Impact of gamma irradiation on physico-chemical and electromagnetic interference shielding properties of Cu2O nanoparticles reinforced LDPE nanocomposite films
Abstract In the current work, cuprous oxide (Cu2O) nanoparticles coated with Tween 80 were successfully synthesized via the chemical reduction method. Nanocomposites composed of low-density polyethylene (LDPE) and different ratios of Cu2O nanoparticles were fabricated by the melt mixing process. 10%...
Ausführliche Beschreibung
Autor*in: |
Mohamad Bekhit [verfasserIn] E. S. Fathy [verfasserIn] A. Sharaf [verfasserIn] M. Shiple [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Scientific Reports - Nature Portfolio, 2011, 14(2024), 1, Seite 15 |
---|---|
Übergeordnetes Werk: |
volume:14 ; year:2024 ; number:1 ; pages:15 |
Links: |
---|
DOI / URN: |
10.1038/s41598-024-54426-w |
---|
Katalog-ID: |
DOAJ091205964 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ091205964 | ||
003 | DE-627 | ||
005 | 20240414052046.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240412s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1038/s41598-024-54426-w |2 doi | |
035 | |a (DE-627)DOAJ091205964 | ||
035 | |a (DE-599)DOAJ85f3ce4343504de98329e65ceddabf03 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Mohamad Bekhit |e verfasserin |4 aut | |
245 | 1 | 0 | |a Impact of gamma irradiation on physico-chemical and electromagnetic interference shielding properties of Cu2O nanoparticles reinforced LDPE nanocomposite films |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract In the current work, cuprous oxide (Cu2O) nanoparticles coated with Tween 80 were successfully synthesized via the chemical reduction method. Nanocomposites composed of low-density polyethylene (LDPE) and different ratios of Cu2O nanoparticles were fabricated by the melt mixing process. 10% of ethyl vinyl acetate (EVA) as a compatibilizing agent was added to the molten LDPE matrix and the mixing process continued until homogenous nanocomposites were fabricated. To study the influence of ionizing radiation on the fabricated samples, the prepared species were exposed to 50 and 100 kGy of gamma rays. The synthesized Cu2O nanoparticles were investigated by transmission electron microscopy (TEM) and X-ray diffraction (XRD). XRD and TEM analysis illustrated the successful formation of spherical Cu2O nanoparticles with an average size of 16.8 nm. The as-prepared LDPE/Cu2O nanocomposites were characterized via different techniques such as mechanical, thermal, morphological, XRD, and FTIR. Electromagnetic interference shielding (EMI) of the different nanocomposite formulations was performed as a promising application for these materials in practical life. The electromagnetic shielding effectiveness (SE) of the produced samples was measured in the X-band of the radio frequency range from 8 to 12 GHz using the vector network analyzer (VNA) and a proper waveguide. All the samples were studied before and after gamma-ray irradiation under the same conditions of pressure and temperature. The shielding effectiveness increased significantly from 25 dB for unirradiated samples to 35 dB with samples irradiated with 100 kGy, which reflects 40% enhancement in the effectiveness of the shielding. | ||
650 | 4 | |a Gamma radiation | |
650 | 4 | |a Cu2O nanoparticle | |
650 | 4 | |a LDPE | |
650 | 4 | |a Nanocomposite | |
650 | 4 | |a Shielding effectiveness (SE) | |
653 | 0 | |a Medicine | |
653 | 0 | |a R | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
700 | 0 | |a E. S. Fathy |e verfasserin |4 aut | |
700 | 0 | |a A. Sharaf |e verfasserin |4 aut | |
700 | 0 | |a M. Shiple |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Scientific Reports |d Nature Portfolio, 2011 |g 14(2024), 1, Seite 15 |w (DE-627)663366712 |w (DE-600)2615211-3 |x 20452322 |7 nnns |
773 | 1 | 8 | |g volume:14 |g year:2024 |g number:1 |g pages:15 |
856 | 4 | 0 | |u https://doi.org/10.1038/s41598-024-54426-w |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/85f3ce4343504de98329e65ceddabf03 |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1038/s41598-024-54426-w |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2045-2322 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_381 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 14 |j 2024 |e 1 |h 15 |
author_variant |
m b mb e s f esf a s as m s ms |
---|---|
matchkey_str |
article:20452322:2024----::matfamirdainnhscceiaadlcrmgeiitreecsiligrprisfuoaoat |
hierarchy_sort_str |
2024 |
publishDate |
2024 |
allfields |
10.1038/s41598-024-54426-w doi (DE-627)DOAJ091205964 (DE-599)DOAJ85f3ce4343504de98329e65ceddabf03 DE-627 ger DE-627 rakwb eng Mohamad Bekhit verfasserin aut Impact of gamma irradiation on physico-chemical and electromagnetic interference shielding properties of Cu2O nanoparticles reinforced LDPE nanocomposite films 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In the current work, cuprous oxide (Cu2O) nanoparticles coated with Tween 80 were successfully synthesized via the chemical reduction method. Nanocomposites composed of low-density polyethylene (LDPE) and different ratios of Cu2O nanoparticles were fabricated by the melt mixing process. 10% of ethyl vinyl acetate (EVA) as a compatibilizing agent was added to the molten LDPE matrix and the mixing process continued until homogenous nanocomposites were fabricated. To study the influence of ionizing radiation on the fabricated samples, the prepared species were exposed to 50 and 100 kGy of gamma rays. The synthesized Cu2O nanoparticles were investigated by transmission electron microscopy (TEM) and X-ray diffraction (XRD). XRD and TEM analysis illustrated the successful formation of spherical Cu2O nanoparticles with an average size of 16.8 nm. The as-prepared LDPE/Cu2O nanocomposites were characterized via different techniques such as mechanical, thermal, morphological, XRD, and FTIR. Electromagnetic interference shielding (EMI) of the different nanocomposite formulations was performed as a promising application for these materials in practical life. The electromagnetic shielding effectiveness (SE) of the produced samples was measured in the X-band of the radio frequency range from 8 to 12 GHz using the vector network analyzer (VNA) and a proper waveguide. All the samples were studied before and after gamma-ray irradiation under the same conditions of pressure and temperature. The shielding effectiveness increased significantly from 25 dB for unirradiated samples to 35 dB with samples irradiated with 100 kGy, which reflects 40% enhancement in the effectiveness of the shielding. Gamma radiation Cu2O nanoparticle LDPE Nanocomposite Shielding effectiveness (SE) Medicine R Science Q E. S. Fathy verfasserin aut A. Sharaf verfasserin aut M. Shiple verfasserin aut In Scientific Reports Nature Portfolio, 2011 14(2024), 1, Seite 15 (DE-627)663366712 (DE-600)2615211-3 20452322 nnns volume:14 year:2024 number:1 pages:15 https://doi.org/10.1038/s41598-024-54426-w kostenfrei https://doaj.org/article/85f3ce4343504de98329e65ceddabf03 kostenfrei https://doi.org/10.1038/s41598-024-54426-w kostenfrei https://doaj.org/toc/2045-2322 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2024 1 15 |
spelling |
10.1038/s41598-024-54426-w doi (DE-627)DOAJ091205964 (DE-599)DOAJ85f3ce4343504de98329e65ceddabf03 DE-627 ger DE-627 rakwb eng Mohamad Bekhit verfasserin aut Impact of gamma irradiation on physico-chemical and electromagnetic interference shielding properties of Cu2O nanoparticles reinforced LDPE nanocomposite films 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In the current work, cuprous oxide (Cu2O) nanoparticles coated with Tween 80 were successfully synthesized via the chemical reduction method. Nanocomposites composed of low-density polyethylene (LDPE) and different ratios of Cu2O nanoparticles were fabricated by the melt mixing process. 10% of ethyl vinyl acetate (EVA) as a compatibilizing agent was added to the molten LDPE matrix and the mixing process continued until homogenous nanocomposites were fabricated. To study the influence of ionizing radiation on the fabricated samples, the prepared species were exposed to 50 and 100 kGy of gamma rays. The synthesized Cu2O nanoparticles were investigated by transmission electron microscopy (TEM) and X-ray diffraction (XRD). XRD and TEM analysis illustrated the successful formation of spherical Cu2O nanoparticles with an average size of 16.8 nm. The as-prepared LDPE/Cu2O nanocomposites were characterized via different techniques such as mechanical, thermal, morphological, XRD, and FTIR. Electromagnetic interference shielding (EMI) of the different nanocomposite formulations was performed as a promising application for these materials in practical life. The electromagnetic shielding effectiveness (SE) of the produced samples was measured in the X-band of the radio frequency range from 8 to 12 GHz using the vector network analyzer (VNA) and a proper waveguide. All the samples were studied before and after gamma-ray irradiation under the same conditions of pressure and temperature. The shielding effectiveness increased significantly from 25 dB for unirradiated samples to 35 dB with samples irradiated with 100 kGy, which reflects 40% enhancement in the effectiveness of the shielding. Gamma radiation Cu2O nanoparticle LDPE Nanocomposite Shielding effectiveness (SE) Medicine R Science Q E. S. Fathy verfasserin aut A. Sharaf verfasserin aut M. Shiple verfasserin aut In Scientific Reports Nature Portfolio, 2011 14(2024), 1, Seite 15 (DE-627)663366712 (DE-600)2615211-3 20452322 nnns volume:14 year:2024 number:1 pages:15 https://doi.org/10.1038/s41598-024-54426-w kostenfrei https://doaj.org/article/85f3ce4343504de98329e65ceddabf03 kostenfrei https://doi.org/10.1038/s41598-024-54426-w kostenfrei https://doaj.org/toc/2045-2322 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2024 1 15 |
allfields_unstemmed |
10.1038/s41598-024-54426-w doi (DE-627)DOAJ091205964 (DE-599)DOAJ85f3ce4343504de98329e65ceddabf03 DE-627 ger DE-627 rakwb eng Mohamad Bekhit verfasserin aut Impact of gamma irradiation on physico-chemical and electromagnetic interference shielding properties of Cu2O nanoparticles reinforced LDPE nanocomposite films 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In the current work, cuprous oxide (Cu2O) nanoparticles coated with Tween 80 were successfully synthesized via the chemical reduction method. Nanocomposites composed of low-density polyethylene (LDPE) and different ratios of Cu2O nanoparticles were fabricated by the melt mixing process. 10% of ethyl vinyl acetate (EVA) as a compatibilizing agent was added to the molten LDPE matrix and the mixing process continued until homogenous nanocomposites were fabricated. To study the influence of ionizing radiation on the fabricated samples, the prepared species were exposed to 50 and 100 kGy of gamma rays. The synthesized Cu2O nanoparticles were investigated by transmission electron microscopy (TEM) and X-ray diffraction (XRD). XRD and TEM analysis illustrated the successful formation of spherical Cu2O nanoparticles with an average size of 16.8 nm. The as-prepared LDPE/Cu2O nanocomposites were characterized via different techniques such as mechanical, thermal, morphological, XRD, and FTIR. Electromagnetic interference shielding (EMI) of the different nanocomposite formulations was performed as a promising application for these materials in practical life. The electromagnetic shielding effectiveness (SE) of the produced samples was measured in the X-band of the radio frequency range from 8 to 12 GHz using the vector network analyzer (VNA) and a proper waveguide. All the samples were studied before and after gamma-ray irradiation under the same conditions of pressure and temperature. The shielding effectiveness increased significantly from 25 dB for unirradiated samples to 35 dB with samples irradiated with 100 kGy, which reflects 40% enhancement in the effectiveness of the shielding. Gamma radiation Cu2O nanoparticle LDPE Nanocomposite Shielding effectiveness (SE) Medicine R Science Q E. S. Fathy verfasserin aut A. Sharaf verfasserin aut M. Shiple verfasserin aut In Scientific Reports Nature Portfolio, 2011 14(2024), 1, Seite 15 (DE-627)663366712 (DE-600)2615211-3 20452322 nnns volume:14 year:2024 number:1 pages:15 https://doi.org/10.1038/s41598-024-54426-w kostenfrei https://doaj.org/article/85f3ce4343504de98329e65ceddabf03 kostenfrei https://doi.org/10.1038/s41598-024-54426-w kostenfrei https://doaj.org/toc/2045-2322 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2024 1 15 |
allfieldsGer |
10.1038/s41598-024-54426-w doi (DE-627)DOAJ091205964 (DE-599)DOAJ85f3ce4343504de98329e65ceddabf03 DE-627 ger DE-627 rakwb eng Mohamad Bekhit verfasserin aut Impact of gamma irradiation on physico-chemical and electromagnetic interference shielding properties of Cu2O nanoparticles reinforced LDPE nanocomposite films 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In the current work, cuprous oxide (Cu2O) nanoparticles coated with Tween 80 were successfully synthesized via the chemical reduction method. Nanocomposites composed of low-density polyethylene (LDPE) and different ratios of Cu2O nanoparticles were fabricated by the melt mixing process. 10% of ethyl vinyl acetate (EVA) as a compatibilizing agent was added to the molten LDPE matrix and the mixing process continued until homogenous nanocomposites were fabricated. To study the influence of ionizing radiation on the fabricated samples, the prepared species were exposed to 50 and 100 kGy of gamma rays. The synthesized Cu2O nanoparticles were investigated by transmission electron microscopy (TEM) and X-ray diffraction (XRD). XRD and TEM analysis illustrated the successful formation of spherical Cu2O nanoparticles with an average size of 16.8 nm. The as-prepared LDPE/Cu2O nanocomposites were characterized via different techniques such as mechanical, thermal, morphological, XRD, and FTIR. Electromagnetic interference shielding (EMI) of the different nanocomposite formulations was performed as a promising application for these materials in practical life. The electromagnetic shielding effectiveness (SE) of the produced samples was measured in the X-band of the radio frequency range from 8 to 12 GHz using the vector network analyzer (VNA) and a proper waveguide. All the samples were studied before and after gamma-ray irradiation under the same conditions of pressure and temperature. The shielding effectiveness increased significantly from 25 dB for unirradiated samples to 35 dB with samples irradiated with 100 kGy, which reflects 40% enhancement in the effectiveness of the shielding. Gamma radiation Cu2O nanoparticle LDPE Nanocomposite Shielding effectiveness (SE) Medicine R Science Q E. S. Fathy verfasserin aut A. Sharaf verfasserin aut M. Shiple verfasserin aut In Scientific Reports Nature Portfolio, 2011 14(2024), 1, Seite 15 (DE-627)663366712 (DE-600)2615211-3 20452322 nnns volume:14 year:2024 number:1 pages:15 https://doi.org/10.1038/s41598-024-54426-w kostenfrei https://doaj.org/article/85f3ce4343504de98329e65ceddabf03 kostenfrei https://doi.org/10.1038/s41598-024-54426-w kostenfrei https://doaj.org/toc/2045-2322 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2024 1 15 |
allfieldsSound |
10.1038/s41598-024-54426-w doi (DE-627)DOAJ091205964 (DE-599)DOAJ85f3ce4343504de98329e65ceddabf03 DE-627 ger DE-627 rakwb eng Mohamad Bekhit verfasserin aut Impact of gamma irradiation on physico-chemical and electromagnetic interference shielding properties of Cu2O nanoparticles reinforced LDPE nanocomposite films 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In the current work, cuprous oxide (Cu2O) nanoparticles coated with Tween 80 were successfully synthesized via the chemical reduction method. Nanocomposites composed of low-density polyethylene (LDPE) and different ratios of Cu2O nanoparticles were fabricated by the melt mixing process. 10% of ethyl vinyl acetate (EVA) as a compatibilizing agent was added to the molten LDPE matrix and the mixing process continued until homogenous nanocomposites were fabricated. To study the influence of ionizing radiation on the fabricated samples, the prepared species were exposed to 50 and 100 kGy of gamma rays. The synthesized Cu2O nanoparticles were investigated by transmission electron microscopy (TEM) and X-ray diffraction (XRD). XRD and TEM analysis illustrated the successful formation of spherical Cu2O nanoparticles with an average size of 16.8 nm. The as-prepared LDPE/Cu2O nanocomposites were characterized via different techniques such as mechanical, thermal, morphological, XRD, and FTIR. Electromagnetic interference shielding (EMI) of the different nanocomposite formulations was performed as a promising application for these materials in practical life. The electromagnetic shielding effectiveness (SE) of the produced samples was measured in the X-band of the radio frequency range from 8 to 12 GHz using the vector network analyzer (VNA) and a proper waveguide. All the samples were studied before and after gamma-ray irradiation under the same conditions of pressure and temperature. The shielding effectiveness increased significantly from 25 dB for unirradiated samples to 35 dB with samples irradiated with 100 kGy, which reflects 40% enhancement in the effectiveness of the shielding. Gamma radiation Cu2O nanoparticle LDPE Nanocomposite Shielding effectiveness (SE) Medicine R Science Q E. S. Fathy verfasserin aut A. Sharaf verfasserin aut M. Shiple verfasserin aut In Scientific Reports Nature Portfolio, 2011 14(2024), 1, Seite 15 (DE-627)663366712 (DE-600)2615211-3 20452322 nnns volume:14 year:2024 number:1 pages:15 https://doi.org/10.1038/s41598-024-54426-w kostenfrei https://doaj.org/article/85f3ce4343504de98329e65ceddabf03 kostenfrei https://doi.org/10.1038/s41598-024-54426-w kostenfrei https://doaj.org/toc/2045-2322 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2024 1 15 |
language |
English |
source |
In Scientific Reports 14(2024), 1, Seite 15 volume:14 year:2024 number:1 pages:15 |
sourceStr |
In Scientific Reports 14(2024), 1, Seite 15 volume:14 year:2024 number:1 pages:15 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Gamma radiation Cu2O nanoparticle LDPE Nanocomposite Shielding effectiveness (SE) Medicine R Science Q |
isfreeaccess_bool |
true |
container_title |
Scientific Reports |
authorswithroles_txt_mv |
Mohamad Bekhit @@aut@@ E. S. Fathy @@aut@@ A. Sharaf @@aut@@ M. Shiple @@aut@@ |
publishDateDaySort_date |
2024-01-01T00:00:00Z |
hierarchy_top_id |
663366712 |
id |
DOAJ091205964 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ091205964</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414052046.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240412s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1038/s41598-024-54426-w</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ091205964</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ85f3ce4343504de98329e65ceddabf03</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Mohamad Bekhit</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Impact of gamma irradiation on physico-chemical and electromagnetic interference shielding properties of Cu2O nanoparticles reinforced LDPE nanocomposite films</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In the current work, cuprous oxide (Cu2O) nanoparticles coated with Tween 80 were successfully synthesized via the chemical reduction method. Nanocomposites composed of low-density polyethylene (LDPE) and different ratios of Cu2O nanoparticles were fabricated by the melt mixing process. 10% of ethyl vinyl acetate (EVA) as a compatibilizing agent was added to the molten LDPE matrix and the mixing process continued until homogenous nanocomposites were fabricated. To study the influence of ionizing radiation on the fabricated samples, the prepared species were exposed to 50 and 100 kGy of gamma rays. The synthesized Cu2O nanoparticles were investigated by transmission electron microscopy (TEM) and X-ray diffraction (XRD). XRD and TEM analysis illustrated the successful formation of spherical Cu2O nanoparticles with an average size of 16.8 nm. The as-prepared LDPE/Cu2O nanocomposites were characterized via different techniques such as mechanical, thermal, morphological, XRD, and FTIR. Electromagnetic interference shielding (EMI) of the different nanocomposite formulations was performed as a promising application for these materials in practical life. The electromagnetic shielding effectiveness (SE) of the produced samples was measured in the X-band of the radio frequency range from 8 to 12 GHz using the vector network analyzer (VNA) and a proper waveguide. All the samples were studied before and after gamma-ray irradiation under the same conditions of pressure and temperature. The shielding effectiveness increased significantly from 25 dB for unirradiated samples to 35 dB with samples irradiated with 100 kGy, which reflects 40% enhancement in the effectiveness of the shielding.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gamma radiation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cu2O nanoparticle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">LDPE</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanocomposite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shielding effectiveness (SE)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">E. S. Fathy</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">A. Sharaf</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">M. Shiple</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Scientific Reports</subfield><subfield code="d">Nature Portfolio, 2011</subfield><subfield code="g">14(2024), 1, Seite 15</subfield><subfield code="w">(DE-627)663366712</subfield><subfield code="w">(DE-600)2615211-3</subfield><subfield code="x">20452322</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:15</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1038/s41598-024-54426-w</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/85f3ce4343504de98329e65ceddabf03</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1038/s41598-024-54426-w</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2045-2322</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_381</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2024</subfield><subfield code="e">1</subfield><subfield code="h">15</subfield></datafield></record></collection>
|
author |
Mohamad Bekhit |
spellingShingle |
Mohamad Bekhit misc Gamma radiation misc Cu2O nanoparticle misc LDPE misc Nanocomposite misc Shielding effectiveness (SE) misc Medicine misc R misc Science misc Q Impact of gamma irradiation on physico-chemical and electromagnetic interference shielding properties of Cu2O nanoparticles reinforced LDPE nanocomposite films |
authorStr |
Mohamad Bekhit |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)663366712 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
20452322 |
topic_title |
Impact of gamma irradiation on physico-chemical and electromagnetic interference shielding properties of Cu2O nanoparticles reinforced LDPE nanocomposite films Gamma radiation Cu2O nanoparticle LDPE Nanocomposite Shielding effectiveness (SE) |
topic |
misc Gamma radiation misc Cu2O nanoparticle misc LDPE misc Nanocomposite misc Shielding effectiveness (SE) misc Medicine misc R misc Science misc Q |
topic_unstemmed |
misc Gamma radiation misc Cu2O nanoparticle misc LDPE misc Nanocomposite misc Shielding effectiveness (SE) misc Medicine misc R misc Science misc Q |
topic_browse |
misc Gamma radiation misc Cu2O nanoparticle misc LDPE misc Nanocomposite misc Shielding effectiveness (SE) misc Medicine misc R misc Science misc Q |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Scientific Reports |
hierarchy_parent_id |
663366712 |
hierarchy_top_title |
Scientific Reports |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)663366712 (DE-600)2615211-3 |
title |
Impact of gamma irradiation on physico-chemical and electromagnetic interference shielding properties of Cu2O nanoparticles reinforced LDPE nanocomposite films |
ctrlnum |
(DE-627)DOAJ091205964 (DE-599)DOAJ85f3ce4343504de98329e65ceddabf03 |
title_full |
Impact of gamma irradiation on physico-chemical and electromagnetic interference shielding properties of Cu2O nanoparticles reinforced LDPE nanocomposite films |
author_sort |
Mohamad Bekhit |
journal |
Scientific Reports |
journalStr |
Scientific Reports |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
container_start_page |
15 |
author_browse |
Mohamad Bekhit E. S. Fathy A. Sharaf M. Shiple |
container_volume |
14 |
format_se |
Elektronische Aufsätze |
author-letter |
Mohamad Bekhit |
doi_str_mv |
10.1038/s41598-024-54426-w |
author2-role |
verfasserin |
title_sort |
impact of gamma irradiation on physico-chemical and electromagnetic interference shielding properties of cu2o nanoparticles reinforced ldpe nanocomposite films |
title_auth |
Impact of gamma irradiation on physico-chemical and electromagnetic interference shielding properties of Cu2O nanoparticles reinforced LDPE nanocomposite films |
abstract |
Abstract In the current work, cuprous oxide (Cu2O) nanoparticles coated with Tween 80 were successfully synthesized via the chemical reduction method. Nanocomposites composed of low-density polyethylene (LDPE) and different ratios of Cu2O nanoparticles were fabricated by the melt mixing process. 10% of ethyl vinyl acetate (EVA) as a compatibilizing agent was added to the molten LDPE matrix and the mixing process continued until homogenous nanocomposites were fabricated. To study the influence of ionizing radiation on the fabricated samples, the prepared species were exposed to 50 and 100 kGy of gamma rays. The synthesized Cu2O nanoparticles were investigated by transmission electron microscopy (TEM) and X-ray diffraction (XRD). XRD and TEM analysis illustrated the successful formation of spherical Cu2O nanoparticles with an average size of 16.8 nm. The as-prepared LDPE/Cu2O nanocomposites were characterized via different techniques such as mechanical, thermal, morphological, XRD, and FTIR. Electromagnetic interference shielding (EMI) of the different nanocomposite formulations was performed as a promising application for these materials in practical life. The electromagnetic shielding effectiveness (SE) of the produced samples was measured in the X-band of the radio frequency range from 8 to 12 GHz using the vector network analyzer (VNA) and a proper waveguide. All the samples were studied before and after gamma-ray irradiation under the same conditions of pressure and temperature. The shielding effectiveness increased significantly from 25 dB for unirradiated samples to 35 dB with samples irradiated with 100 kGy, which reflects 40% enhancement in the effectiveness of the shielding. |
abstractGer |
Abstract In the current work, cuprous oxide (Cu2O) nanoparticles coated with Tween 80 were successfully synthesized via the chemical reduction method. Nanocomposites composed of low-density polyethylene (LDPE) and different ratios of Cu2O nanoparticles were fabricated by the melt mixing process. 10% of ethyl vinyl acetate (EVA) as a compatibilizing agent was added to the molten LDPE matrix and the mixing process continued until homogenous nanocomposites were fabricated. To study the influence of ionizing radiation on the fabricated samples, the prepared species were exposed to 50 and 100 kGy of gamma rays. The synthesized Cu2O nanoparticles were investigated by transmission electron microscopy (TEM) and X-ray diffraction (XRD). XRD and TEM analysis illustrated the successful formation of spherical Cu2O nanoparticles with an average size of 16.8 nm. The as-prepared LDPE/Cu2O nanocomposites were characterized via different techniques such as mechanical, thermal, morphological, XRD, and FTIR. Electromagnetic interference shielding (EMI) of the different nanocomposite formulations was performed as a promising application for these materials in practical life. The electromagnetic shielding effectiveness (SE) of the produced samples was measured in the X-band of the radio frequency range from 8 to 12 GHz using the vector network analyzer (VNA) and a proper waveguide. All the samples were studied before and after gamma-ray irradiation under the same conditions of pressure and temperature. The shielding effectiveness increased significantly from 25 dB for unirradiated samples to 35 dB with samples irradiated with 100 kGy, which reflects 40% enhancement in the effectiveness of the shielding. |
abstract_unstemmed |
Abstract In the current work, cuprous oxide (Cu2O) nanoparticles coated with Tween 80 were successfully synthesized via the chemical reduction method. Nanocomposites composed of low-density polyethylene (LDPE) and different ratios of Cu2O nanoparticles were fabricated by the melt mixing process. 10% of ethyl vinyl acetate (EVA) as a compatibilizing agent was added to the molten LDPE matrix and the mixing process continued until homogenous nanocomposites were fabricated. To study the influence of ionizing radiation on the fabricated samples, the prepared species were exposed to 50 and 100 kGy of gamma rays. The synthesized Cu2O nanoparticles were investigated by transmission electron microscopy (TEM) and X-ray diffraction (XRD). XRD and TEM analysis illustrated the successful formation of spherical Cu2O nanoparticles with an average size of 16.8 nm. The as-prepared LDPE/Cu2O nanocomposites were characterized via different techniques such as mechanical, thermal, morphological, XRD, and FTIR. Electromagnetic interference shielding (EMI) of the different nanocomposite formulations was performed as a promising application for these materials in practical life. The electromagnetic shielding effectiveness (SE) of the produced samples was measured in the X-band of the radio frequency range from 8 to 12 GHz using the vector network analyzer (VNA) and a proper waveguide. All the samples were studied before and after gamma-ray irradiation under the same conditions of pressure and temperature. The shielding effectiveness increased significantly from 25 dB for unirradiated samples to 35 dB with samples irradiated with 100 kGy, which reflects 40% enhancement in the effectiveness of the shielding. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Impact of gamma irradiation on physico-chemical and electromagnetic interference shielding properties of Cu2O nanoparticles reinforced LDPE nanocomposite films |
url |
https://doi.org/10.1038/s41598-024-54426-w https://doaj.org/article/85f3ce4343504de98329e65ceddabf03 https://doaj.org/toc/2045-2322 |
remote_bool |
true |
author2 |
E. S. Fathy A. Sharaf M. Shiple |
author2Str |
E. S. Fathy A. Sharaf M. Shiple |
ppnlink |
663366712 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1038/s41598-024-54426-w |
up_date |
2024-07-03T19:05:17.958Z |
_version_ |
1803585866128424960 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ091205964</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414052046.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240412s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1038/s41598-024-54426-w</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ091205964</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ85f3ce4343504de98329e65ceddabf03</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Mohamad Bekhit</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Impact of gamma irradiation on physico-chemical and electromagnetic interference shielding properties of Cu2O nanoparticles reinforced LDPE nanocomposite films</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In the current work, cuprous oxide (Cu2O) nanoparticles coated with Tween 80 were successfully synthesized via the chemical reduction method. Nanocomposites composed of low-density polyethylene (LDPE) and different ratios of Cu2O nanoparticles were fabricated by the melt mixing process. 10% of ethyl vinyl acetate (EVA) as a compatibilizing agent was added to the molten LDPE matrix and the mixing process continued until homogenous nanocomposites were fabricated. To study the influence of ionizing radiation on the fabricated samples, the prepared species were exposed to 50 and 100 kGy of gamma rays. The synthesized Cu2O nanoparticles were investigated by transmission electron microscopy (TEM) and X-ray diffraction (XRD). XRD and TEM analysis illustrated the successful formation of spherical Cu2O nanoparticles with an average size of 16.8 nm. The as-prepared LDPE/Cu2O nanocomposites were characterized via different techniques such as mechanical, thermal, morphological, XRD, and FTIR. Electromagnetic interference shielding (EMI) of the different nanocomposite formulations was performed as a promising application for these materials in practical life. The electromagnetic shielding effectiveness (SE) of the produced samples was measured in the X-band of the radio frequency range from 8 to 12 GHz using the vector network analyzer (VNA) and a proper waveguide. All the samples were studied before and after gamma-ray irradiation under the same conditions of pressure and temperature. The shielding effectiveness increased significantly from 25 dB for unirradiated samples to 35 dB with samples irradiated with 100 kGy, which reflects 40% enhancement in the effectiveness of the shielding.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gamma radiation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cu2O nanoparticle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">LDPE</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanocomposite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shielding effectiveness (SE)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">E. S. Fathy</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">A. Sharaf</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">M. Shiple</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Scientific Reports</subfield><subfield code="d">Nature Portfolio, 2011</subfield><subfield code="g">14(2024), 1, Seite 15</subfield><subfield code="w">(DE-627)663366712</subfield><subfield code="w">(DE-600)2615211-3</subfield><subfield code="x">20452322</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:15</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1038/s41598-024-54426-w</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/85f3ce4343504de98329e65ceddabf03</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1038/s41598-024-54426-w</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2045-2322</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_381</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2024</subfield><subfield code="e">1</subfield><subfield code="h">15</subfield></datafield></record></collection>
|
score |
7.402524 |