Dust and Cold Gas Properties of Starburst HyLIRG Quasars at z ∼ 2.5
Some high- z active galactic nuclei (AGNs) are found to reside in extreme star-forming galaxies, such as hyperluminous infrared galaxies (HyLIRGs), with AGN-removed L _IR of <10 ^13 L _⊙ . In this paper, we report NOEMA observations of six apparent starburst HyLIRGs associated with optical quasar...
Ausführliche Beschreibung
Autor*in: |
Feng-Yuan Liu [verfasserIn] Y. Sophia Dai [verfasserIn] Alain Omont [verfasserIn] Daizhong Liu [verfasserIn] Pierre Cox [verfasserIn] Roberto Neri [verfasserIn] Melanie Krips [verfasserIn] Chentao Yang [verfasserIn] Xue-Bing Wu [verfasserIn] Jia-Sheng Huang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: The Astrophysical Journal - IOP Publishing, 2022, 964(2024), 2, p 136 |
---|---|
Übergeordnetes Werk: |
volume:964 ; year:2024 ; number:2, p 136 |
Links: |
---|
DOI / URN: |
10.3847/1538-4357/ad24fe |
---|
Katalog-ID: |
DOAJ09139127X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ09139127X | ||
003 | DE-627 | ||
005 | 20240414132538.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240412s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3847/1538-4357/ad24fe |2 doi | |
035 | |a (DE-627)DOAJ09139127X | ||
035 | |a (DE-599)DOAJ5e82a80606ed4eb6ac5167e0c05b277b | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QB460-466 | |
100 | 0 | |a Feng-Yuan Liu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Dust and Cold Gas Properties of Starburst HyLIRG Quasars at z ∼ 2.5 |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Some high- z active galactic nuclei (AGNs) are found to reside in extreme star-forming galaxies, such as hyperluminous infrared galaxies (HyLIRGs), with AGN-removed L _IR of <10 ^13 L _⊙ . In this paper, we report NOEMA observations of six apparent starburst HyLIRGs associated with optical quasars at z ∼ 2–3 in the Stripe 82 field, to study their dust and molecular CO properties. Five out of the six candidates are detected with CO(4–3) or CO(5–4) emission, and four in the 2 mm dust continuum. Based on the linewidth– ${L}_{\mathrm{CO}(1-0)}^{{\prime} }$ diagnostics, we find that four galaxies are likely unlensed or weakly lensed sources. The molecular gas mass is in the range of $\mu {M}_{{{\rm{H}}}_{2}}\,\sim 0.8\mbox{-}9.7\times {10}^{10}\,{M}_{\odot }$ (with $\alpha =0.8\,{M}_{\odot }{\left({\rm{K}}\,\mathrm{km}\,{{\rm{s}}}^{-1}\,{\mathrm{pc}}^{2}\right)}^{-1}$ , where μ is the unknown possible gravitational magnification factor). We fit their spectral energy distributions, after including the observed 2 mm fluxes and upper limits, and estimate their apparent (uncorrected for possible lensing effects) star formation rates ( μ SFRs) to be ∼400–2500 M _⊙ yr ^−1 , with a depletion time of ∼20–110 Myr. We notice interesting offsets, of ∼10–40 kpc spatially or ∼1000–2000 km s ^−1 spectroscopically, between the optical quasar and the millimeter continuum or CO emissions. The observed velocity shift is likely related to the blueshifted broad-emission-line region of quasars, though mergers or recoiling black holes are also possible causes, which can explain the spatial offsets and the high intrinsic star formation rates in the HyLIRG quasar systems. | ||
650 | 4 | |a Starburst galaxies | |
650 | 4 | |a CO line emission | |
650 | 4 | |a Millimeter-wave spectroscopy | |
650 | 4 | |a Interferometry | |
650 | 4 | |a Quasars | |
650 | 4 | |a Galaxy evolution | |
653 | 0 | |a Astrophysics | |
700 | 0 | |a Y. Sophia Dai |e verfasserin |4 aut | |
700 | 0 | |a Alain Omont |e verfasserin |4 aut | |
700 | 0 | |a Daizhong Liu |e verfasserin |4 aut | |
700 | 0 | |a Pierre Cox |e verfasserin |4 aut | |
700 | 0 | |a Roberto Neri |e verfasserin |4 aut | |
700 | 0 | |a Melanie Krips |e verfasserin |4 aut | |
700 | 0 | |a Chentao Yang |e verfasserin |4 aut | |
700 | 0 | |a Xue-Bing Wu |e verfasserin |4 aut | |
700 | 0 | |a Jia-Sheng Huang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t The Astrophysical Journal |d IOP Publishing, 2022 |g 964(2024), 2, p 136 |w (DE-627)269019219 |w (DE-600)1473835-1 |x 15384357 |7 nnns |
773 | 1 | 8 | |g volume:964 |g year:2024 |g number:2, p 136 |
856 | 4 | 0 | |u https://doi.org/10.3847/1538-4357/ad24fe |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/5e82a80606ed4eb6ac5167e0c05b277b |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.3847/1538-4357/ad24fe |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1538-4357 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 964 |j 2024 |e 2, p 136 |
author_variant |
f y l fyl y s d ysd a o ao d l dl p c pc r n rn m k mk c y cy x b w xbw j s h jsh |
---|---|
matchkey_str |
article:15384357:2024----::utnclgsrprisftrushl |
hierarchy_sort_str |
2024 |
callnumber-subject-code |
QB |
publishDate |
2024 |
allfields |
10.3847/1538-4357/ad24fe doi (DE-627)DOAJ09139127X (DE-599)DOAJ5e82a80606ed4eb6ac5167e0c05b277b DE-627 ger DE-627 rakwb eng QB460-466 Feng-Yuan Liu verfasserin aut Dust and Cold Gas Properties of Starburst HyLIRG Quasars at z ∼ 2.5 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Some high- z active galactic nuclei (AGNs) are found to reside in extreme star-forming galaxies, such as hyperluminous infrared galaxies (HyLIRGs), with AGN-removed L _IR of <10 ^13 L _⊙ . In this paper, we report NOEMA observations of six apparent starburst HyLIRGs associated with optical quasars at z ∼ 2–3 in the Stripe 82 field, to study their dust and molecular CO properties. Five out of the six candidates are detected with CO(4–3) or CO(5–4) emission, and four in the 2 mm dust continuum. Based on the linewidth– ${L}_{\mathrm{CO}(1-0)}^{{\prime} }$ diagnostics, we find that four galaxies are likely unlensed or weakly lensed sources. The molecular gas mass is in the range of $\mu {M}_{{{\rm{H}}}_{2}}\,\sim 0.8\mbox{-}9.7\times {10}^{10}\,{M}_{\odot }$ (with $\alpha =0.8\,{M}_{\odot }{\left({\rm{K}}\,\mathrm{km}\,{{\rm{s}}}^{-1}\,{\mathrm{pc}}^{2}\right)}^{-1}$ , where μ is the unknown possible gravitational magnification factor). We fit their spectral energy distributions, after including the observed 2 mm fluxes and upper limits, and estimate their apparent (uncorrected for possible lensing effects) star formation rates ( μ SFRs) to be ∼400–2500 M _⊙ yr ^−1 , with a depletion time of ∼20–110 Myr. We notice interesting offsets, of ∼10–40 kpc spatially or ∼1000–2000 km s ^−1 spectroscopically, between the optical quasar and the millimeter continuum or CO emissions. The observed velocity shift is likely related to the blueshifted broad-emission-line region of quasars, though mergers or recoiling black holes are also possible causes, which can explain the spatial offsets and the high intrinsic star formation rates in the HyLIRG quasar systems. Starburst galaxies CO line emission Millimeter-wave spectroscopy Interferometry Quasars Galaxy evolution Astrophysics Y. Sophia Dai verfasserin aut Alain Omont verfasserin aut Daizhong Liu verfasserin aut Pierre Cox verfasserin aut Roberto Neri verfasserin aut Melanie Krips verfasserin aut Chentao Yang verfasserin aut Xue-Bing Wu verfasserin aut Jia-Sheng Huang verfasserin aut In The Astrophysical Journal IOP Publishing, 2022 964(2024), 2, p 136 (DE-627)269019219 (DE-600)1473835-1 15384357 nnns volume:964 year:2024 number:2, p 136 https://doi.org/10.3847/1538-4357/ad24fe kostenfrei https://doaj.org/article/5e82a80606ed4eb6ac5167e0c05b277b kostenfrei https://doi.org/10.3847/1538-4357/ad24fe kostenfrei https://doaj.org/toc/1538-4357 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 964 2024 2, p 136 |
spelling |
10.3847/1538-4357/ad24fe doi (DE-627)DOAJ09139127X (DE-599)DOAJ5e82a80606ed4eb6ac5167e0c05b277b DE-627 ger DE-627 rakwb eng QB460-466 Feng-Yuan Liu verfasserin aut Dust and Cold Gas Properties of Starburst HyLIRG Quasars at z ∼ 2.5 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Some high- z active galactic nuclei (AGNs) are found to reside in extreme star-forming galaxies, such as hyperluminous infrared galaxies (HyLIRGs), with AGN-removed L _IR of <10 ^13 L _⊙ . In this paper, we report NOEMA observations of six apparent starburst HyLIRGs associated with optical quasars at z ∼ 2–3 in the Stripe 82 field, to study their dust and molecular CO properties. Five out of the six candidates are detected with CO(4–3) or CO(5–4) emission, and four in the 2 mm dust continuum. Based on the linewidth– ${L}_{\mathrm{CO}(1-0)}^{{\prime} }$ diagnostics, we find that four galaxies are likely unlensed or weakly lensed sources. The molecular gas mass is in the range of $\mu {M}_{{{\rm{H}}}_{2}}\,\sim 0.8\mbox{-}9.7\times {10}^{10}\,{M}_{\odot }$ (with $\alpha =0.8\,{M}_{\odot }{\left({\rm{K}}\,\mathrm{km}\,{{\rm{s}}}^{-1}\,{\mathrm{pc}}^{2}\right)}^{-1}$ , where μ is the unknown possible gravitational magnification factor). We fit their spectral energy distributions, after including the observed 2 mm fluxes and upper limits, and estimate their apparent (uncorrected for possible lensing effects) star formation rates ( μ SFRs) to be ∼400–2500 M _⊙ yr ^−1 , with a depletion time of ∼20–110 Myr. We notice interesting offsets, of ∼10–40 kpc spatially or ∼1000–2000 km s ^−1 spectroscopically, between the optical quasar and the millimeter continuum or CO emissions. The observed velocity shift is likely related to the blueshifted broad-emission-line region of quasars, though mergers or recoiling black holes are also possible causes, which can explain the spatial offsets and the high intrinsic star formation rates in the HyLIRG quasar systems. Starburst galaxies CO line emission Millimeter-wave spectroscopy Interferometry Quasars Galaxy evolution Astrophysics Y. Sophia Dai verfasserin aut Alain Omont verfasserin aut Daizhong Liu verfasserin aut Pierre Cox verfasserin aut Roberto Neri verfasserin aut Melanie Krips verfasserin aut Chentao Yang verfasserin aut Xue-Bing Wu verfasserin aut Jia-Sheng Huang verfasserin aut In The Astrophysical Journal IOP Publishing, 2022 964(2024), 2, p 136 (DE-627)269019219 (DE-600)1473835-1 15384357 nnns volume:964 year:2024 number:2, p 136 https://doi.org/10.3847/1538-4357/ad24fe kostenfrei https://doaj.org/article/5e82a80606ed4eb6ac5167e0c05b277b kostenfrei https://doi.org/10.3847/1538-4357/ad24fe kostenfrei https://doaj.org/toc/1538-4357 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 964 2024 2, p 136 |
allfields_unstemmed |
10.3847/1538-4357/ad24fe doi (DE-627)DOAJ09139127X (DE-599)DOAJ5e82a80606ed4eb6ac5167e0c05b277b DE-627 ger DE-627 rakwb eng QB460-466 Feng-Yuan Liu verfasserin aut Dust and Cold Gas Properties of Starburst HyLIRG Quasars at z ∼ 2.5 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Some high- z active galactic nuclei (AGNs) are found to reside in extreme star-forming galaxies, such as hyperluminous infrared galaxies (HyLIRGs), with AGN-removed L _IR of <10 ^13 L _⊙ . In this paper, we report NOEMA observations of six apparent starburst HyLIRGs associated with optical quasars at z ∼ 2–3 in the Stripe 82 field, to study their dust and molecular CO properties. Five out of the six candidates are detected with CO(4–3) or CO(5–4) emission, and four in the 2 mm dust continuum. Based on the linewidth– ${L}_{\mathrm{CO}(1-0)}^{{\prime} }$ diagnostics, we find that four galaxies are likely unlensed or weakly lensed sources. The molecular gas mass is in the range of $\mu {M}_{{{\rm{H}}}_{2}}\,\sim 0.8\mbox{-}9.7\times {10}^{10}\,{M}_{\odot }$ (with $\alpha =0.8\,{M}_{\odot }{\left({\rm{K}}\,\mathrm{km}\,{{\rm{s}}}^{-1}\,{\mathrm{pc}}^{2}\right)}^{-1}$ , where μ is the unknown possible gravitational magnification factor). We fit their spectral energy distributions, after including the observed 2 mm fluxes and upper limits, and estimate their apparent (uncorrected for possible lensing effects) star formation rates ( μ SFRs) to be ∼400–2500 M _⊙ yr ^−1 , with a depletion time of ∼20–110 Myr. We notice interesting offsets, of ∼10–40 kpc spatially or ∼1000–2000 km s ^−1 spectroscopically, between the optical quasar and the millimeter continuum or CO emissions. The observed velocity shift is likely related to the blueshifted broad-emission-line region of quasars, though mergers or recoiling black holes are also possible causes, which can explain the spatial offsets and the high intrinsic star formation rates in the HyLIRG quasar systems. Starburst galaxies CO line emission Millimeter-wave spectroscopy Interferometry Quasars Galaxy evolution Astrophysics Y. Sophia Dai verfasserin aut Alain Omont verfasserin aut Daizhong Liu verfasserin aut Pierre Cox verfasserin aut Roberto Neri verfasserin aut Melanie Krips verfasserin aut Chentao Yang verfasserin aut Xue-Bing Wu verfasserin aut Jia-Sheng Huang verfasserin aut In The Astrophysical Journal IOP Publishing, 2022 964(2024), 2, p 136 (DE-627)269019219 (DE-600)1473835-1 15384357 nnns volume:964 year:2024 number:2, p 136 https://doi.org/10.3847/1538-4357/ad24fe kostenfrei https://doaj.org/article/5e82a80606ed4eb6ac5167e0c05b277b kostenfrei https://doi.org/10.3847/1538-4357/ad24fe kostenfrei https://doaj.org/toc/1538-4357 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 964 2024 2, p 136 |
allfieldsGer |
10.3847/1538-4357/ad24fe doi (DE-627)DOAJ09139127X (DE-599)DOAJ5e82a80606ed4eb6ac5167e0c05b277b DE-627 ger DE-627 rakwb eng QB460-466 Feng-Yuan Liu verfasserin aut Dust and Cold Gas Properties of Starburst HyLIRG Quasars at z ∼ 2.5 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Some high- z active galactic nuclei (AGNs) are found to reside in extreme star-forming galaxies, such as hyperluminous infrared galaxies (HyLIRGs), with AGN-removed L _IR of <10 ^13 L _⊙ . In this paper, we report NOEMA observations of six apparent starburst HyLIRGs associated with optical quasars at z ∼ 2–3 in the Stripe 82 field, to study their dust and molecular CO properties. Five out of the six candidates are detected with CO(4–3) or CO(5–4) emission, and four in the 2 mm dust continuum. Based on the linewidth– ${L}_{\mathrm{CO}(1-0)}^{{\prime} }$ diagnostics, we find that four galaxies are likely unlensed or weakly lensed sources. The molecular gas mass is in the range of $\mu {M}_{{{\rm{H}}}_{2}}\,\sim 0.8\mbox{-}9.7\times {10}^{10}\,{M}_{\odot }$ (with $\alpha =0.8\,{M}_{\odot }{\left({\rm{K}}\,\mathrm{km}\,{{\rm{s}}}^{-1}\,{\mathrm{pc}}^{2}\right)}^{-1}$ , where μ is the unknown possible gravitational magnification factor). We fit their spectral energy distributions, after including the observed 2 mm fluxes and upper limits, and estimate their apparent (uncorrected for possible lensing effects) star formation rates ( μ SFRs) to be ∼400–2500 M _⊙ yr ^−1 , with a depletion time of ∼20–110 Myr. We notice interesting offsets, of ∼10–40 kpc spatially or ∼1000–2000 km s ^−1 spectroscopically, between the optical quasar and the millimeter continuum or CO emissions. The observed velocity shift is likely related to the blueshifted broad-emission-line region of quasars, though mergers or recoiling black holes are also possible causes, which can explain the spatial offsets and the high intrinsic star formation rates in the HyLIRG quasar systems. Starburst galaxies CO line emission Millimeter-wave spectroscopy Interferometry Quasars Galaxy evolution Astrophysics Y. Sophia Dai verfasserin aut Alain Omont verfasserin aut Daizhong Liu verfasserin aut Pierre Cox verfasserin aut Roberto Neri verfasserin aut Melanie Krips verfasserin aut Chentao Yang verfasserin aut Xue-Bing Wu verfasserin aut Jia-Sheng Huang verfasserin aut In The Astrophysical Journal IOP Publishing, 2022 964(2024), 2, p 136 (DE-627)269019219 (DE-600)1473835-1 15384357 nnns volume:964 year:2024 number:2, p 136 https://doi.org/10.3847/1538-4357/ad24fe kostenfrei https://doaj.org/article/5e82a80606ed4eb6ac5167e0c05b277b kostenfrei https://doi.org/10.3847/1538-4357/ad24fe kostenfrei https://doaj.org/toc/1538-4357 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 964 2024 2, p 136 |
allfieldsSound |
10.3847/1538-4357/ad24fe doi (DE-627)DOAJ09139127X (DE-599)DOAJ5e82a80606ed4eb6ac5167e0c05b277b DE-627 ger DE-627 rakwb eng QB460-466 Feng-Yuan Liu verfasserin aut Dust and Cold Gas Properties of Starburst HyLIRG Quasars at z ∼ 2.5 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Some high- z active galactic nuclei (AGNs) are found to reside in extreme star-forming galaxies, such as hyperluminous infrared galaxies (HyLIRGs), with AGN-removed L _IR of <10 ^13 L _⊙ . In this paper, we report NOEMA observations of six apparent starburst HyLIRGs associated with optical quasars at z ∼ 2–3 in the Stripe 82 field, to study their dust and molecular CO properties. Five out of the six candidates are detected with CO(4–3) or CO(5–4) emission, and four in the 2 mm dust continuum. Based on the linewidth– ${L}_{\mathrm{CO}(1-0)}^{{\prime} }$ diagnostics, we find that four galaxies are likely unlensed or weakly lensed sources. The molecular gas mass is in the range of $\mu {M}_{{{\rm{H}}}_{2}}\,\sim 0.8\mbox{-}9.7\times {10}^{10}\,{M}_{\odot }$ (with $\alpha =0.8\,{M}_{\odot }{\left({\rm{K}}\,\mathrm{km}\,{{\rm{s}}}^{-1}\,{\mathrm{pc}}^{2}\right)}^{-1}$ , where μ is the unknown possible gravitational magnification factor). We fit their spectral energy distributions, after including the observed 2 mm fluxes and upper limits, and estimate their apparent (uncorrected for possible lensing effects) star formation rates ( μ SFRs) to be ∼400–2500 M _⊙ yr ^−1 , with a depletion time of ∼20–110 Myr. We notice interesting offsets, of ∼10–40 kpc spatially or ∼1000–2000 km s ^−1 spectroscopically, between the optical quasar and the millimeter continuum or CO emissions. The observed velocity shift is likely related to the blueshifted broad-emission-line region of quasars, though mergers or recoiling black holes are also possible causes, which can explain the spatial offsets and the high intrinsic star formation rates in the HyLIRG quasar systems. Starburst galaxies CO line emission Millimeter-wave spectroscopy Interferometry Quasars Galaxy evolution Astrophysics Y. Sophia Dai verfasserin aut Alain Omont verfasserin aut Daizhong Liu verfasserin aut Pierre Cox verfasserin aut Roberto Neri verfasserin aut Melanie Krips verfasserin aut Chentao Yang verfasserin aut Xue-Bing Wu verfasserin aut Jia-Sheng Huang verfasserin aut In The Astrophysical Journal IOP Publishing, 2022 964(2024), 2, p 136 (DE-627)269019219 (DE-600)1473835-1 15384357 nnns volume:964 year:2024 number:2, p 136 https://doi.org/10.3847/1538-4357/ad24fe kostenfrei https://doaj.org/article/5e82a80606ed4eb6ac5167e0c05b277b kostenfrei https://doi.org/10.3847/1538-4357/ad24fe kostenfrei https://doaj.org/toc/1538-4357 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 964 2024 2, p 136 |
language |
English |
source |
In The Astrophysical Journal 964(2024), 2, p 136 volume:964 year:2024 number:2, p 136 |
sourceStr |
In The Astrophysical Journal 964(2024), 2, p 136 volume:964 year:2024 number:2, p 136 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Starburst galaxies CO line emission Millimeter-wave spectroscopy Interferometry Quasars Galaxy evolution Astrophysics |
isfreeaccess_bool |
true |
container_title |
The Astrophysical Journal |
authorswithroles_txt_mv |
Feng-Yuan Liu @@aut@@ Y. Sophia Dai @@aut@@ Alain Omont @@aut@@ Daizhong Liu @@aut@@ Pierre Cox @@aut@@ Roberto Neri @@aut@@ Melanie Krips @@aut@@ Chentao Yang @@aut@@ Xue-Bing Wu @@aut@@ Jia-Sheng Huang @@aut@@ |
publishDateDaySort_date |
2024-01-01T00:00:00Z |
hierarchy_top_id |
269019219 |
id |
DOAJ09139127X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ09139127X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414132538.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240412s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3847/1538-4357/ad24fe</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ09139127X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ5e82a80606ed4eb6ac5167e0c05b277b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QB460-466</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Feng-Yuan Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dust and Cold Gas Properties of Starburst HyLIRG Quasars at z ∼ 2.5</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Some high- z active galactic nuclei (AGNs) are found to reside in extreme star-forming galaxies, such as hyperluminous infrared galaxies (HyLIRGs), with AGN-removed L _IR of <10 ^13 L _⊙ . In this paper, we report NOEMA observations of six apparent starburst HyLIRGs associated with optical quasars at z ∼ 2–3 in the Stripe 82 field, to study their dust and molecular CO properties. Five out of the six candidates are detected with CO(4–3) or CO(5–4) emission, and four in the 2 mm dust continuum. Based on the linewidth– ${L}_{\mathrm{CO}(1-0)}^{{\prime} }$ diagnostics, we find that four galaxies are likely unlensed or weakly lensed sources. The molecular gas mass is in the range of $\mu {M}_{{{\rm{H}}}_{2}}\,\sim 0.8\mbox{-}9.7\times {10}^{10}\,{M}_{\odot }$ (with $\alpha =0.8\,{M}_{\odot }{\left({\rm{K}}\,\mathrm{km}\,{{\rm{s}}}^{-1}\,{\mathrm{pc}}^{2}\right)}^{-1}$ , where μ is the unknown possible gravitational magnification factor). We fit their spectral energy distributions, after including the observed 2 mm fluxes and upper limits, and estimate their apparent (uncorrected for possible lensing effects) star formation rates ( μ SFRs) to be ∼400–2500 M _⊙ yr ^−1 , with a depletion time of ∼20–110 Myr. We notice interesting offsets, of ∼10–40 kpc spatially or ∼1000–2000 km s ^−1 spectroscopically, between the optical quasar and the millimeter continuum or CO emissions. The observed velocity shift is likely related to the blueshifted broad-emission-line region of quasars, though mergers or recoiling black holes are also possible causes, which can explain the spatial offsets and the high intrinsic star formation rates in the HyLIRG quasar systems.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Starburst galaxies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CO line emission</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Millimeter-wave spectroscopy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interferometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quasars</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Galaxy evolution</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Astrophysics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Y. Sophia Dai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alain Omont</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Daizhong Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pierre Cox</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Roberto Neri</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Melanie Krips</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chentao Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xue-Bing Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jia-Sheng Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">The Astrophysical Journal</subfield><subfield code="d">IOP Publishing, 2022</subfield><subfield code="g">964(2024), 2, p 136</subfield><subfield code="w">(DE-627)269019219</subfield><subfield code="w">(DE-600)1473835-1</subfield><subfield code="x">15384357</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:964</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:2, p 136</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3847/1538-4357/ad24fe</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/5e82a80606ed4eb6ac5167e0c05b277b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3847/1538-4357/ad24fe</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1538-4357</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">964</subfield><subfield code="j">2024</subfield><subfield code="e">2, p 136</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Feng-Yuan Liu |
spellingShingle |
Feng-Yuan Liu misc QB460-466 misc Starburst galaxies misc CO line emission misc Millimeter-wave spectroscopy misc Interferometry misc Quasars misc Galaxy evolution misc Astrophysics Dust and Cold Gas Properties of Starburst HyLIRG Quasars at z ∼ 2.5 |
authorStr |
Feng-Yuan Liu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)269019219 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QB460-466 |
illustrated |
Not Illustrated |
issn |
15384357 |
topic_title |
QB460-466 Dust and Cold Gas Properties of Starburst HyLIRG Quasars at z ∼ 2.5 Starburst galaxies CO line emission Millimeter-wave spectroscopy Interferometry Quasars Galaxy evolution |
topic |
misc QB460-466 misc Starburst galaxies misc CO line emission misc Millimeter-wave spectroscopy misc Interferometry misc Quasars misc Galaxy evolution misc Astrophysics |
topic_unstemmed |
misc QB460-466 misc Starburst galaxies misc CO line emission misc Millimeter-wave spectroscopy misc Interferometry misc Quasars misc Galaxy evolution misc Astrophysics |
topic_browse |
misc QB460-466 misc Starburst galaxies misc CO line emission misc Millimeter-wave spectroscopy misc Interferometry misc Quasars misc Galaxy evolution misc Astrophysics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
The Astrophysical Journal |
hierarchy_parent_id |
269019219 |
hierarchy_top_title |
The Astrophysical Journal |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)269019219 (DE-600)1473835-1 |
title |
Dust and Cold Gas Properties of Starburst HyLIRG Quasars at z ∼ 2.5 |
ctrlnum |
(DE-627)DOAJ09139127X (DE-599)DOAJ5e82a80606ed4eb6ac5167e0c05b277b |
title_full |
Dust and Cold Gas Properties of Starburst HyLIRG Quasars at z ∼ 2.5 |
author_sort |
Feng-Yuan Liu |
journal |
The Astrophysical Journal |
journalStr |
The Astrophysical Journal |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
author_browse |
Feng-Yuan Liu Y. Sophia Dai Alain Omont Daizhong Liu Pierre Cox Roberto Neri Melanie Krips Chentao Yang Xue-Bing Wu Jia-Sheng Huang |
container_volume |
964 |
class |
QB460-466 |
format_se |
Elektronische Aufsätze |
author-letter |
Feng-Yuan Liu |
doi_str_mv |
10.3847/1538-4357/ad24fe |
author2-role |
verfasserin |
title_sort |
dust and cold gas properties of starburst hylirg quasars at z ∼ 2.5 |
callnumber |
QB460-466 |
title_auth |
Dust and Cold Gas Properties of Starburst HyLIRG Quasars at z ∼ 2.5 |
abstract |
Some high- z active galactic nuclei (AGNs) are found to reside in extreme star-forming galaxies, such as hyperluminous infrared galaxies (HyLIRGs), with AGN-removed L _IR of <10 ^13 L _⊙ . In this paper, we report NOEMA observations of six apparent starburst HyLIRGs associated with optical quasars at z ∼ 2–3 in the Stripe 82 field, to study their dust and molecular CO properties. Five out of the six candidates are detected with CO(4–3) or CO(5–4) emission, and four in the 2 mm dust continuum. Based on the linewidth– ${L}_{\mathrm{CO}(1-0)}^{{\prime} }$ diagnostics, we find that four galaxies are likely unlensed or weakly lensed sources. The molecular gas mass is in the range of $\mu {M}_{{{\rm{H}}}_{2}}\,\sim 0.8\mbox{-}9.7\times {10}^{10}\,{M}_{\odot }$ (with $\alpha =0.8\,{M}_{\odot }{\left({\rm{K}}\,\mathrm{km}\,{{\rm{s}}}^{-1}\,{\mathrm{pc}}^{2}\right)}^{-1}$ , where μ is the unknown possible gravitational magnification factor). We fit their spectral energy distributions, after including the observed 2 mm fluxes and upper limits, and estimate their apparent (uncorrected for possible lensing effects) star formation rates ( μ SFRs) to be ∼400–2500 M _⊙ yr ^−1 , with a depletion time of ∼20–110 Myr. We notice interesting offsets, of ∼10–40 kpc spatially or ∼1000–2000 km s ^−1 spectroscopically, between the optical quasar and the millimeter continuum or CO emissions. The observed velocity shift is likely related to the blueshifted broad-emission-line region of quasars, though mergers or recoiling black holes are also possible causes, which can explain the spatial offsets and the high intrinsic star formation rates in the HyLIRG quasar systems. |
abstractGer |
Some high- z active galactic nuclei (AGNs) are found to reside in extreme star-forming galaxies, such as hyperluminous infrared galaxies (HyLIRGs), with AGN-removed L _IR of <10 ^13 L _⊙ . In this paper, we report NOEMA observations of six apparent starburst HyLIRGs associated with optical quasars at z ∼ 2–3 in the Stripe 82 field, to study their dust and molecular CO properties. Five out of the six candidates are detected with CO(4–3) or CO(5–4) emission, and four in the 2 mm dust continuum. Based on the linewidth– ${L}_{\mathrm{CO}(1-0)}^{{\prime} }$ diagnostics, we find that four galaxies are likely unlensed or weakly lensed sources. The molecular gas mass is in the range of $\mu {M}_{{{\rm{H}}}_{2}}\,\sim 0.8\mbox{-}9.7\times {10}^{10}\,{M}_{\odot }$ (with $\alpha =0.8\,{M}_{\odot }{\left({\rm{K}}\,\mathrm{km}\,{{\rm{s}}}^{-1}\,{\mathrm{pc}}^{2}\right)}^{-1}$ , where μ is the unknown possible gravitational magnification factor). We fit their spectral energy distributions, after including the observed 2 mm fluxes and upper limits, and estimate their apparent (uncorrected for possible lensing effects) star formation rates ( μ SFRs) to be ∼400–2500 M _⊙ yr ^−1 , with a depletion time of ∼20–110 Myr. We notice interesting offsets, of ∼10–40 kpc spatially or ∼1000–2000 km s ^−1 spectroscopically, between the optical quasar and the millimeter continuum or CO emissions. The observed velocity shift is likely related to the blueshifted broad-emission-line region of quasars, though mergers or recoiling black holes are also possible causes, which can explain the spatial offsets and the high intrinsic star formation rates in the HyLIRG quasar systems. |
abstract_unstemmed |
Some high- z active galactic nuclei (AGNs) are found to reside in extreme star-forming galaxies, such as hyperluminous infrared galaxies (HyLIRGs), with AGN-removed L _IR of <10 ^13 L _⊙ . In this paper, we report NOEMA observations of six apparent starburst HyLIRGs associated with optical quasars at z ∼ 2–3 in the Stripe 82 field, to study their dust and molecular CO properties. Five out of the six candidates are detected with CO(4–3) or CO(5–4) emission, and four in the 2 mm dust continuum. Based on the linewidth– ${L}_{\mathrm{CO}(1-0)}^{{\prime} }$ diagnostics, we find that four galaxies are likely unlensed or weakly lensed sources. The molecular gas mass is in the range of $\mu {M}_{{{\rm{H}}}_{2}}\,\sim 0.8\mbox{-}9.7\times {10}^{10}\,{M}_{\odot }$ (with $\alpha =0.8\,{M}_{\odot }{\left({\rm{K}}\,\mathrm{km}\,{{\rm{s}}}^{-1}\,{\mathrm{pc}}^{2}\right)}^{-1}$ , where μ is the unknown possible gravitational magnification factor). We fit their spectral energy distributions, after including the observed 2 mm fluxes and upper limits, and estimate their apparent (uncorrected for possible lensing effects) star formation rates ( μ SFRs) to be ∼400–2500 M _⊙ yr ^−1 , with a depletion time of ∼20–110 Myr. We notice interesting offsets, of ∼10–40 kpc spatially or ∼1000–2000 km s ^−1 spectroscopically, between the optical quasar and the millimeter continuum or CO emissions. The observed velocity shift is likely related to the blueshifted broad-emission-line region of quasars, though mergers or recoiling black holes are also possible causes, which can explain the spatial offsets and the high intrinsic star formation rates in the HyLIRG quasar systems. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
2, p 136 |
title_short |
Dust and Cold Gas Properties of Starburst HyLIRG Quasars at z ∼ 2.5 |
url |
https://doi.org/10.3847/1538-4357/ad24fe https://doaj.org/article/5e82a80606ed4eb6ac5167e0c05b277b https://doaj.org/toc/1538-4357 |
remote_bool |
true |
author2 |
Y. Sophia Dai Alain Omont Daizhong Liu Pierre Cox Roberto Neri Melanie Krips Chentao Yang Xue-Bing Wu Jia-Sheng Huang |
author2Str |
Y. Sophia Dai Alain Omont Daizhong Liu Pierre Cox Roberto Neri Melanie Krips Chentao Yang Xue-Bing Wu Jia-Sheng Huang |
ppnlink |
269019219 |
callnumber-subject |
QB - Astronomy |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3847/1538-4357/ad24fe |
callnumber-a |
QB460-466 |
up_date |
2024-07-03T20:08:16.957Z |
_version_ |
1803589828696080384 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ09139127X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414132538.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240412s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3847/1538-4357/ad24fe</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ09139127X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ5e82a80606ed4eb6ac5167e0c05b277b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QB460-466</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Feng-Yuan Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dust and Cold Gas Properties of Starburst HyLIRG Quasars at z ∼ 2.5</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Some high- z active galactic nuclei (AGNs) are found to reside in extreme star-forming galaxies, such as hyperluminous infrared galaxies (HyLIRGs), with AGN-removed L _IR of <10 ^13 L _⊙ . In this paper, we report NOEMA observations of six apparent starburst HyLIRGs associated with optical quasars at z ∼ 2–3 in the Stripe 82 field, to study their dust and molecular CO properties. Five out of the six candidates are detected with CO(4–3) or CO(5–4) emission, and four in the 2 mm dust continuum. Based on the linewidth– ${L}_{\mathrm{CO}(1-0)}^{{\prime} }$ diagnostics, we find that four galaxies are likely unlensed or weakly lensed sources. The molecular gas mass is in the range of $\mu {M}_{{{\rm{H}}}_{2}}\,\sim 0.8\mbox{-}9.7\times {10}^{10}\,{M}_{\odot }$ (with $\alpha =0.8\,{M}_{\odot }{\left({\rm{K}}\,\mathrm{km}\,{{\rm{s}}}^{-1}\,{\mathrm{pc}}^{2}\right)}^{-1}$ , where μ is the unknown possible gravitational magnification factor). We fit their spectral energy distributions, after including the observed 2 mm fluxes and upper limits, and estimate their apparent (uncorrected for possible lensing effects) star formation rates ( μ SFRs) to be ∼400–2500 M _⊙ yr ^−1 , with a depletion time of ∼20–110 Myr. We notice interesting offsets, of ∼10–40 kpc spatially or ∼1000–2000 km s ^−1 spectroscopically, between the optical quasar and the millimeter continuum or CO emissions. The observed velocity shift is likely related to the blueshifted broad-emission-line region of quasars, though mergers or recoiling black holes are also possible causes, which can explain the spatial offsets and the high intrinsic star formation rates in the HyLIRG quasar systems.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Starburst galaxies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CO line emission</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Millimeter-wave spectroscopy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interferometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quasars</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Galaxy evolution</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Astrophysics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Y. Sophia Dai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alain Omont</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Daizhong Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pierre Cox</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Roberto Neri</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Melanie Krips</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chentao Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xue-Bing Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jia-Sheng Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">The Astrophysical Journal</subfield><subfield code="d">IOP Publishing, 2022</subfield><subfield code="g">964(2024), 2, p 136</subfield><subfield code="w">(DE-627)269019219</subfield><subfield code="w">(DE-600)1473835-1</subfield><subfield code="x">15384357</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:964</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:2, p 136</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3847/1538-4357/ad24fe</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/5e82a80606ed4eb6ac5167e0c05b277b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3847/1538-4357/ad24fe</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1538-4357</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">964</subfield><subfield code="j">2024</subfield><subfield code="e">2, p 136</subfield></datafield></record></collection>
|
score |
7.4011335 |