industrial purposes Mohammad Nazeri Tahroudi verfasserin aut Alireza Sharifi verfasserin aut Ali Torabi Haghighi verfasserin aut In Applied Water Science SpringerOpen, 2013 14(2024), 2, Seite 16 (DE-627)64730242X (DE-600)2594789-8 21905495 nnns volume:14 year:2024 number:2 pages:16 https://doi.org/10.1007/s13201-023-02071-5 kostenfrei https://doaj.org/article/eac4d8c78d7d448da1e1a2e2fc7e072a kostenfrei https://doi.org/10.1007/s13201-023-02071-5 kostenfrei https://doaj.org/toc/2190-5487 Journal toc kostenfrei https://doaj.org/toc/2190-5495 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2024 2 16 |
spelling |
10.1007/s13201-023-02071-5 doi (DE-627)DOAJ091167558 (DE-599)DOAJeac4d8c78d7d448da1e1a2e2fc7e072a DE-627 ger DE-627 rakwb eng TD201-500 Rasoul Mirabbasi verfasserin aut A probabilistic approach for estimating spring discharge facing data scarcity 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Since spring discharge, especially in arid and semiarid regions, varies considerably in different months of the year, a time series of spring discharge observations is needed to determine the firm yield of the spring and the amount of water allocated to different needs. Because most springs are in mountainous and inaccessible areas, long-term observational data are often unavailable. This study proposes a probabilistic method based on bivariate analysis to estimate the discharge of the Absefid spring in Iran. This method constructed the bivariate distribution of the outflows of Absefid (AS) and Gerdebisheh (GS) springs using Copula functions. For this purpose, the fit of 11 different univariate distributions to the discharge data of each spring was tested. The results revealed that the GEV and log-normal distributions best fit the discharge data of GS and AS springs, respectively. In addition, among eight different copula functions, the Joe copula function was selected to construct the bivariate distribution of the discharge data of AS and GS springs. With the help of the created bivariate distribution and assuming a certain probability level, it is possible to estimate the discharge of Absefid spring based on the discharge of Gerdebisheh spring in a particular month. The estimated values of the discharge of the Absefid spring in the period from March 1993 to August 2022 show that with a probability of 90%, the lowest discharge of this spring is 600 L per second and occurred in June 2001. Therefore, to allocate the water from this spring for drinking purposes, this discharge value can be considered as the firm yield of this source. However, the amount of allocated water from this source should be determined by considering the ecological needs of the river downstream of this spring. Absefid Spring Discharge estimation Copula Bivariate probability Karst spring Water supply for domestic and industrial purposes Mohammad Nazeri Tahroudi verfasserin aut Alireza Sharifi verfasserin aut Ali Torabi Haghighi verfasserin aut In Applied Water Science SpringerOpen, 2013 14(2024), 2, Seite 16 (DE-627)64730242X (DE-600)2594789-8 21905495 nnns volume:14 year:2024 number:2 pages:16 https://doi.org/10.1007/s13201-023-02071-5 kostenfrei https://doaj.org/article/eac4d8c78d7d448da1e1a2e2fc7e072a kostenfrei https://doi.org/10.1007/s13201-023-02071-5 kostenfrei https://doaj.org/toc/2190-5487 Journal toc kostenfrei https://doaj.org/toc/2190-5495 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2024 2 16 |
allfields_unstemmed |
10.1007/s13201-023-02071-5 doi (DE-627)DOAJ091167558 (DE-599)DOAJeac4d8c78d7d448da1e1a2e2fc7e072a DE-627 ger DE-627 rakwb eng TD201-500 Rasoul Mirabbasi verfasserin aut A probabilistic approach for estimating spring discharge facing data scarcity 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Since spring discharge, especially in arid and semiarid regions, varies considerably in different months of the year, a time series of spring discharge observations is needed to determine the firm yield of the spring and the amount of water allocated to different needs. Because most springs are in mountainous and inaccessible areas, long-term observational data are often unavailable. This study proposes a probabilistic method based on bivariate analysis to estimate the discharge of the Absefid spring in Iran. This method constructed the bivariate distribution of the outflows of Absefid (AS) and Gerdebisheh (GS) springs using Copula functions. For this purpose, the fit of 11 different univariate distributions to the discharge data of each spring was tested. The results revealed that the GEV and log-normal distributions best fit the discharge data of GS and AS springs, respectively. In addition, among eight different copula functions, the Joe copula function was selected to construct the bivariate distribution of the discharge data of AS and GS springs. With the help of the created bivariate distribution and assuming a certain probability level, it is possible to estimate the discharge of Absefid spring based on the discharge of Gerdebisheh spring in a particular month. The estimated values of the discharge of the Absefid spring in the period from March 1993 to August 2022 show that with a probability of 90%, the lowest discharge of this spring is 600 L per second and occurred in June 2001. Therefore, to allocate the water from this spring for drinking purposes, this discharge value can be considered as the firm yield of this source. However, the amount of allocated water from this source should be determined by considering the ecological needs of the river downstream of this spring. Absefid Spring Discharge estimation Copula Bivariate probability Karst spring Water supply for domestic and industrial purposes Mohammad Nazeri Tahroudi verfasserin aut Alireza Sharifi verfasserin aut Ali Torabi Haghighi verfasserin aut In Applied Water Science SpringerOpen, 2013 14(2024), 2, Seite 16 (DE-627)64730242X (DE-600)2594789-8 21905495 nnns volume:14 year:2024 number:2 pages:16 https://doi.org/10.1007/s13201-023-02071-5 kostenfrei https://doaj.org/article/eac4d8c78d7d448da1e1a2e2fc7e072a kostenfrei https://doi.org/10.1007/s13201-023-02071-5 kostenfrei https://doaj.org/toc/2190-5487 Journal toc kostenfrei https://doaj.org/toc/2190-5495 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2024 2 16 |
allfieldsGer |
10.1007/s13201-023-02071-5 doi (DE-627)DOAJ091167558 (DE-599)DOAJeac4d8c78d7d448da1e1a2e2fc7e072a DE-627 ger DE-627 rakwb eng TD201-500 Rasoul Mirabbasi verfasserin aut A probabilistic approach for estimating spring discharge facing data scarcity 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Since spring discharge, especially in arid and semiarid regions, varies considerably in different months of the year, a time series of spring discharge observations is needed to determine the firm yield of the spring and the amount of water allocated to different needs. Because most springs are in mountainous and inaccessible areas, long-term observational data are often unavailable. This study proposes a probabilistic method based on bivariate analysis to estimate the discharge of the Absefid spring in Iran. This method constructed the bivariate distribution of the outflows of Absefid (AS) and Gerdebisheh (GS) springs using Copula functions. For this purpose, the fit of 11 different univariate distributions to the discharge data of each spring was tested. The results revealed that the GEV and log-normal distributions best fit the discharge data of GS and AS springs, respectively. In addition, among eight different copula functions, the Joe copula function was selected to construct the bivariate distribution of the discharge data of AS and GS springs. With the help of the created bivariate distribution and assuming a certain probability level, it is possible to estimate the discharge of Absefid spring based on the discharge of Gerdebisheh spring in a particular month. The estimated values of the discharge of the Absefid spring in the period from March 1993 to August 2022 show that with a probability of 90%, the lowest discharge of this spring is 600 L per second and occurred in June 2001. Therefore, to allocate the water from this spring for drinking purposes, this discharge value can be considered as the firm yield of this source. However, the amount of allocated water from this source should be determined by considering the ecological needs of the river downstream of this spring. Absefid Spring Discharge estimation Copula Bivariate probability Karst spring Water supply for domestic and industrial purposes Mohammad Nazeri Tahroudi verfasserin aut Alireza Sharifi verfasserin aut Ali Torabi Haghighi verfasserin aut In Applied Water Science SpringerOpen, 2013 14(2024), 2, Seite 16 (DE-627)64730242X (DE-600)2594789-8 21905495 nnns volume:14 year:2024 number:2 pages:16 https://doi.org/10.1007/s13201-023-02071-5 kostenfrei https://doaj.org/article/eac4d8c78d7d448da1e1a2e2fc7e072a kostenfrei https://doi.org/10.1007/s13201-023-02071-5 kostenfrei https://doaj.org/toc/2190-5487 Journal toc kostenfrei https://doaj.org/toc/2190-5495 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2024 2 16 |
allfieldsSound |
10.1007/s13201-023-02071-5 doi (DE-627)DOAJ091167558 (DE-599)DOAJeac4d8c78d7d448da1e1a2e2fc7e072a DE-627 ger DE-627 rakwb eng TD201-500 Rasoul Mirabbasi verfasserin aut A probabilistic approach for estimating spring discharge facing data scarcity 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Since spring discharge, especially in arid and semiarid regions, varies considerably in different months of the year, a time series of spring discharge observations is needed to determine the firm yield of the spring and the amount of water allocated to different needs. Because most springs are in mountainous and inaccessible areas, long-term observational data are often unavailable. This study proposes a probabilistic method based on bivariate analysis to estimate the discharge of the Absefid spring in Iran. This method constructed the bivariate distribution of the outflows of Absefid (AS) and Gerdebisheh (GS) springs using Copula functions. For this purpose, the fit of 11 different univariate distributions to the discharge data of each spring was tested. The results revealed that the GEV and log-normal distributions best fit the discharge data of GS and AS springs, respectively. In addition, among eight different copula functions, the Joe copula function was selected to construct the bivariate distribution of the discharge data of AS and GS springs. With the help of the created bivariate distribution and assuming a certain probability level, it is possible to estimate the discharge of Absefid spring based on the discharge of Gerdebisheh spring in a particular month. The estimated values of the discharge of the Absefid spring in the period from March 1993 to August 2022 show that with a probability of 90%, the lowest discharge of this spring is 600 L per second and occurred in June 2001. Therefore, to allocate the water from this spring for drinking purposes, this discharge value can be considered as the firm yield of this source. However, the amount of allocated water from this source should be determined by considering the ecological needs of the river downstream of this spring. Absefid Spring Discharge estimation Copula Bivariate probability Karst spring Water supply for domestic and industrial purposes Mohammad Nazeri Tahroudi verfasserin aut Alireza Sharifi verfasserin aut Ali Torabi Haghighi verfasserin aut In Applied Water Science SpringerOpen, 2013 14(2024), 2, Seite 16 (DE-627)64730242X (DE-600)2594789-8 21905495 nnns volume:14 year:2024 number:2 pages:16 https://doi.org/10.1007/s13201-023-02071-5 kostenfrei https://doaj.org/article/eac4d8c78d7d448da1e1a2e2fc7e072a kostenfrei https://doi.org/10.1007/s13201-023-02071-5 kostenfrei https://doaj.org/toc/2190-5487 Journal toc kostenfrei https://doaj.org/toc/2190-5495 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2024 2 16 |
language |
English |
source |
In Applied Water Science 14(2024), 2, Seite 16 volume:14 year:2024 number:2 pages:16 |
sourceStr |
In Applied Water Science 14(2024), 2, Seite 16 volume:14 year:2024 number:2 pages:16 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Absefid Spring Discharge estimation Copula Bivariate probability Karst spring Water supply for domestic and industrial purposes |
isfreeaccess_bool |
true |
container_title |
Applied Water Science |
authorswithroles_txt_mv |
Rasoul Mirabbasi @@aut@@ Mohammad Nazeri Tahroudi @@aut@@ Alireza Sharifi @@aut@@ Ali Torabi Haghighi @@aut@@ |
publishDateDaySort_date |
2024-01-01T00:00:00Z |
hierarchy_top_id |
64730242X |
id |
DOAJ091167558 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ091167558</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414051401.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240412s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s13201-023-02071-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ091167558</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJeac4d8c78d7d448da1e1a2e2fc7e072a</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TD201-500</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Rasoul Mirabbasi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A probabilistic approach for estimating spring discharge facing data scarcity</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Since spring discharge, especially in arid and semiarid regions, varies considerably in different months of the year, a time series of spring discharge observations is needed to determine the firm yield of the spring and the amount of water allocated to different needs. Because most springs are in mountainous and inaccessible areas, long-term observational data are often unavailable. This study proposes a probabilistic method based on bivariate analysis to estimate the discharge of the Absefid spring in Iran. This method constructed the bivariate distribution of the outflows of Absefid (AS) and Gerdebisheh (GS) springs using Copula functions. For this purpose, the fit of 11 different univariate distributions to the discharge data of each spring was tested. The results revealed that the GEV and log-normal distributions best fit the discharge data of GS and AS springs, respectively. In addition, among eight different copula functions, the Joe copula function was selected to construct the bivariate distribution of the discharge data of AS and GS springs. With the help of the created bivariate distribution and assuming a certain probability level, it is possible to estimate the discharge of Absefid spring based on the discharge of Gerdebisheh spring in a particular month. The estimated values of the discharge of the Absefid spring in the period from March 1993 to August 2022 show that with a probability of 90%, the lowest discharge of this spring is 600 L per second and occurred in June 2001. Therefore, to allocate the water from this spring for drinking purposes, this discharge value can be considered as the firm yield of this source. However, the amount of allocated water from this source should be determined by considering the ecological needs of the river downstream of this spring.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Absefid Spring</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Discharge estimation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Copula</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bivariate probability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Karst spring</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Water supply for domestic and industrial purposes</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mohammad Nazeri Tahroudi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alireza Sharifi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ali Torabi Haghighi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Applied Water Science</subfield><subfield code="d">SpringerOpen, 2013</subfield><subfield code="g">14(2024), 2, Seite 16</subfield><subfield code="w">(DE-627)64730242X</subfield><subfield code="w">(DE-600)2594789-8</subfield><subfield code="x">21905495</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:16</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/s13201-023-02071-5</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/eac4d8c78d7d448da1e1a2e2fc7e072a</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/s13201-023-02071-5</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2190-5487</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2190-5495</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2024</subfield><subfield code="e">2</subfield><subfield code="h">16</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Rasoul Mirabbasi |
spellingShingle |
Rasoul Mirabbasi misc TD201-500 misc Absefid Spring misc Discharge estimation misc Copula misc Bivariate probability misc Karst spring misc Water supply for domestic and industrial purposes A probabilistic approach for estimating spring discharge facing data scarcity |
authorStr |
Rasoul Mirabbasi |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)64730242X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TD201-500 |
illustrated |
Not Illustrated |
issn |
21905495 |
topic_title |
TD201-500 A probabilistic approach for estimating spring discharge facing data scarcity Absefid Spring Discharge estimation Copula Bivariate probability Karst spring |
topic |
misc TD201-500 misc Absefid Spring misc Discharge estimation misc Copula misc Bivariate probability misc Karst spring misc Water supply for domestic and industrial purposes |
topic_unstemmed |
misc TD201-500 misc Absefid Spring misc Discharge estimation misc Copula misc Bivariate probability misc Karst spring misc Water supply for domestic and industrial purposes |
topic_browse |
misc TD201-500 misc Absefid Spring misc Discharge estimation misc Copula misc Bivariate probability misc Karst spring misc Water supply for domestic and industrial purposes |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Applied Water Science |
hierarchy_parent_id |
64730242X |
hierarchy_top_title |
Applied Water Science |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)64730242X (DE-600)2594789-8 |
title |
A probabilistic approach for estimating spring discharge facing data scarcity |
ctrlnum |
(DE-627)DOAJ091167558 (DE-599)DOAJeac4d8c78d7d448da1e1a2e2fc7e072a |
title_full |
A probabilistic approach for estimating spring discharge facing data scarcity |
author_sort |
Rasoul Mirabbasi |
journal |
Applied Water Science |
journalStr |
Applied Water Science |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
container_start_page |
16 |
author_browse |
Rasoul Mirabbasi Mohammad Nazeri Tahroudi Alireza Sharifi Ali Torabi Haghighi |
container_volume |
14 |
class |
TD201-500 |
format_se |
Elektronische Aufsätze |
author-letter |
Rasoul Mirabbasi |
doi_str_mv |
10.1007/s13201-023-02071-5 |
author2-role |
verfasserin |
title_sort |
probabilistic approach for estimating spring discharge facing data scarcity |
callnumber |
TD201-500 |
title_auth |
A probabilistic approach for estimating spring discharge facing data scarcity |
abstract |
Abstract Since spring discharge, especially in arid and semiarid regions, varies considerably in different months of the year, a time series of spring discharge observations is needed to determine the firm yield of the spring and the amount of water allocated to different needs. Because most springs are in mountainous and inaccessible areas, long-term observational data are often unavailable. This study proposes a probabilistic method based on bivariate analysis to estimate the discharge of the Absefid spring in Iran. This method constructed the bivariate distribution of the outflows of Absefid (AS) and Gerdebisheh (GS) springs using Copula functions. For this purpose, the fit of 11 different univariate distributions to the discharge data of each spring was tested. The results revealed that the GEV and log-normal distributions best fit the discharge data of GS and AS springs, respectively. In addition, among eight different copula functions, the Joe copula function was selected to construct the bivariate distribution of the discharge data of AS and GS springs. With the help of the created bivariate distribution and assuming a certain probability level, it is possible to estimate the discharge of Absefid spring based on the discharge of Gerdebisheh spring in a particular month. The estimated values of the discharge of the Absefid spring in the period from March 1993 to August 2022 show that with a probability of 90%, the lowest discharge of this spring is 600 L per second and occurred in June 2001. Therefore, to allocate the water from this spring for drinking purposes, this discharge value can be considered as the firm yield of this source. However, the amount of allocated water from this source should be determined by considering the ecological needs of the river downstream of this spring. |
abstractGer |
Abstract Since spring discharge, especially in arid and semiarid regions, varies considerably in different months of the year, a time series of spring discharge observations is needed to determine the firm yield of the spring and the amount of water allocated to different needs. Because most springs are in mountainous and inaccessible areas, long-term observational data are often unavailable. This study proposes a probabilistic method based on bivariate analysis to estimate the discharge of the Absefid spring in Iran. This method constructed the bivariate distribution of the outflows of Absefid (AS) and Gerdebisheh (GS) springs using Copula functions. For this purpose, the fit of 11 different univariate distributions to the discharge data of each spring was tested. The results revealed that the GEV and log-normal distributions best fit the discharge data of GS and AS springs, respectively. In addition, among eight different copula functions, the Joe copula function was selected to construct the bivariate distribution of the discharge data of AS and GS springs. With the help of the created bivariate distribution and assuming a certain probability level, it is possible to estimate the discharge of Absefid spring based on the discharge of Gerdebisheh spring in a particular month. The estimated values of the discharge of the Absefid spring in the period from March 1993 to August 2022 show that with a probability of 90%, the lowest discharge of this spring is 600 L per second and occurred in June 2001. Therefore, to allocate the water from this spring for drinking purposes, this discharge value can be considered as the firm yield of this source. However, the amount of allocated water from this source should be determined by considering the ecological needs of the river downstream of this spring. |
abstract_unstemmed |
Abstract Since spring discharge, especially in arid and semiarid regions, varies considerably in different months of the year, a time series of spring discharge observations is needed to determine the firm yield of the spring and the amount of water allocated to different needs. Because most springs are in mountainous and inaccessible areas, long-term observational data are often unavailable. This study proposes a probabilistic method based on bivariate analysis to estimate the discharge of the Absefid spring in Iran. This method constructed the bivariate distribution of the outflows of Absefid (AS) and Gerdebisheh (GS) springs using Copula functions. For this purpose, the fit of 11 different univariate distributions to the discharge data of each spring was tested. The results revealed that the GEV and log-normal distributions best fit the discharge data of GS and AS springs, respectively. In addition, among eight different copula functions, the Joe copula function was selected to construct the bivariate distribution of the discharge data of AS and GS springs. With the help of the created bivariate distribution and assuming a certain probability level, it is possible to estimate the discharge of Absefid spring based on the discharge of Gerdebisheh spring in a particular month. The estimated values of the discharge of the Absefid spring in the period from March 1993 to August 2022 show that with a probability of 90%, the lowest discharge of this spring is 600 L per second and occurred in June 2001. Therefore, to allocate the water from this spring for drinking purposes, this discharge value can be considered as the firm yield of this source. However, the amount of allocated water from this source should be determined by considering the ecological needs of the river downstream of this spring. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
2 |
title_short |
A probabilistic approach for estimating spring discharge facing data scarcity |
url |
https://doi.org/10.1007/s13201-023-02071-5 https://doaj.org/article/eac4d8c78d7d448da1e1a2e2fc7e072a https://doaj.org/toc/2190-5487 https://doaj.org/toc/2190-5495 |
remote_bool |
true |
author2 |
Mohammad Nazeri Tahroudi Alireza Sharifi Ali Torabi Haghighi |
author2Str |
Mohammad Nazeri Tahroudi Alireza Sharifi Ali Torabi Haghighi |
ppnlink |
64730242X |
callnumber-subject |
TD - Environmental Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1007/s13201-023-02071-5 |
callnumber-a |
TD201-500 |
up_date |
2024-07-03T18:49:40.327Z |
_version_ |
1803584882958401536 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ091167558</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414051401.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240412s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s13201-023-02071-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ091167558</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJeac4d8c78d7d448da1e1a2e2fc7e072a</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TD201-500</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Rasoul Mirabbasi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A probabilistic approach for estimating spring discharge facing data scarcity</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Since spring discharge, especially in arid and semiarid regions, varies considerably in different months of the year, a time series of spring discharge observations is needed to determine the firm yield of the spring and the amount of water allocated to different needs. Because most springs are in mountainous and inaccessible areas, long-term observational data are often unavailable. This study proposes a probabilistic method based on bivariate analysis to estimate the discharge of the Absefid spring in Iran. This method constructed the bivariate distribution of the outflows of Absefid (AS) and Gerdebisheh (GS) springs using Copula functions. For this purpose, the fit of 11 different univariate distributions to the discharge data of each spring was tested. The results revealed that the GEV and log-normal distributions best fit the discharge data of GS and AS springs, respectively. In addition, among eight different copula functions, the Joe copula function was selected to construct the bivariate distribution of the discharge data of AS and GS springs. With the help of the created bivariate distribution and assuming a certain probability level, it is possible to estimate the discharge of Absefid spring based on the discharge of Gerdebisheh spring in a particular month. The estimated values of the discharge of the Absefid spring in the period from March 1993 to August 2022 show that with a probability of 90%, the lowest discharge of this spring is 600 L per second and occurred in June 2001. Therefore, to allocate the water from this spring for drinking purposes, this discharge value can be considered as the firm yield of this source. However, the amount of allocated water from this source should be determined by considering the ecological needs of the river downstream of this spring.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Absefid Spring</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Discharge estimation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Copula</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bivariate probability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Karst spring</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Water supply for domestic and industrial purposes</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mohammad Nazeri Tahroudi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alireza Sharifi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ali Torabi Haghighi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Applied Water Science</subfield><subfield code="d">SpringerOpen, 2013</subfield><subfield code="g">14(2024), 2, Seite 16</subfield><subfield code="w">(DE-627)64730242X</subfield><subfield code="w">(DE-600)2594789-8</subfield><subfield code="x">21905495</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:16</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/s13201-023-02071-5</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/eac4d8c78d7d448da1e1a2e2fc7e072a</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/s13201-023-02071-5</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2190-5487</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2190-5495</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2024</subfield><subfield code="e">2</subfield><subfield code="h">16</subfield></datafield></record></collection>
|
score |
7.401618 |