Reliability of Domestic Gas Flow Sensors with Hydrogen Admixtures
Static flow sensors (e.g., thermal gas micro electro-mechanical sensors—MEMS—and ultrasonic time of flight) are becoming the prevailing technology for domestic gas metering and billing since they show advantages in respect to the traditional volumetric ones. However, they are expected to be influenc...
Ausführliche Beschreibung
Autor*in: |
Giorgio Ficco [verfasserIn] Marco Dell’Isola [verfasserIn] Giorgio Graditi [verfasserIn] Giulia Monteleone [verfasserIn] Paola Gislon [verfasserIn] Pawel Kulaga [verfasserIn] Jacek Jaworski [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Sensors - MDPI AG, 2003, 24(2024), 5, p 1455 |
---|---|
Übergeordnetes Werk: |
volume:24 ; year:2024 ; number:5, p 1455 |
Links: |
---|
DOI / URN: |
10.3390/s24051455 |
---|
Katalog-ID: |
DOAJ091235545 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ091235545 | ||
003 | DE-627 | ||
005 | 20240413232330.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240412s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/s24051455 |2 doi | |
035 | |a (DE-627)DOAJ091235545 | ||
035 | |a (DE-599)DOAJce33ec3152b54f83af1b921e8476b915 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TP1-1185 | |
100 | 0 | |a Giorgio Ficco |e verfasserin |4 aut | |
245 | 1 | 0 | |a Reliability of Domestic Gas Flow Sensors with Hydrogen Admixtures |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Static flow sensors (e.g., thermal gas micro electro-mechanical sensors—MEMS—and ultrasonic time of flight) are becoming the prevailing technology for domestic gas metering and billing since they show advantages in respect to the traditional volumetric ones. However, they are expected to be influenced in-service by changes in gas composition, which in the future could be more frequent due to the spread of hydrogen admixtures in gas networks. In this paper, the authors present the results of an experimental campaign aimed at analyzing the in-service reliability of both static and volumetric gas meters with different hydrogen admixtures. The results show that the accuracy of volumetric and ultrasonic meters is always within the admitted limits for subsequent verification and even within those narrower of the initial verification. On the other hand, the accuracy of the first generation of thermal mass gas flow sensors is within the limits of the verification only when the hydrogen admixture is below 2%vol. At higher hydrogen content, in fact, the absolute weighted mean error ranges between 3.5% (with 5%vol of hydrogen) and 15.8% (with 10%vol of hydrogen). | ||
650 | 4 | |a smart meter | |
650 | 4 | |a in-field verification | |
650 | 4 | |a ultrasonic | |
650 | 4 | |a thermal mass | |
650 | 4 | |a diaphragm | |
650 | 4 | |a hydrogen blending | |
653 | 0 | |a Chemical technology | |
700 | 0 | |a Marco Dell’Isola |e verfasserin |4 aut | |
700 | 0 | |a Giorgio Graditi |e verfasserin |4 aut | |
700 | 0 | |a Giulia Monteleone |e verfasserin |4 aut | |
700 | 0 | |a Paola Gislon |e verfasserin |4 aut | |
700 | 0 | |a Pawel Kulaga |e verfasserin |4 aut | |
700 | 0 | |a Jacek Jaworski |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Sensors |d MDPI AG, 2003 |g 24(2024), 5, p 1455 |w (DE-627)331640910 |w (DE-600)2052857-7 |x 14248220 |7 nnns |
773 | 1 | 8 | |g volume:24 |g year:2024 |g number:5, p 1455 |
856 | 4 | 0 | |u https://doi.org/10.3390/s24051455 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/ce33ec3152b54f83af1b921e8476b915 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/1424-8220/24/5/1455 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1424-8220 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 24 |j 2024 |e 5, p 1455 |
author_variant |
g f gf m d md g g gg g m gm p g pg p k pk j j jj |
---|---|
matchkey_str |
article:14248220:2024----::eibltodmsigslwesrwthd |
hierarchy_sort_str |
2024 |
callnumber-subject-code |
TP |
publishDate |
2024 |
allfields |
10.3390/s24051455 doi (DE-627)DOAJ091235545 (DE-599)DOAJce33ec3152b54f83af1b921e8476b915 DE-627 ger DE-627 rakwb eng TP1-1185 Giorgio Ficco verfasserin aut Reliability of Domestic Gas Flow Sensors with Hydrogen Admixtures 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Static flow sensors (e.g., thermal gas micro electro-mechanical sensors—MEMS—and ultrasonic time of flight) are becoming the prevailing technology for domestic gas metering and billing since they show advantages in respect to the traditional volumetric ones. However, they are expected to be influenced in-service by changes in gas composition, which in the future could be more frequent due to the spread of hydrogen admixtures in gas networks. In this paper, the authors present the results of an experimental campaign aimed at analyzing the in-service reliability of both static and volumetric gas meters with different hydrogen admixtures. The results show that the accuracy of volumetric and ultrasonic meters is always within the admitted limits for subsequent verification and even within those narrower of the initial verification. On the other hand, the accuracy of the first generation of thermal mass gas flow sensors is within the limits of the verification only when the hydrogen admixture is below 2%vol. At higher hydrogen content, in fact, the absolute weighted mean error ranges between 3.5% (with 5%vol of hydrogen) and 15.8% (with 10%vol of hydrogen). smart meter in-field verification ultrasonic thermal mass diaphragm hydrogen blending Chemical technology Marco Dell’Isola verfasserin aut Giorgio Graditi verfasserin aut Giulia Monteleone verfasserin aut Paola Gislon verfasserin aut Pawel Kulaga verfasserin aut Jacek Jaworski verfasserin aut In Sensors MDPI AG, 2003 24(2024), 5, p 1455 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:24 year:2024 number:5, p 1455 https://doi.org/10.3390/s24051455 kostenfrei https://doaj.org/article/ce33ec3152b54f83af1b921e8476b915 kostenfrei https://www.mdpi.com/1424-8220/24/5/1455 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 24 2024 5, p 1455 |
spelling |
10.3390/s24051455 doi (DE-627)DOAJ091235545 (DE-599)DOAJce33ec3152b54f83af1b921e8476b915 DE-627 ger DE-627 rakwb eng TP1-1185 Giorgio Ficco verfasserin aut Reliability of Domestic Gas Flow Sensors with Hydrogen Admixtures 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Static flow sensors (e.g., thermal gas micro electro-mechanical sensors—MEMS—and ultrasonic time of flight) are becoming the prevailing technology for domestic gas metering and billing since they show advantages in respect to the traditional volumetric ones. However, they are expected to be influenced in-service by changes in gas composition, which in the future could be more frequent due to the spread of hydrogen admixtures in gas networks. In this paper, the authors present the results of an experimental campaign aimed at analyzing the in-service reliability of both static and volumetric gas meters with different hydrogen admixtures. The results show that the accuracy of volumetric and ultrasonic meters is always within the admitted limits for subsequent verification and even within those narrower of the initial verification. On the other hand, the accuracy of the first generation of thermal mass gas flow sensors is within the limits of the verification only when the hydrogen admixture is below 2%vol. At higher hydrogen content, in fact, the absolute weighted mean error ranges between 3.5% (with 5%vol of hydrogen) and 15.8% (with 10%vol of hydrogen). smart meter in-field verification ultrasonic thermal mass diaphragm hydrogen blending Chemical technology Marco Dell’Isola verfasserin aut Giorgio Graditi verfasserin aut Giulia Monteleone verfasserin aut Paola Gislon verfasserin aut Pawel Kulaga verfasserin aut Jacek Jaworski verfasserin aut In Sensors MDPI AG, 2003 24(2024), 5, p 1455 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:24 year:2024 number:5, p 1455 https://doi.org/10.3390/s24051455 kostenfrei https://doaj.org/article/ce33ec3152b54f83af1b921e8476b915 kostenfrei https://www.mdpi.com/1424-8220/24/5/1455 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 24 2024 5, p 1455 |
allfields_unstemmed |
10.3390/s24051455 doi (DE-627)DOAJ091235545 (DE-599)DOAJce33ec3152b54f83af1b921e8476b915 DE-627 ger DE-627 rakwb eng TP1-1185 Giorgio Ficco verfasserin aut Reliability of Domestic Gas Flow Sensors with Hydrogen Admixtures 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Static flow sensors (e.g., thermal gas micro electro-mechanical sensors—MEMS—and ultrasonic time of flight) are becoming the prevailing technology for domestic gas metering and billing since they show advantages in respect to the traditional volumetric ones. However, they are expected to be influenced in-service by changes in gas composition, which in the future could be more frequent due to the spread of hydrogen admixtures in gas networks. In this paper, the authors present the results of an experimental campaign aimed at analyzing the in-service reliability of both static and volumetric gas meters with different hydrogen admixtures. The results show that the accuracy of volumetric and ultrasonic meters is always within the admitted limits for subsequent verification and even within those narrower of the initial verification. On the other hand, the accuracy of the first generation of thermal mass gas flow sensors is within the limits of the verification only when the hydrogen admixture is below 2%vol. At higher hydrogen content, in fact, the absolute weighted mean error ranges between 3.5% (with 5%vol of hydrogen) and 15.8% (with 10%vol of hydrogen). smart meter in-field verification ultrasonic thermal mass diaphragm hydrogen blending Chemical technology Marco Dell’Isola verfasserin aut Giorgio Graditi verfasserin aut Giulia Monteleone verfasserin aut Paola Gislon verfasserin aut Pawel Kulaga verfasserin aut Jacek Jaworski verfasserin aut In Sensors MDPI AG, 2003 24(2024), 5, p 1455 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:24 year:2024 number:5, p 1455 https://doi.org/10.3390/s24051455 kostenfrei https://doaj.org/article/ce33ec3152b54f83af1b921e8476b915 kostenfrei https://www.mdpi.com/1424-8220/24/5/1455 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 24 2024 5, p 1455 |
allfieldsGer |
10.3390/s24051455 doi (DE-627)DOAJ091235545 (DE-599)DOAJce33ec3152b54f83af1b921e8476b915 DE-627 ger DE-627 rakwb eng TP1-1185 Giorgio Ficco verfasserin aut Reliability of Domestic Gas Flow Sensors with Hydrogen Admixtures 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Static flow sensors (e.g., thermal gas micro electro-mechanical sensors—MEMS—and ultrasonic time of flight) are becoming the prevailing technology for domestic gas metering and billing since they show advantages in respect to the traditional volumetric ones. However, they are expected to be influenced in-service by changes in gas composition, which in the future could be more frequent due to the spread of hydrogen admixtures in gas networks. In this paper, the authors present the results of an experimental campaign aimed at analyzing the in-service reliability of both static and volumetric gas meters with different hydrogen admixtures. The results show that the accuracy of volumetric and ultrasonic meters is always within the admitted limits for subsequent verification and even within those narrower of the initial verification. On the other hand, the accuracy of the first generation of thermal mass gas flow sensors is within the limits of the verification only when the hydrogen admixture is below 2%vol. At higher hydrogen content, in fact, the absolute weighted mean error ranges between 3.5% (with 5%vol of hydrogen) and 15.8% (with 10%vol of hydrogen). smart meter in-field verification ultrasonic thermal mass diaphragm hydrogen blending Chemical technology Marco Dell’Isola verfasserin aut Giorgio Graditi verfasserin aut Giulia Monteleone verfasserin aut Paola Gislon verfasserin aut Pawel Kulaga verfasserin aut Jacek Jaworski verfasserin aut In Sensors MDPI AG, 2003 24(2024), 5, p 1455 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:24 year:2024 number:5, p 1455 https://doi.org/10.3390/s24051455 kostenfrei https://doaj.org/article/ce33ec3152b54f83af1b921e8476b915 kostenfrei https://www.mdpi.com/1424-8220/24/5/1455 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 24 2024 5, p 1455 |
allfieldsSound |
10.3390/s24051455 doi (DE-627)DOAJ091235545 (DE-599)DOAJce33ec3152b54f83af1b921e8476b915 DE-627 ger DE-627 rakwb eng TP1-1185 Giorgio Ficco verfasserin aut Reliability of Domestic Gas Flow Sensors with Hydrogen Admixtures 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Static flow sensors (e.g., thermal gas micro electro-mechanical sensors—MEMS—and ultrasonic time of flight) are becoming the prevailing technology for domestic gas metering and billing since they show advantages in respect to the traditional volumetric ones. However, they are expected to be influenced in-service by changes in gas composition, which in the future could be more frequent due to the spread of hydrogen admixtures in gas networks. In this paper, the authors present the results of an experimental campaign aimed at analyzing the in-service reliability of both static and volumetric gas meters with different hydrogen admixtures. The results show that the accuracy of volumetric and ultrasonic meters is always within the admitted limits for subsequent verification and even within those narrower of the initial verification. On the other hand, the accuracy of the first generation of thermal mass gas flow sensors is within the limits of the verification only when the hydrogen admixture is below 2%vol. At higher hydrogen content, in fact, the absolute weighted mean error ranges between 3.5% (with 5%vol of hydrogen) and 15.8% (with 10%vol of hydrogen). smart meter in-field verification ultrasonic thermal mass diaphragm hydrogen blending Chemical technology Marco Dell’Isola verfasserin aut Giorgio Graditi verfasserin aut Giulia Monteleone verfasserin aut Paola Gislon verfasserin aut Pawel Kulaga verfasserin aut Jacek Jaworski verfasserin aut In Sensors MDPI AG, 2003 24(2024), 5, p 1455 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:24 year:2024 number:5, p 1455 https://doi.org/10.3390/s24051455 kostenfrei https://doaj.org/article/ce33ec3152b54f83af1b921e8476b915 kostenfrei https://www.mdpi.com/1424-8220/24/5/1455 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 24 2024 5, p 1455 |
language |
English |
source |
In Sensors 24(2024), 5, p 1455 volume:24 year:2024 number:5, p 1455 |
sourceStr |
In Sensors 24(2024), 5, p 1455 volume:24 year:2024 number:5, p 1455 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
smart meter in-field verification ultrasonic thermal mass diaphragm hydrogen blending Chemical technology |
isfreeaccess_bool |
true |
container_title |
Sensors |
authorswithroles_txt_mv |
Giorgio Ficco @@aut@@ Marco Dell’Isola @@aut@@ Giorgio Graditi @@aut@@ Giulia Monteleone @@aut@@ Paola Gislon @@aut@@ Pawel Kulaga @@aut@@ Jacek Jaworski @@aut@@ |
publishDateDaySort_date |
2024-01-01T00:00:00Z |
hierarchy_top_id |
331640910 |
id |
DOAJ091235545 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ091235545</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413232330.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240412s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/s24051455</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ091235545</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJce33ec3152b54f83af1b921e8476b915</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Giorgio Ficco</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Reliability of Domestic Gas Flow Sensors with Hydrogen Admixtures</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Static flow sensors (e.g., thermal gas micro electro-mechanical sensors—MEMS—and ultrasonic time of flight) are becoming the prevailing technology for domestic gas metering and billing since they show advantages in respect to the traditional volumetric ones. However, they are expected to be influenced in-service by changes in gas composition, which in the future could be more frequent due to the spread of hydrogen admixtures in gas networks. In this paper, the authors present the results of an experimental campaign aimed at analyzing the in-service reliability of both static and volumetric gas meters with different hydrogen admixtures. The results show that the accuracy of volumetric and ultrasonic meters is always within the admitted limits for subsequent verification and even within those narrower of the initial verification. On the other hand, the accuracy of the first generation of thermal mass gas flow sensors is within the limits of the verification only when the hydrogen admixture is below 2%vol. At higher hydrogen content, in fact, the absolute weighted mean error ranges between 3.5% (with 5%vol of hydrogen) and 15.8% (with 10%vol of hydrogen).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">smart meter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">in-field verification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ultrasonic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">thermal mass</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">diaphragm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hydrogen blending</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marco Dell’Isola</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Giorgio Graditi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Giulia Monteleone</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Paola Gislon</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pawel Kulaga</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jacek Jaworski</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Sensors</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">24(2024), 5, p 1455</subfield><subfield code="w">(DE-627)331640910</subfield><subfield code="w">(DE-600)2052857-7</subfield><subfield code="x">14248220</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:24</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:5, p 1455</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/s24051455</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/ce33ec3152b54f83af1b921e8476b915</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1424-8220/24/5/1455</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1424-8220</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">24</subfield><subfield code="j">2024</subfield><subfield code="e">5, p 1455</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Giorgio Ficco |
spellingShingle |
Giorgio Ficco misc TP1-1185 misc smart meter misc in-field verification misc ultrasonic misc thermal mass misc diaphragm misc hydrogen blending misc Chemical technology Reliability of Domestic Gas Flow Sensors with Hydrogen Admixtures |
authorStr |
Giorgio Ficco |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)331640910 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TP1-1185 |
illustrated |
Not Illustrated |
issn |
14248220 |
topic_title |
TP1-1185 Reliability of Domestic Gas Flow Sensors with Hydrogen Admixtures smart meter in-field verification ultrasonic thermal mass diaphragm hydrogen blending |
topic |
misc TP1-1185 misc smart meter misc in-field verification misc ultrasonic misc thermal mass misc diaphragm misc hydrogen blending misc Chemical technology |
topic_unstemmed |
misc TP1-1185 misc smart meter misc in-field verification misc ultrasonic misc thermal mass misc diaphragm misc hydrogen blending misc Chemical technology |
topic_browse |
misc TP1-1185 misc smart meter misc in-field verification misc ultrasonic misc thermal mass misc diaphragm misc hydrogen blending misc Chemical technology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Sensors |
hierarchy_parent_id |
331640910 |
hierarchy_top_title |
Sensors |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)331640910 (DE-600)2052857-7 |
title |
Reliability of Domestic Gas Flow Sensors with Hydrogen Admixtures |
ctrlnum |
(DE-627)DOAJ091235545 (DE-599)DOAJce33ec3152b54f83af1b921e8476b915 |
title_full |
Reliability of Domestic Gas Flow Sensors with Hydrogen Admixtures |
author_sort |
Giorgio Ficco |
journal |
Sensors |
journalStr |
Sensors |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
author_browse |
Giorgio Ficco Marco Dell’Isola Giorgio Graditi Giulia Monteleone Paola Gislon Pawel Kulaga Jacek Jaworski |
container_volume |
24 |
class |
TP1-1185 |
format_se |
Elektronische Aufsätze |
author-letter |
Giorgio Ficco |
doi_str_mv |
10.3390/s24051455 |
author2-role |
verfasserin |
title_sort |
reliability of domestic gas flow sensors with hydrogen admixtures |
callnumber |
TP1-1185 |
title_auth |
Reliability of Domestic Gas Flow Sensors with Hydrogen Admixtures |
abstract |
Static flow sensors (e.g., thermal gas micro electro-mechanical sensors—MEMS—and ultrasonic time of flight) are becoming the prevailing technology for domestic gas metering and billing since they show advantages in respect to the traditional volumetric ones. However, they are expected to be influenced in-service by changes in gas composition, which in the future could be more frequent due to the spread of hydrogen admixtures in gas networks. In this paper, the authors present the results of an experimental campaign aimed at analyzing the in-service reliability of both static and volumetric gas meters with different hydrogen admixtures. The results show that the accuracy of volumetric and ultrasonic meters is always within the admitted limits for subsequent verification and even within those narrower of the initial verification. On the other hand, the accuracy of the first generation of thermal mass gas flow sensors is within the limits of the verification only when the hydrogen admixture is below 2%vol. At higher hydrogen content, in fact, the absolute weighted mean error ranges between 3.5% (with 5%vol of hydrogen) and 15.8% (with 10%vol of hydrogen). |
abstractGer |
Static flow sensors (e.g., thermal gas micro electro-mechanical sensors—MEMS—and ultrasonic time of flight) are becoming the prevailing technology for domestic gas metering and billing since they show advantages in respect to the traditional volumetric ones. However, they are expected to be influenced in-service by changes in gas composition, which in the future could be more frequent due to the spread of hydrogen admixtures in gas networks. In this paper, the authors present the results of an experimental campaign aimed at analyzing the in-service reliability of both static and volumetric gas meters with different hydrogen admixtures. The results show that the accuracy of volumetric and ultrasonic meters is always within the admitted limits for subsequent verification and even within those narrower of the initial verification. On the other hand, the accuracy of the first generation of thermal mass gas flow sensors is within the limits of the verification only when the hydrogen admixture is below 2%vol. At higher hydrogen content, in fact, the absolute weighted mean error ranges between 3.5% (with 5%vol of hydrogen) and 15.8% (with 10%vol of hydrogen). |
abstract_unstemmed |
Static flow sensors (e.g., thermal gas micro electro-mechanical sensors—MEMS—and ultrasonic time of flight) are becoming the prevailing technology for domestic gas metering and billing since they show advantages in respect to the traditional volumetric ones. However, they are expected to be influenced in-service by changes in gas composition, which in the future could be more frequent due to the spread of hydrogen admixtures in gas networks. In this paper, the authors present the results of an experimental campaign aimed at analyzing the in-service reliability of both static and volumetric gas meters with different hydrogen admixtures. The results show that the accuracy of volumetric and ultrasonic meters is always within the admitted limits for subsequent verification and even within those narrower of the initial verification. On the other hand, the accuracy of the first generation of thermal mass gas flow sensors is within the limits of the verification only when the hydrogen admixture is below 2%vol. At higher hydrogen content, in fact, the absolute weighted mean error ranges between 3.5% (with 5%vol of hydrogen) and 15.8% (with 10%vol of hydrogen). |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
5, p 1455 |
title_short |
Reliability of Domestic Gas Flow Sensors with Hydrogen Admixtures |
url |
https://doi.org/10.3390/s24051455 https://doaj.org/article/ce33ec3152b54f83af1b921e8476b915 https://www.mdpi.com/1424-8220/24/5/1455 https://doaj.org/toc/1424-8220 |
remote_bool |
true |
author2 |
Marco Dell’Isola Giorgio Graditi Giulia Monteleone Paola Gislon Pawel Kulaga Jacek Jaworski |
author2Str |
Marco Dell’Isola Giorgio Graditi Giulia Monteleone Paola Gislon Pawel Kulaga Jacek Jaworski |
ppnlink |
331640910 |
callnumber-subject |
TP - Chemical Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/s24051455 |
callnumber-a |
TP1-1185 |
up_date |
2024-07-03T19:16:11.786Z |
_version_ |
1803586551717822464 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ091235545</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413232330.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240412s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/s24051455</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ091235545</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJce33ec3152b54f83af1b921e8476b915</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Giorgio Ficco</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Reliability of Domestic Gas Flow Sensors with Hydrogen Admixtures</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Static flow sensors (e.g., thermal gas micro electro-mechanical sensors—MEMS—and ultrasonic time of flight) are becoming the prevailing technology for domestic gas metering and billing since they show advantages in respect to the traditional volumetric ones. However, they are expected to be influenced in-service by changes in gas composition, which in the future could be more frequent due to the spread of hydrogen admixtures in gas networks. In this paper, the authors present the results of an experimental campaign aimed at analyzing the in-service reliability of both static and volumetric gas meters with different hydrogen admixtures. The results show that the accuracy of volumetric and ultrasonic meters is always within the admitted limits for subsequent verification and even within those narrower of the initial verification. On the other hand, the accuracy of the first generation of thermal mass gas flow sensors is within the limits of the verification only when the hydrogen admixture is below 2%vol. At higher hydrogen content, in fact, the absolute weighted mean error ranges between 3.5% (with 5%vol of hydrogen) and 15.8% (with 10%vol of hydrogen).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">smart meter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">in-field verification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ultrasonic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">thermal mass</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">diaphragm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hydrogen blending</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marco Dell’Isola</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Giorgio Graditi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Giulia Monteleone</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Paola Gislon</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pawel Kulaga</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jacek Jaworski</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Sensors</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">24(2024), 5, p 1455</subfield><subfield code="w">(DE-627)331640910</subfield><subfield code="w">(DE-600)2052857-7</subfield><subfield code="x">14248220</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:24</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:5, p 1455</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/s24051455</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/ce33ec3152b54f83af1b921e8476b915</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1424-8220/24/5/1455</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1424-8220</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">24</subfield><subfield code="j">2024</subfield><subfield code="e">5, p 1455</subfield></datafield></record></collection>
|
score |
7.401309 |