Comparative transcriptomic and metabonomic analysis revealed the relationships between biosynthesis of volatiles and flavonoid metabolites in Rosa rugosa
Rosa rugosa is not only cultivated as a landscaping plant, but also used in cosmetics, the medical and food industries. However, little information is currently available on the gene regulatory networks involved in its scent and color biosynthesis and metabolism. In this study, R. rugosa Thunb. f. r...
Ausführliche Beschreibung
Autor*in: |
Dedang Feng [verfasserIn] Hao Zhang [verfasserIn] Xianqin Qiu [verfasserIn] Hongying Jian [verfasserIn] Qigang Wang [verfasserIn] Ningning Zhou [verfasserIn] Yu Ye [verfasserIn] Jun Lu [verfasserIn] Huijun Yan [verfasserIn] Kaixue Tang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Ornamental Plant Research - Maximum Academic Press, 2024, 1(2021), 1, Seite 10 |
---|---|
Übergeordnetes Werk: |
volume:1 ; year:2021 ; number:1 ; pages:10 |
Links: |
---|
DOI / URN: |
10.48130/OPR-2021-0005 |
---|
Katalog-ID: |
DOAJ091699169 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ091699169 | ||
003 | DE-627 | ||
005 | 20240412101750.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240412s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.48130/OPR-2021-0005 |2 doi | |
035 | |a (DE-627)DOAJ091699169 | ||
035 | |a (DE-599)DOAJ43e438b26ce9446e9912a857f389a56e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QK900-989 | |
050 | 0 | |a TD194-195 | |
100 | 0 | |a Dedang Feng |e verfasserin |4 aut | |
245 | 1 | 0 | |a Comparative transcriptomic and metabonomic analysis revealed the relationships between biosynthesis of volatiles and flavonoid metabolites in Rosa rugosa |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Rosa rugosa is not only cultivated as a landscaping plant, but also used in cosmetics, the medical and food industries. However, little information is currently available on the gene regulatory networks involved in its scent and color biosynthesis and metabolism. In this study, R. rugosa Thunb. f. rosea Rehd with red petals (RR) and its white petal variant (WR), were used to study the molecular mechanisms in flower color and scent. Sixty-five differential flavonoid metabolites and 15 volatiles were found to have significant differences between RR and WR. Correspondingly, the key regulators (MYB-bHLH-WD40) of anthocyanin synthesis pathway and their structural genes involved in flavonoid biosynthesis, benzenoid/phenylpropanoid biosynthesis, terpenoid biosynthesis pathways were also found to be differentially expressed by comparative transcriptome. Further, qPCR permitted the identification of some transcripts encoding proteins that were putatively associated with scent and color biosynthesis in roses. Particularly, the results showed that the ACT gene (encoding CoA geraniol/citronellol acetyltransferase, GeneID: 112190420), which expressed lower in WR, was involved in three pathways: flavonoid biosynthesis, phenylpropanoid biosynthesis and terpenoid biosynthesis, however, GT5 (anthocyanin glycosylation gene, GeneID:112186660), expressed higher in WR, was involved in both flavonoid and phenylpropanoid biosynthesis pathways. These results suggested that ACT and GT5 might play important roles in regulating the relationship of color pigmentation and volatile emission. | ||
650 | 4 | |a rosa rugosa | |
650 | 4 | |a flavonoid | |
650 | 4 | |a anthocyanin | |
650 | 4 | |a scent | |
650 | 4 | |a phenylpropanoid | |
650 | 4 | |a terpenoid | |
653 | 0 | |a Plant ecology | |
653 | 0 | |a Environmental effects of industries and plants | |
700 | 0 | |a Hao Zhang |e verfasserin |4 aut | |
700 | 0 | |a Xianqin Qiu |e verfasserin |4 aut | |
700 | 0 | |a Hongying Jian |e verfasserin |4 aut | |
700 | 0 | |a Qigang Wang |e verfasserin |4 aut | |
700 | 0 | |a Ningning Zhou |e verfasserin |4 aut | |
700 | 0 | |a Yu Ye |e verfasserin |4 aut | |
700 | 0 | |a Jun Lu |e verfasserin |4 aut | |
700 | 0 | |a Huijun Yan |e verfasserin |4 aut | |
700 | 0 | |a Kaixue Tang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Ornamental Plant Research |d Maximum Academic Press, 2024 |g 1(2021), 1, Seite 10 |w (DE-627)1882454766 |w (DE-600)3180766-5 |x 27692094 |7 nnns |
773 | 1 | 8 | |g volume:1 |g year:2021 |g number:1 |g pages:10 |
856 | 4 | 0 | |u https://doi.org/10.48130/OPR-2021-0005 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/43e438b26ce9446e9912a857f389a56e |z kostenfrei |
856 | 4 | 0 | |u https://www.maxapress.com/article/doi/10.48130/OPR-2021-0005 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2769-2094 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 1 |j 2021 |e 1 |h 10 |
author_variant |
d f df h z hz x q xq h j hj q w qw n z nz y y yy j l jl h y hy k t kt |
---|---|
matchkey_str |
article:27692094:2021----::oprtvtasrpoiadeaooiaayirvaeteeainhpbtenisnhssfoaiea |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
QK |
publishDate |
2021 |
allfields |
10.48130/OPR-2021-0005 doi (DE-627)DOAJ091699169 (DE-599)DOAJ43e438b26ce9446e9912a857f389a56e DE-627 ger DE-627 rakwb eng QK900-989 TD194-195 Dedang Feng verfasserin aut Comparative transcriptomic and metabonomic analysis revealed the relationships between biosynthesis of volatiles and flavonoid metabolites in Rosa rugosa 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Rosa rugosa is not only cultivated as a landscaping plant, but also used in cosmetics, the medical and food industries. However, little information is currently available on the gene regulatory networks involved in its scent and color biosynthesis and metabolism. In this study, R. rugosa Thunb. f. rosea Rehd with red petals (RR) and its white petal variant (WR), were used to study the molecular mechanisms in flower color and scent. Sixty-five differential flavonoid metabolites and 15 volatiles were found to have significant differences between RR and WR. Correspondingly, the key regulators (MYB-bHLH-WD40) of anthocyanin synthesis pathway and their structural genes involved in flavonoid biosynthesis, benzenoid/phenylpropanoid biosynthesis, terpenoid biosynthesis pathways were also found to be differentially expressed by comparative transcriptome. Further, qPCR permitted the identification of some transcripts encoding proteins that were putatively associated with scent and color biosynthesis in roses. Particularly, the results showed that the ACT gene (encoding CoA geraniol/citronellol acetyltransferase, GeneID: 112190420), which expressed lower in WR, was involved in three pathways: flavonoid biosynthesis, phenylpropanoid biosynthesis and terpenoid biosynthesis, however, GT5 (anthocyanin glycosylation gene, GeneID:112186660), expressed higher in WR, was involved in both flavonoid and phenylpropanoid biosynthesis pathways. These results suggested that ACT and GT5 might play important roles in regulating the relationship of color pigmentation and volatile emission. rosa rugosa flavonoid anthocyanin scent phenylpropanoid terpenoid Plant ecology Environmental effects of industries and plants Hao Zhang verfasserin aut Xianqin Qiu verfasserin aut Hongying Jian verfasserin aut Qigang Wang verfasserin aut Ningning Zhou verfasserin aut Yu Ye verfasserin aut Jun Lu verfasserin aut Huijun Yan verfasserin aut Kaixue Tang verfasserin aut In Ornamental Plant Research Maximum Academic Press, 2024 1(2021), 1, Seite 10 (DE-627)1882454766 (DE-600)3180766-5 27692094 nnns volume:1 year:2021 number:1 pages:10 https://doi.org/10.48130/OPR-2021-0005 kostenfrei https://doaj.org/article/43e438b26ce9446e9912a857f389a56e kostenfrei https://www.maxapress.com/article/doi/10.48130/OPR-2021-0005 kostenfrei https://doaj.org/toc/2769-2094 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 1 2021 1 10 |
spelling |
10.48130/OPR-2021-0005 doi (DE-627)DOAJ091699169 (DE-599)DOAJ43e438b26ce9446e9912a857f389a56e DE-627 ger DE-627 rakwb eng QK900-989 TD194-195 Dedang Feng verfasserin aut Comparative transcriptomic and metabonomic analysis revealed the relationships between biosynthesis of volatiles and flavonoid metabolites in Rosa rugosa 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Rosa rugosa is not only cultivated as a landscaping plant, but also used in cosmetics, the medical and food industries. However, little information is currently available on the gene regulatory networks involved in its scent and color biosynthesis and metabolism. In this study, R. rugosa Thunb. f. rosea Rehd with red petals (RR) and its white petal variant (WR), were used to study the molecular mechanisms in flower color and scent. Sixty-five differential flavonoid metabolites and 15 volatiles were found to have significant differences between RR and WR. Correspondingly, the key regulators (MYB-bHLH-WD40) of anthocyanin synthesis pathway and their structural genes involved in flavonoid biosynthesis, benzenoid/phenylpropanoid biosynthesis, terpenoid biosynthesis pathways were also found to be differentially expressed by comparative transcriptome. Further, qPCR permitted the identification of some transcripts encoding proteins that were putatively associated with scent and color biosynthesis in roses. Particularly, the results showed that the ACT gene (encoding CoA geraniol/citronellol acetyltransferase, GeneID: 112190420), which expressed lower in WR, was involved in three pathways: flavonoid biosynthesis, phenylpropanoid biosynthesis and terpenoid biosynthesis, however, GT5 (anthocyanin glycosylation gene, GeneID:112186660), expressed higher in WR, was involved in both flavonoid and phenylpropanoid biosynthesis pathways. These results suggested that ACT and GT5 might play important roles in regulating the relationship of color pigmentation and volatile emission. rosa rugosa flavonoid anthocyanin scent phenylpropanoid terpenoid Plant ecology Environmental effects of industries and plants Hao Zhang verfasserin aut Xianqin Qiu verfasserin aut Hongying Jian verfasserin aut Qigang Wang verfasserin aut Ningning Zhou verfasserin aut Yu Ye verfasserin aut Jun Lu verfasserin aut Huijun Yan verfasserin aut Kaixue Tang verfasserin aut In Ornamental Plant Research Maximum Academic Press, 2024 1(2021), 1, Seite 10 (DE-627)1882454766 (DE-600)3180766-5 27692094 nnns volume:1 year:2021 number:1 pages:10 https://doi.org/10.48130/OPR-2021-0005 kostenfrei https://doaj.org/article/43e438b26ce9446e9912a857f389a56e kostenfrei https://www.maxapress.com/article/doi/10.48130/OPR-2021-0005 kostenfrei https://doaj.org/toc/2769-2094 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 1 2021 1 10 |
allfields_unstemmed |
10.48130/OPR-2021-0005 doi (DE-627)DOAJ091699169 (DE-599)DOAJ43e438b26ce9446e9912a857f389a56e DE-627 ger DE-627 rakwb eng QK900-989 TD194-195 Dedang Feng verfasserin aut Comparative transcriptomic and metabonomic analysis revealed the relationships between biosynthesis of volatiles and flavonoid metabolites in Rosa rugosa 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Rosa rugosa is not only cultivated as a landscaping plant, but also used in cosmetics, the medical and food industries. However, little information is currently available on the gene regulatory networks involved in its scent and color biosynthesis and metabolism. In this study, R. rugosa Thunb. f. rosea Rehd with red petals (RR) and its white petal variant (WR), were used to study the molecular mechanisms in flower color and scent. Sixty-five differential flavonoid metabolites and 15 volatiles were found to have significant differences between RR and WR. Correspondingly, the key regulators (MYB-bHLH-WD40) of anthocyanin synthesis pathway and their structural genes involved in flavonoid biosynthesis, benzenoid/phenylpropanoid biosynthesis, terpenoid biosynthesis pathways were also found to be differentially expressed by comparative transcriptome. Further, qPCR permitted the identification of some transcripts encoding proteins that were putatively associated with scent and color biosynthesis in roses. Particularly, the results showed that the ACT gene (encoding CoA geraniol/citronellol acetyltransferase, GeneID: 112190420), which expressed lower in WR, was involved in three pathways: flavonoid biosynthesis, phenylpropanoid biosynthesis and terpenoid biosynthesis, however, GT5 (anthocyanin glycosylation gene, GeneID:112186660), expressed higher in WR, was involved in both flavonoid and phenylpropanoid biosynthesis pathways. These results suggested that ACT and GT5 might play important roles in regulating the relationship of color pigmentation and volatile emission. rosa rugosa flavonoid anthocyanin scent phenylpropanoid terpenoid Plant ecology Environmental effects of industries and plants Hao Zhang verfasserin aut Xianqin Qiu verfasserin aut Hongying Jian verfasserin aut Qigang Wang verfasserin aut Ningning Zhou verfasserin aut Yu Ye verfasserin aut Jun Lu verfasserin aut Huijun Yan verfasserin aut Kaixue Tang verfasserin aut In Ornamental Plant Research Maximum Academic Press, 2024 1(2021), 1, Seite 10 (DE-627)1882454766 (DE-600)3180766-5 27692094 nnns volume:1 year:2021 number:1 pages:10 https://doi.org/10.48130/OPR-2021-0005 kostenfrei https://doaj.org/article/43e438b26ce9446e9912a857f389a56e kostenfrei https://www.maxapress.com/article/doi/10.48130/OPR-2021-0005 kostenfrei https://doaj.org/toc/2769-2094 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 1 2021 1 10 |
allfieldsGer |
10.48130/OPR-2021-0005 doi (DE-627)DOAJ091699169 (DE-599)DOAJ43e438b26ce9446e9912a857f389a56e DE-627 ger DE-627 rakwb eng QK900-989 TD194-195 Dedang Feng verfasserin aut Comparative transcriptomic and metabonomic analysis revealed the relationships between biosynthesis of volatiles and flavonoid metabolites in Rosa rugosa 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Rosa rugosa is not only cultivated as a landscaping plant, but also used in cosmetics, the medical and food industries. However, little information is currently available on the gene regulatory networks involved in its scent and color biosynthesis and metabolism. In this study, R. rugosa Thunb. f. rosea Rehd with red petals (RR) and its white petal variant (WR), were used to study the molecular mechanisms in flower color and scent. Sixty-five differential flavonoid metabolites and 15 volatiles were found to have significant differences between RR and WR. Correspondingly, the key regulators (MYB-bHLH-WD40) of anthocyanin synthesis pathway and their structural genes involved in flavonoid biosynthesis, benzenoid/phenylpropanoid biosynthesis, terpenoid biosynthesis pathways were also found to be differentially expressed by comparative transcriptome. Further, qPCR permitted the identification of some transcripts encoding proteins that were putatively associated with scent and color biosynthesis in roses. Particularly, the results showed that the ACT gene (encoding CoA geraniol/citronellol acetyltransferase, GeneID: 112190420), which expressed lower in WR, was involved in three pathways: flavonoid biosynthesis, phenylpropanoid biosynthesis and terpenoid biosynthesis, however, GT5 (anthocyanin glycosylation gene, GeneID:112186660), expressed higher in WR, was involved in both flavonoid and phenylpropanoid biosynthesis pathways. These results suggested that ACT and GT5 might play important roles in regulating the relationship of color pigmentation and volatile emission. rosa rugosa flavonoid anthocyanin scent phenylpropanoid terpenoid Plant ecology Environmental effects of industries and plants Hao Zhang verfasserin aut Xianqin Qiu verfasserin aut Hongying Jian verfasserin aut Qigang Wang verfasserin aut Ningning Zhou verfasserin aut Yu Ye verfasserin aut Jun Lu verfasserin aut Huijun Yan verfasserin aut Kaixue Tang verfasserin aut In Ornamental Plant Research Maximum Academic Press, 2024 1(2021), 1, Seite 10 (DE-627)1882454766 (DE-600)3180766-5 27692094 nnns volume:1 year:2021 number:1 pages:10 https://doi.org/10.48130/OPR-2021-0005 kostenfrei https://doaj.org/article/43e438b26ce9446e9912a857f389a56e kostenfrei https://www.maxapress.com/article/doi/10.48130/OPR-2021-0005 kostenfrei https://doaj.org/toc/2769-2094 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 1 2021 1 10 |
allfieldsSound |
10.48130/OPR-2021-0005 doi (DE-627)DOAJ091699169 (DE-599)DOAJ43e438b26ce9446e9912a857f389a56e DE-627 ger DE-627 rakwb eng QK900-989 TD194-195 Dedang Feng verfasserin aut Comparative transcriptomic and metabonomic analysis revealed the relationships between biosynthesis of volatiles and flavonoid metabolites in Rosa rugosa 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Rosa rugosa is not only cultivated as a landscaping plant, but also used in cosmetics, the medical and food industries. However, little information is currently available on the gene regulatory networks involved in its scent and color biosynthesis and metabolism. In this study, R. rugosa Thunb. f. rosea Rehd with red petals (RR) and its white petal variant (WR), were used to study the molecular mechanisms in flower color and scent. Sixty-five differential flavonoid metabolites and 15 volatiles were found to have significant differences between RR and WR. Correspondingly, the key regulators (MYB-bHLH-WD40) of anthocyanin synthesis pathway and their structural genes involved in flavonoid biosynthesis, benzenoid/phenylpropanoid biosynthesis, terpenoid biosynthesis pathways were also found to be differentially expressed by comparative transcriptome. Further, qPCR permitted the identification of some transcripts encoding proteins that were putatively associated with scent and color biosynthesis in roses. Particularly, the results showed that the ACT gene (encoding CoA geraniol/citronellol acetyltransferase, GeneID: 112190420), which expressed lower in WR, was involved in three pathways: flavonoid biosynthesis, phenylpropanoid biosynthesis and terpenoid biosynthesis, however, GT5 (anthocyanin glycosylation gene, GeneID:112186660), expressed higher in WR, was involved in both flavonoid and phenylpropanoid biosynthesis pathways. These results suggested that ACT and GT5 might play important roles in regulating the relationship of color pigmentation and volatile emission. rosa rugosa flavonoid anthocyanin scent phenylpropanoid terpenoid Plant ecology Environmental effects of industries and plants Hao Zhang verfasserin aut Xianqin Qiu verfasserin aut Hongying Jian verfasserin aut Qigang Wang verfasserin aut Ningning Zhou verfasserin aut Yu Ye verfasserin aut Jun Lu verfasserin aut Huijun Yan verfasserin aut Kaixue Tang verfasserin aut In Ornamental Plant Research Maximum Academic Press, 2024 1(2021), 1, Seite 10 (DE-627)1882454766 (DE-600)3180766-5 27692094 nnns volume:1 year:2021 number:1 pages:10 https://doi.org/10.48130/OPR-2021-0005 kostenfrei https://doaj.org/article/43e438b26ce9446e9912a857f389a56e kostenfrei https://www.maxapress.com/article/doi/10.48130/OPR-2021-0005 kostenfrei https://doaj.org/toc/2769-2094 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 1 2021 1 10 |
language |
English |
source |
In Ornamental Plant Research 1(2021), 1, Seite 10 volume:1 year:2021 number:1 pages:10 |
sourceStr |
In Ornamental Plant Research 1(2021), 1, Seite 10 volume:1 year:2021 number:1 pages:10 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
rosa rugosa flavonoid anthocyanin scent phenylpropanoid terpenoid Plant ecology Environmental effects of industries and plants |
isfreeaccess_bool |
true |
container_title |
Ornamental Plant Research |
authorswithroles_txt_mv |
Dedang Feng @@aut@@ Hao Zhang @@aut@@ Xianqin Qiu @@aut@@ Hongying Jian @@aut@@ Qigang Wang @@aut@@ Ningning Zhou @@aut@@ Yu Ye @@aut@@ Jun Lu @@aut@@ Huijun Yan @@aut@@ Kaixue Tang @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
1882454766 |
id |
DOAJ091699169 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ091699169</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412101750.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240412s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.48130/OPR-2021-0005</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ091699169</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ43e438b26ce9446e9912a857f389a56e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QK900-989</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TD194-195</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Dedang Feng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Comparative transcriptomic and metabonomic analysis revealed the relationships between biosynthesis of volatiles and flavonoid metabolites in Rosa rugosa</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Rosa rugosa is not only cultivated as a landscaping plant, but also used in cosmetics, the medical and food industries. However, little information is currently available on the gene regulatory networks involved in its scent and color biosynthesis and metabolism. In this study, R. rugosa Thunb. f. rosea Rehd with red petals (RR) and its white petal variant (WR), were used to study the molecular mechanisms in flower color and scent. Sixty-five differential flavonoid metabolites and 15 volatiles were found to have significant differences between RR and WR. Correspondingly, the key regulators (MYB-bHLH-WD40) of anthocyanin synthesis pathway and their structural genes involved in flavonoid biosynthesis, benzenoid/phenylpropanoid biosynthesis, terpenoid biosynthesis pathways were also found to be differentially expressed by comparative transcriptome. Further, qPCR permitted the identification of some transcripts encoding proteins that were putatively associated with scent and color biosynthesis in roses. Particularly, the results showed that the ACT gene (encoding CoA geraniol/citronellol acetyltransferase, GeneID: 112190420), which expressed lower in WR, was involved in three pathways: flavonoid biosynthesis, phenylpropanoid biosynthesis and terpenoid biosynthesis, however, GT5 (anthocyanin glycosylation gene, GeneID:112186660), expressed higher in WR, was involved in both flavonoid and phenylpropanoid biosynthesis pathways. These results suggested that ACT and GT5 might play important roles in regulating the relationship of color pigmentation and volatile emission.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">rosa rugosa</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">flavonoid</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">anthocyanin</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">scent</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">phenylpropanoid</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">terpenoid</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Plant ecology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental effects of industries and plants</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hao Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xianqin Qiu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hongying Jian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qigang Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ningning Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yu Ye</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jun Lu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Huijun Yan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kaixue Tang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Ornamental Plant Research</subfield><subfield code="d">Maximum Academic Press, 2024</subfield><subfield code="g">1(2021), 1, Seite 10</subfield><subfield code="w">(DE-627)1882454766</subfield><subfield code="w">(DE-600)3180766-5</subfield><subfield code="x">27692094</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:1</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.48130/OPR-2021-0005</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/43e438b26ce9446e9912a857f389a56e</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.maxapress.com/article/doi/10.48130/OPR-2021-0005</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2769-2094</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">1</subfield><subfield code="j">2021</subfield><subfield code="e">1</subfield><subfield code="h">10</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Dedang Feng |
spellingShingle |
Dedang Feng misc QK900-989 misc TD194-195 misc rosa rugosa misc flavonoid misc anthocyanin misc scent misc phenylpropanoid misc terpenoid misc Plant ecology misc Environmental effects of industries and plants Comparative transcriptomic and metabonomic analysis revealed the relationships between biosynthesis of volatiles and flavonoid metabolites in Rosa rugosa |
authorStr |
Dedang Feng |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1882454766 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QK900-989 |
illustrated |
Not Illustrated |
issn |
27692094 |
topic_title |
QK900-989 TD194-195 Comparative transcriptomic and metabonomic analysis revealed the relationships between biosynthesis of volatiles and flavonoid metabolites in Rosa rugosa rosa rugosa flavonoid anthocyanin scent phenylpropanoid terpenoid |
topic |
misc QK900-989 misc TD194-195 misc rosa rugosa misc flavonoid misc anthocyanin misc scent misc phenylpropanoid misc terpenoid misc Plant ecology misc Environmental effects of industries and plants |
topic_unstemmed |
misc QK900-989 misc TD194-195 misc rosa rugosa misc flavonoid misc anthocyanin misc scent misc phenylpropanoid misc terpenoid misc Plant ecology misc Environmental effects of industries and plants |
topic_browse |
misc QK900-989 misc TD194-195 misc rosa rugosa misc flavonoid misc anthocyanin misc scent misc phenylpropanoid misc terpenoid misc Plant ecology misc Environmental effects of industries and plants |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Ornamental Plant Research |
hierarchy_parent_id |
1882454766 |
hierarchy_top_title |
Ornamental Plant Research |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1882454766 (DE-600)3180766-5 |
title |
Comparative transcriptomic and metabonomic analysis revealed the relationships between biosynthesis of volatiles and flavonoid metabolites in Rosa rugosa |
ctrlnum |
(DE-627)DOAJ091699169 (DE-599)DOAJ43e438b26ce9446e9912a857f389a56e |
title_full |
Comparative transcriptomic and metabonomic analysis revealed the relationships between biosynthesis of volatiles and flavonoid metabolites in Rosa rugosa |
author_sort |
Dedang Feng |
journal |
Ornamental Plant Research |
journalStr |
Ornamental Plant Research |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
10 |
author_browse |
Dedang Feng Hao Zhang Xianqin Qiu Hongying Jian Qigang Wang Ningning Zhou Yu Ye Jun Lu Huijun Yan Kaixue Tang |
container_volume |
1 |
class |
QK900-989 TD194-195 |
format_se |
Elektronische Aufsätze |
author-letter |
Dedang Feng |
doi_str_mv |
10.48130/OPR-2021-0005 |
author2-role |
verfasserin |
title_sort |
comparative transcriptomic and metabonomic analysis revealed the relationships between biosynthesis of volatiles and flavonoid metabolites in rosa rugosa |
callnumber |
QK900-989 |
title_auth |
Comparative transcriptomic and metabonomic analysis revealed the relationships between biosynthesis of volatiles and flavonoid metabolites in Rosa rugosa |
abstract |
Rosa rugosa is not only cultivated as a landscaping plant, but also used in cosmetics, the medical and food industries. However, little information is currently available on the gene regulatory networks involved in its scent and color biosynthesis and metabolism. In this study, R. rugosa Thunb. f. rosea Rehd with red petals (RR) and its white petal variant (WR), were used to study the molecular mechanisms in flower color and scent. Sixty-five differential flavonoid metabolites and 15 volatiles were found to have significant differences between RR and WR. Correspondingly, the key regulators (MYB-bHLH-WD40) of anthocyanin synthesis pathway and their structural genes involved in flavonoid biosynthesis, benzenoid/phenylpropanoid biosynthesis, terpenoid biosynthesis pathways were also found to be differentially expressed by comparative transcriptome. Further, qPCR permitted the identification of some transcripts encoding proteins that were putatively associated with scent and color biosynthesis in roses. Particularly, the results showed that the ACT gene (encoding CoA geraniol/citronellol acetyltransferase, GeneID: 112190420), which expressed lower in WR, was involved in three pathways: flavonoid biosynthesis, phenylpropanoid biosynthesis and terpenoid biosynthesis, however, GT5 (anthocyanin glycosylation gene, GeneID:112186660), expressed higher in WR, was involved in both flavonoid and phenylpropanoid biosynthesis pathways. These results suggested that ACT and GT5 might play important roles in regulating the relationship of color pigmentation and volatile emission. |
abstractGer |
Rosa rugosa is not only cultivated as a landscaping plant, but also used in cosmetics, the medical and food industries. However, little information is currently available on the gene regulatory networks involved in its scent and color biosynthesis and metabolism. In this study, R. rugosa Thunb. f. rosea Rehd with red petals (RR) and its white petal variant (WR), were used to study the molecular mechanisms in flower color and scent. Sixty-five differential flavonoid metabolites and 15 volatiles were found to have significant differences between RR and WR. Correspondingly, the key regulators (MYB-bHLH-WD40) of anthocyanin synthesis pathway and their structural genes involved in flavonoid biosynthesis, benzenoid/phenylpropanoid biosynthesis, terpenoid biosynthesis pathways were also found to be differentially expressed by comparative transcriptome. Further, qPCR permitted the identification of some transcripts encoding proteins that were putatively associated with scent and color biosynthesis in roses. Particularly, the results showed that the ACT gene (encoding CoA geraniol/citronellol acetyltransferase, GeneID: 112190420), which expressed lower in WR, was involved in three pathways: flavonoid biosynthesis, phenylpropanoid biosynthesis and terpenoid biosynthesis, however, GT5 (anthocyanin glycosylation gene, GeneID:112186660), expressed higher in WR, was involved in both flavonoid and phenylpropanoid biosynthesis pathways. These results suggested that ACT and GT5 might play important roles in regulating the relationship of color pigmentation and volatile emission. |
abstract_unstemmed |
Rosa rugosa is not only cultivated as a landscaping plant, but also used in cosmetics, the medical and food industries. However, little information is currently available on the gene regulatory networks involved in its scent and color biosynthesis and metabolism. In this study, R. rugosa Thunb. f. rosea Rehd with red petals (RR) and its white petal variant (WR), were used to study the molecular mechanisms in flower color and scent. Sixty-five differential flavonoid metabolites and 15 volatiles were found to have significant differences between RR and WR. Correspondingly, the key regulators (MYB-bHLH-WD40) of anthocyanin synthesis pathway and their structural genes involved in flavonoid biosynthesis, benzenoid/phenylpropanoid biosynthesis, terpenoid biosynthesis pathways were also found to be differentially expressed by comparative transcriptome. Further, qPCR permitted the identification of some transcripts encoding proteins that were putatively associated with scent and color biosynthesis in roses. Particularly, the results showed that the ACT gene (encoding CoA geraniol/citronellol acetyltransferase, GeneID: 112190420), which expressed lower in WR, was involved in three pathways: flavonoid biosynthesis, phenylpropanoid biosynthesis and terpenoid biosynthesis, however, GT5 (anthocyanin glycosylation gene, GeneID:112186660), expressed higher in WR, was involved in both flavonoid and phenylpropanoid biosynthesis pathways. These results suggested that ACT and GT5 might play important roles in regulating the relationship of color pigmentation and volatile emission. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Comparative transcriptomic and metabonomic analysis revealed the relationships between biosynthesis of volatiles and flavonoid metabolites in Rosa rugosa |
url |
https://doi.org/10.48130/OPR-2021-0005 https://doaj.org/article/43e438b26ce9446e9912a857f389a56e https://www.maxapress.com/article/doi/10.48130/OPR-2021-0005 https://doaj.org/toc/2769-2094 |
remote_bool |
true |
author2 |
Hao Zhang Xianqin Qiu Hongying Jian Qigang Wang Ningning Zhou Yu Ye Jun Lu Huijun Yan Kaixue Tang |
author2Str |
Hao Zhang Xianqin Qiu Hongying Jian Qigang Wang Ningning Zhou Yu Ye Jun Lu Huijun Yan Kaixue Tang |
ppnlink |
1882454766 |
callnumber-subject |
QK - Botany |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.48130/OPR-2021-0005 |
callnumber-a |
QK900-989 |
up_date |
2024-07-03T21:44:49.813Z |
_version_ |
1803595902945853440 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ091699169</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412101750.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240412s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.48130/OPR-2021-0005</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ091699169</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ43e438b26ce9446e9912a857f389a56e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QK900-989</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TD194-195</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Dedang Feng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Comparative transcriptomic and metabonomic analysis revealed the relationships between biosynthesis of volatiles and flavonoid metabolites in Rosa rugosa</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Rosa rugosa is not only cultivated as a landscaping plant, but also used in cosmetics, the medical and food industries. However, little information is currently available on the gene regulatory networks involved in its scent and color biosynthesis and metabolism. In this study, R. rugosa Thunb. f. rosea Rehd with red petals (RR) and its white petal variant (WR), were used to study the molecular mechanisms in flower color and scent. Sixty-five differential flavonoid metabolites and 15 volatiles were found to have significant differences between RR and WR. Correspondingly, the key regulators (MYB-bHLH-WD40) of anthocyanin synthesis pathway and their structural genes involved in flavonoid biosynthesis, benzenoid/phenylpropanoid biosynthesis, terpenoid biosynthesis pathways were also found to be differentially expressed by comparative transcriptome. Further, qPCR permitted the identification of some transcripts encoding proteins that were putatively associated with scent and color biosynthesis in roses. Particularly, the results showed that the ACT gene (encoding CoA geraniol/citronellol acetyltransferase, GeneID: 112190420), which expressed lower in WR, was involved in three pathways: flavonoid biosynthesis, phenylpropanoid biosynthesis and terpenoid biosynthesis, however, GT5 (anthocyanin glycosylation gene, GeneID:112186660), expressed higher in WR, was involved in both flavonoid and phenylpropanoid biosynthesis pathways. These results suggested that ACT and GT5 might play important roles in regulating the relationship of color pigmentation and volatile emission.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">rosa rugosa</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">flavonoid</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">anthocyanin</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">scent</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">phenylpropanoid</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">terpenoid</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Plant ecology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental effects of industries and plants</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hao Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xianqin Qiu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hongying Jian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qigang Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ningning Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yu Ye</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jun Lu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Huijun Yan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kaixue Tang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Ornamental Plant Research</subfield><subfield code="d">Maximum Academic Press, 2024</subfield><subfield code="g">1(2021), 1, Seite 10</subfield><subfield code="w">(DE-627)1882454766</subfield><subfield code="w">(DE-600)3180766-5</subfield><subfield code="x">27692094</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:1</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.48130/OPR-2021-0005</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/43e438b26ce9446e9912a857f389a56e</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.maxapress.com/article/doi/10.48130/OPR-2021-0005</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2769-2094</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">1</subfield><subfield code="j">2021</subfield><subfield code="e">1</subfield><subfield code="h">10</subfield></datafield></record></collection>
|
score |
7.401598 |