Hunger games search optimization with deep learning model for sustainable supply chain management
Abstract The supply chain network is one of the most important areas of focus in the majority of business circumstances. Blockchain technology is a feasible choice for secure information sharing in a supply chain network. Despite the fact that maintaining security at all levels of the blockchain is...
Ausführliche Beschreibung
Autor*in: |
Zheng Xu [verfasserIn] Deepak Kumar Jain [verfasserIn] S. Neelakandan [verfasserIn] Jemal Abawajy [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Discover Internet of Things - Springer, 2021, 3(2023), 1, Seite 17 |
---|---|
Übergeordnetes Werk: |
volume:3 ; year:2023 ; number:1 ; pages:17 |
Links: |
---|
DOI / URN: |
10.1007/s43926-023-00040-7 |
---|
Katalog-ID: |
DOAJ091834910 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ091834910 | ||
003 | DE-627 | ||
005 | 20240412215956.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240412s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s43926-023-00040-7 |2 doi | |
035 | |a (DE-627)DOAJ091834910 | ||
035 | |a (DE-599)DOAJf84a92d14fae4374b2ada5cf56df5f36 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK7885-7895 | |
050 | 0 | |a QA76.75-76.765 | |
100 | 0 | |a Zheng Xu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Hunger games search optimization with deep learning model for sustainable supply chain management |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract The supply chain network is one of the most important areas of focus in the majority of business circumstances. Blockchain technology is a feasible choice for secure information sharing in a supply chain network. Despite the fact that maintaining security at all levels of the blockchain is difficult, cryptographic methods are commonly used in existing works. Effective supply chain management (SCM) offers various benefits to organizations, such as enhanced customer satisfaction, increased operational efficiency, competitive advantage, and cost reduction. Potential SCM for agricultural and food supply chains needs distributors, coordination and collaboration among farmers, retailers, and stakeholders. The use of technology like Block Chain (BC), sensors, and data analytics, can boost traceability and visibility, decrease waste, and ensure safety and quality throughout the supply chain. Therefore, this study develops a Hunger Games Search Optimization with Deep Learning Model for Sustainable agricultural and food Supply Chain Management (HGSODL-ASCM) technique. The fundamental goal of the HGSODL-ASCM technique is to improve decision-making processes for agricultural and food commodity production and storage in order to optimise revenue. In the provided HGSODL-ASCM technique, a bidirectional long short-term memory (Bi-LSTM) model is built to determine the amount of productivity and storage required to maximise profit. In order to boost the performance of the Bi-LSTM classification process, the HGSO algorithm has been utilized in this work. The presented HGSODL-ASCM technique can independently achieve the SCM policies via interaction with complicated and adaptive environments. A brief set of simulations were performed to ensure the improved performance of the HGSODL-ASCM technique. The simulation results demonstrated how superior the HGSODL-ASCM method is to other methods already in use. | ||
650 | 4 | |a Supply chain management | |
650 | 4 | |a Agricultural and food supply | |
650 | 4 | |a Deep learning | |
650 | 4 | |a Metaheuristics | |
650 | 4 | |a Data analytics | |
650 | 4 | |a Sustainability | |
653 | 0 | |a Computer engineering. Computer hardware | |
653 | 0 | |a Computer software | |
700 | 0 | |a Deepak Kumar Jain |e verfasserin |4 aut | |
700 | 0 | |a S. Neelakandan |e verfasserin |4 aut | |
700 | 0 | |a Jemal Abawajy |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Discover Internet of Things |d Springer, 2021 |g 3(2023), 1, Seite 17 |w (DE-627)1750132583 |x 27307239 |7 nnns |
773 | 1 | 8 | |g volume:3 |g year:2023 |g number:1 |g pages:17 |
856 | 4 | 0 | |u https://doi.org/10.1007/s43926-023-00040-7 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/f84a92d14fae4374b2ada5cf56df5f36 |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1007/s43926-023-00040-7 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2730-7239 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 3 |j 2023 |e 1 |h 17 |
author_variant |
z x zx d k j dkj s n sn j a ja |
---|---|
matchkey_str |
article:27307239:2023----::ugraesacotmztowtdelannmdlossanb |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
TK |
publishDate |
2023 |
allfields |
10.1007/s43926-023-00040-7 doi (DE-627)DOAJ091834910 (DE-599)DOAJf84a92d14fae4374b2ada5cf56df5f36 DE-627 ger DE-627 rakwb eng TK7885-7895 QA76.75-76.765 Zheng Xu verfasserin aut Hunger games search optimization with deep learning model for sustainable supply chain management 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The supply chain network is one of the most important areas of focus in the majority of business circumstances. Blockchain technology is a feasible choice for secure information sharing in a supply chain network. Despite the fact that maintaining security at all levels of the blockchain is difficult, cryptographic methods are commonly used in existing works. Effective supply chain management (SCM) offers various benefits to organizations, such as enhanced customer satisfaction, increased operational efficiency, competitive advantage, and cost reduction. Potential SCM for agricultural and food supply chains needs distributors, coordination and collaboration among farmers, retailers, and stakeholders. The use of technology like Block Chain (BC), sensors, and data analytics, can boost traceability and visibility, decrease waste, and ensure safety and quality throughout the supply chain. Therefore, this study develops a Hunger Games Search Optimization with Deep Learning Model for Sustainable agricultural and food Supply Chain Management (HGSODL-ASCM) technique. The fundamental goal of the HGSODL-ASCM technique is to improve decision-making processes for agricultural and food commodity production and storage in order to optimise revenue. In the provided HGSODL-ASCM technique, a bidirectional long short-term memory (Bi-LSTM) model is built to determine the amount of productivity and storage required to maximise profit. In order to boost the performance of the Bi-LSTM classification process, the HGSO algorithm has been utilized in this work. The presented HGSODL-ASCM technique can independently achieve the SCM policies via interaction with complicated and adaptive environments. A brief set of simulations were performed to ensure the improved performance of the HGSODL-ASCM technique. The simulation results demonstrated how superior the HGSODL-ASCM method is to other methods already in use. Supply chain management Agricultural and food supply Deep learning Metaheuristics Data analytics Sustainability Computer engineering. Computer hardware Computer software Deepak Kumar Jain verfasserin aut S. Neelakandan verfasserin aut Jemal Abawajy verfasserin aut In Discover Internet of Things Springer, 2021 3(2023), 1, Seite 17 (DE-627)1750132583 27307239 nnns volume:3 year:2023 number:1 pages:17 https://doi.org/10.1007/s43926-023-00040-7 kostenfrei https://doaj.org/article/f84a92d14fae4374b2ada5cf56df5f36 kostenfrei https://doi.org/10.1007/s43926-023-00040-7 kostenfrei https://doaj.org/toc/2730-7239 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 3 2023 1 17 |
spelling |
10.1007/s43926-023-00040-7 doi (DE-627)DOAJ091834910 (DE-599)DOAJf84a92d14fae4374b2ada5cf56df5f36 DE-627 ger DE-627 rakwb eng TK7885-7895 QA76.75-76.765 Zheng Xu verfasserin aut Hunger games search optimization with deep learning model for sustainable supply chain management 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The supply chain network is one of the most important areas of focus in the majority of business circumstances. Blockchain technology is a feasible choice for secure information sharing in a supply chain network. Despite the fact that maintaining security at all levels of the blockchain is difficult, cryptographic methods are commonly used in existing works. Effective supply chain management (SCM) offers various benefits to organizations, such as enhanced customer satisfaction, increased operational efficiency, competitive advantage, and cost reduction. Potential SCM for agricultural and food supply chains needs distributors, coordination and collaboration among farmers, retailers, and stakeholders. The use of technology like Block Chain (BC), sensors, and data analytics, can boost traceability and visibility, decrease waste, and ensure safety and quality throughout the supply chain. Therefore, this study develops a Hunger Games Search Optimization with Deep Learning Model for Sustainable agricultural and food Supply Chain Management (HGSODL-ASCM) technique. The fundamental goal of the HGSODL-ASCM technique is to improve decision-making processes for agricultural and food commodity production and storage in order to optimise revenue. In the provided HGSODL-ASCM technique, a bidirectional long short-term memory (Bi-LSTM) model is built to determine the amount of productivity and storage required to maximise profit. In order to boost the performance of the Bi-LSTM classification process, the HGSO algorithm has been utilized in this work. The presented HGSODL-ASCM technique can independently achieve the SCM policies via interaction with complicated and adaptive environments. A brief set of simulations were performed to ensure the improved performance of the HGSODL-ASCM technique. The simulation results demonstrated how superior the HGSODL-ASCM method is to other methods already in use. Supply chain management Agricultural and food supply Deep learning Metaheuristics Data analytics Sustainability Computer engineering. Computer hardware Computer software Deepak Kumar Jain verfasserin aut S. Neelakandan verfasserin aut Jemal Abawajy verfasserin aut In Discover Internet of Things Springer, 2021 3(2023), 1, Seite 17 (DE-627)1750132583 27307239 nnns volume:3 year:2023 number:1 pages:17 https://doi.org/10.1007/s43926-023-00040-7 kostenfrei https://doaj.org/article/f84a92d14fae4374b2ada5cf56df5f36 kostenfrei https://doi.org/10.1007/s43926-023-00040-7 kostenfrei https://doaj.org/toc/2730-7239 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 3 2023 1 17 |
allfields_unstemmed |
10.1007/s43926-023-00040-7 doi (DE-627)DOAJ091834910 (DE-599)DOAJf84a92d14fae4374b2ada5cf56df5f36 DE-627 ger DE-627 rakwb eng TK7885-7895 QA76.75-76.765 Zheng Xu verfasserin aut Hunger games search optimization with deep learning model for sustainable supply chain management 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The supply chain network is one of the most important areas of focus in the majority of business circumstances. Blockchain technology is a feasible choice for secure information sharing in a supply chain network. Despite the fact that maintaining security at all levels of the blockchain is difficult, cryptographic methods are commonly used in existing works. Effective supply chain management (SCM) offers various benefits to organizations, such as enhanced customer satisfaction, increased operational efficiency, competitive advantage, and cost reduction. Potential SCM for agricultural and food supply chains needs distributors, coordination and collaboration among farmers, retailers, and stakeholders. The use of technology like Block Chain (BC), sensors, and data analytics, can boost traceability and visibility, decrease waste, and ensure safety and quality throughout the supply chain. Therefore, this study develops a Hunger Games Search Optimization with Deep Learning Model for Sustainable agricultural and food Supply Chain Management (HGSODL-ASCM) technique. The fundamental goal of the HGSODL-ASCM technique is to improve decision-making processes for agricultural and food commodity production and storage in order to optimise revenue. In the provided HGSODL-ASCM technique, a bidirectional long short-term memory (Bi-LSTM) model is built to determine the amount of productivity and storage required to maximise profit. In order to boost the performance of the Bi-LSTM classification process, the HGSO algorithm has been utilized in this work. The presented HGSODL-ASCM technique can independently achieve the SCM policies via interaction with complicated and adaptive environments. A brief set of simulations were performed to ensure the improved performance of the HGSODL-ASCM technique. The simulation results demonstrated how superior the HGSODL-ASCM method is to other methods already in use. Supply chain management Agricultural and food supply Deep learning Metaheuristics Data analytics Sustainability Computer engineering. Computer hardware Computer software Deepak Kumar Jain verfasserin aut S. Neelakandan verfasserin aut Jemal Abawajy verfasserin aut In Discover Internet of Things Springer, 2021 3(2023), 1, Seite 17 (DE-627)1750132583 27307239 nnns volume:3 year:2023 number:1 pages:17 https://doi.org/10.1007/s43926-023-00040-7 kostenfrei https://doaj.org/article/f84a92d14fae4374b2ada5cf56df5f36 kostenfrei https://doi.org/10.1007/s43926-023-00040-7 kostenfrei https://doaj.org/toc/2730-7239 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 3 2023 1 17 |
allfieldsGer |
10.1007/s43926-023-00040-7 doi (DE-627)DOAJ091834910 (DE-599)DOAJf84a92d14fae4374b2ada5cf56df5f36 DE-627 ger DE-627 rakwb eng TK7885-7895 QA76.75-76.765 Zheng Xu verfasserin aut Hunger games search optimization with deep learning model for sustainable supply chain management 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The supply chain network is one of the most important areas of focus in the majority of business circumstances. Blockchain technology is a feasible choice for secure information sharing in a supply chain network. Despite the fact that maintaining security at all levels of the blockchain is difficult, cryptographic methods are commonly used in existing works. Effective supply chain management (SCM) offers various benefits to organizations, such as enhanced customer satisfaction, increased operational efficiency, competitive advantage, and cost reduction. Potential SCM for agricultural and food supply chains needs distributors, coordination and collaboration among farmers, retailers, and stakeholders. The use of technology like Block Chain (BC), sensors, and data analytics, can boost traceability and visibility, decrease waste, and ensure safety and quality throughout the supply chain. Therefore, this study develops a Hunger Games Search Optimization with Deep Learning Model for Sustainable agricultural and food Supply Chain Management (HGSODL-ASCM) technique. The fundamental goal of the HGSODL-ASCM technique is to improve decision-making processes for agricultural and food commodity production and storage in order to optimise revenue. In the provided HGSODL-ASCM technique, a bidirectional long short-term memory (Bi-LSTM) model is built to determine the amount of productivity and storage required to maximise profit. In order to boost the performance of the Bi-LSTM classification process, the HGSO algorithm has been utilized in this work. The presented HGSODL-ASCM technique can independently achieve the SCM policies via interaction with complicated and adaptive environments. A brief set of simulations were performed to ensure the improved performance of the HGSODL-ASCM technique. The simulation results demonstrated how superior the HGSODL-ASCM method is to other methods already in use. Supply chain management Agricultural and food supply Deep learning Metaheuristics Data analytics Sustainability Computer engineering. Computer hardware Computer software Deepak Kumar Jain verfasserin aut S. Neelakandan verfasserin aut Jemal Abawajy verfasserin aut In Discover Internet of Things Springer, 2021 3(2023), 1, Seite 17 (DE-627)1750132583 27307239 nnns volume:3 year:2023 number:1 pages:17 https://doi.org/10.1007/s43926-023-00040-7 kostenfrei https://doaj.org/article/f84a92d14fae4374b2ada5cf56df5f36 kostenfrei https://doi.org/10.1007/s43926-023-00040-7 kostenfrei https://doaj.org/toc/2730-7239 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 3 2023 1 17 |
allfieldsSound |
10.1007/s43926-023-00040-7 doi (DE-627)DOAJ091834910 (DE-599)DOAJf84a92d14fae4374b2ada5cf56df5f36 DE-627 ger DE-627 rakwb eng TK7885-7895 QA76.75-76.765 Zheng Xu verfasserin aut Hunger games search optimization with deep learning model for sustainable supply chain management 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The supply chain network is one of the most important areas of focus in the majority of business circumstances. Blockchain technology is a feasible choice for secure information sharing in a supply chain network. Despite the fact that maintaining security at all levels of the blockchain is difficult, cryptographic methods are commonly used in existing works. Effective supply chain management (SCM) offers various benefits to organizations, such as enhanced customer satisfaction, increased operational efficiency, competitive advantage, and cost reduction. Potential SCM for agricultural and food supply chains needs distributors, coordination and collaboration among farmers, retailers, and stakeholders. The use of technology like Block Chain (BC), sensors, and data analytics, can boost traceability and visibility, decrease waste, and ensure safety and quality throughout the supply chain. Therefore, this study develops a Hunger Games Search Optimization with Deep Learning Model for Sustainable agricultural and food Supply Chain Management (HGSODL-ASCM) technique. The fundamental goal of the HGSODL-ASCM technique is to improve decision-making processes for agricultural and food commodity production and storage in order to optimise revenue. In the provided HGSODL-ASCM technique, a bidirectional long short-term memory (Bi-LSTM) model is built to determine the amount of productivity and storage required to maximise profit. In order to boost the performance of the Bi-LSTM classification process, the HGSO algorithm has been utilized in this work. The presented HGSODL-ASCM technique can independently achieve the SCM policies via interaction with complicated and adaptive environments. A brief set of simulations were performed to ensure the improved performance of the HGSODL-ASCM technique. The simulation results demonstrated how superior the HGSODL-ASCM method is to other methods already in use. Supply chain management Agricultural and food supply Deep learning Metaheuristics Data analytics Sustainability Computer engineering. Computer hardware Computer software Deepak Kumar Jain verfasserin aut S. Neelakandan verfasserin aut Jemal Abawajy verfasserin aut In Discover Internet of Things Springer, 2021 3(2023), 1, Seite 17 (DE-627)1750132583 27307239 nnns volume:3 year:2023 number:1 pages:17 https://doi.org/10.1007/s43926-023-00040-7 kostenfrei https://doaj.org/article/f84a92d14fae4374b2ada5cf56df5f36 kostenfrei https://doi.org/10.1007/s43926-023-00040-7 kostenfrei https://doaj.org/toc/2730-7239 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 3 2023 1 17 |
language |
English |
source |
In Discover Internet of Things 3(2023), 1, Seite 17 volume:3 year:2023 number:1 pages:17 |
sourceStr |
In Discover Internet of Things 3(2023), 1, Seite 17 volume:3 year:2023 number:1 pages:17 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Supply chain management Agricultural and food supply Deep learning Metaheuristics Data analytics Sustainability Computer engineering. Computer hardware Computer software |
isfreeaccess_bool |
true |
container_title |
Discover Internet of Things |
authorswithroles_txt_mv |
Zheng Xu @@aut@@ Deepak Kumar Jain @@aut@@ S. Neelakandan @@aut@@ Jemal Abawajy @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
1750132583 |
id |
DOAJ091834910 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ091834910</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412215956.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240412s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s43926-023-00040-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ091834910</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJf84a92d14fae4374b2ada5cf56df5f36</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK7885-7895</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA76.75-76.765</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Zheng Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hunger games search optimization with deep learning model for sustainable supply chain management</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The supply chain network is one of the most important areas of focus in the majority of business circumstances. Blockchain technology is a feasible choice for secure information sharing in a supply chain network. Despite the fact that maintaining security at all levels of the blockchain is difficult, cryptographic methods are commonly used in existing works. Effective supply chain management (SCM) offers various benefits to organizations, such as enhanced customer satisfaction, increased operational efficiency, competitive advantage, and cost reduction. Potential SCM for agricultural and food supply chains needs distributors, coordination and collaboration among farmers, retailers, and stakeholders. The use of technology like Block Chain (BC), sensors, and data analytics, can boost traceability and visibility, decrease waste, and ensure safety and quality throughout the supply chain. Therefore, this study develops a Hunger Games Search Optimization with Deep Learning Model for Sustainable agricultural and food Supply Chain Management (HGSODL-ASCM) technique. The fundamental goal of the HGSODL-ASCM technique is to improve decision-making processes for agricultural and food commodity production and storage in order to optimise revenue. In the provided HGSODL-ASCM technique, a bidirectional long short-term memory (Bi-LSTM) model is built to determine the amount of productivity and storage required to maximise profit. In order to boost the performance of the Bi-LSTM classification process, the HGSO algorithm has been utilized in this work. The presented HGSODL-ASCM technique can independently achieve the SCM policies via interaction with complicated and adaptive environments. A brief set of simulations were performed to ensure the improved performance of the HGSODL-ASCM technique. The simulation results demonstrated how superior the HGSODL-ASCM method is to other methods already in use.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Supply chain management</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Agricultural and food supply</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deep learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metaheuristics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data analytics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sustainability</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Computer engineering. Computer hardware</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Computer software</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Deepak Kumar Jain</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">S. Neelakandan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jemal Abawajy</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Discover Internet of Things</subfield><subfield code="d">Springer, 2021</subfield><subfield code="g">3(2023), 1, Seite 17</subfield><subfield code="w">(DE-627)1750132583</subfield><subfield code="x">27307239</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:3</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:17</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/s43926-023-00040-7</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/f84a92d14fae4374b2ada5cf56df5f36</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/s43926-023-00040-7</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2730-7239</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">3</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="h">17</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Zheng Xu |
spellingShingle |
Zheng Xu misc TK7885-7895 misc QA76.75-76.765 misc Supply chain management misc Agricultural and food supply misc Deep learning misc Metaheuristics misc Data analytics misc Sustainability misc Computer engineering. Computer hardware misc Computer software Hunger games search optimization with deep learning model for sustainable supply chain management |
authorStr |
Zheng Xu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1750132583 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK7885-7895 |
illustrated |
Not Illustrated |
issn |
27307239 |
topic_title |
TK7885-7895 QA76.75-76.765 Hunger games search optimization with deep learning model for sustainable supply chain management Supply chain management Agricultural and food supply Deep learning Metaheuristics Data analytics Sustainability |
topic |
misc TK7885-7895 misc QA76.75-76.765 misc Supply chain management misc Agricultural and food supply misc Deep learning misc Metaheuristics misc Data analytics misc Sustainability misc Computer engineering. Computer hardware misc Computer software |
topic_unstemmed |
misc TK7885-7895 misc QA76.75-76.765 misc Supply chain management misc Agricultural and food supply misc Deep learning misc Metaheuristics misc Data analytics misc Sustainability misc Computer engineering. Computer hardware misc Computer software |
topic_browse |
misc TK7885-7895 misc QA76.75-76.765 misc Supply chain management misc Agricultural and food supply misc Deep learning misc Metaheuristics misc Data analytics misc Sustainability misc Computer engineering. Computer hardware misc Computer software |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Discover Internet of Things |
hierarchy_parent_id |
1750132583 |
hierarchy_top_title |
Discover Internet of Things |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1750132583 |
title |
Hunger games search optimization with deep learning model for sustainable supply chain management |
ctrlnum |
(DE-627)DOAJ091834910 (DE-599)DOAJf84a92d14fae4374b2ada5cf56df5f36 |
title_full |
Hunger games search optimization with deep learning model for sustainable supply chain management |
author_sort |
Zheng Xu |
journal |
Discover Internet of Things |
journalStr |
Discover Internet of Things |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
container_start_page |
17 |
author_browse |
Zheng Xu Deepak Kumar Jain S. Neelakandan Jemal Abawajy |
container_volume |
3 |
class |
TK7885-7895 QA76.75-76.765 |
format_se |
Elektronische Aufsätze |
author-letter |
Zheng Xu |
doi_str_mv |
10.1007/s43926-023-00040-7 |
author2-role |
verfasserin |
title_sort |
hunger games search optimization with deep learning model for sustainable supply chain management |
callnumber |
TK7885-7895 |
title_auth |
Hunger games search optimization with deep learning model for sustainable supply chain management |
abstract |
Abstract The supply chain network is one of the most important areas of focus in the majority of business circumstances. Blockchain technology is a feasible choice for secure information sharing in a supply chain network. Despite the fact that maintaining security at all levels of the blockchain is difficult, cryptographic methods are commonly used in existing works. Effective supply chain management (SCM) offers various benefits to organizations, such as enhanced customer satisfaction, increased operational efficiency, competitive advantage, and cost reduction. Potential SCM for agricultural and food supply chains needs distributors, coordination and collaboration among farmers, retailers, and stakeholders. The use of technology like Block Chain (BC), sensors, and data analytics, can boost traceability and visibility, decrease waste, and ensure safety and quality throughout the supply chain. Therefore, this study develops a Hunger Games Search Optimization with Deep Learning Model for Sustainable agricultural and food Supply Chain Management (HGSODL-ASCM) technique. The fundamental goal of the HGSODL-ASCM technique is to improve decision-making processes for agricultural and food commodity production and storage in order to optimise revenue. In the provided HGSODL-ASCM technique, a bidirectional long short-term memory (Bi-LSTM) model is built to determine the amount of productivity and storage required to maximise profit. In order to boost the performance of the Bi-LSTM classification process, the HGSO algorithm has been utilized in this work. The presented HGSODL-ASCM technique can independently achieve the SCM policies via interaction with complicated and adaptive environments. A brief set of simulations were performed to ensure the improved performance of the HGSODL-ASCM technique. The simulation results demonstrated how superior the HGSODL-ASCM method is to other methods already in use. |
abstractGer |
Abstract The supply chain network is one of the most important areas of focus in the majority of business circumstances. Blockchain technology is a feasible choice for secure information sharing in a supply chain network. Despite the fact that maintaining security at all levels of the blockchain is difficult, cryptographic methods are commonly used in existing works. Effective supply chain management (SCM) offers various benefits to organizations, such as enhanced customer satisfaction, increased operational efficiency, competitive advantage, and cost reduction. Potential SCM for agricultural and food supply chains needs distributors, coordination and collaboration among farmers, retailers, and stakeholders. The use of technology like Block Chain (BC), sensors, and data analytics, can boost traceability and visibility, decrease waste, and ensure safety and quality throughout the supply chain. Therefore, this study develops a Hunger Games Search Optimization with Deep Learning Model for Sustainable agricultural and food Supply Chain Management (HGSODL-ASCM) technique. The fundamental goal of the HGSODL-ASCM technique is to improve decision-making processes for agricultural and food commodity production and storage in order to optimise revenue. In the provided HGSODL-ASCM technique, a bidirectional long short-term memory (Bi-LSTM) model is built to determine the amount of productivity and storage required to maximise profit. In order to boost the performance of the Bi-LSTM classification process, the HGSO algorithm has been utilized in this work. The presented HGSODL-ASCM technique can independently achieve the SCM policies via interaction with complicated and adaptive environments. A brief set of simulations were performed to ensure the improved performance of the HGSODL-ASCM technique. The simulation results demonstrated how superior the HGSODL-ASCM method is to other methods already in use. |
abstract_unstemmed |
Abstract The supply chain network is one of the most important areas of focus in the majority of business circumstances. Blockchain technology is a feasible choice for secure information sharing in a supply chain network. Despite the fact that maintaining security at all levels of the blockchain is difficult, cryptographic methods are commonly used in existing works. Effective supply chain management (SCM) offers various benefits to organizations, such as enhanced customer satisfaction, increased operational efficiency, competitive advantage, and cost reduction. Potential SCM for agricultural and food supply chains needs distributors, coordination and collaboration among farmers, retailers, and stakeholders. The use of technology like Block Chain (BC), sensors, and data analytics, can boost traceability and visibility, decrease waste, and ensure safety and quality throughout the supply chain. Therefore, this study develops a Hunger Games Search Optimization with Deep Learning Model for Sustainable agricultural and food Supply Chain Management (HGSODL-ASCM) technique. The fundamental goal of the HGSODL-ASCM technique is to improve decision-making processes for agricultural and food commodity production and storage in order to optimise revenue. In the provided HGSODL-ASCM technique, a bidirectional long short-term memory (Bi-LSTM) model is built to determine the amount of productivity and storage required to maximise profit. In order to boost the performance of the Bi-LSTM classification process, the HGSO algorithm has been utilized in this work. The presented HGSODL-ASCM technique can independently achieve the SCM policies via interaction with complicated and adaptive environments. A brief set of simulations were performed to ensure the improved performance of the HGSODL-ASCM technique. The simulation results demonstrated how superior the HGSODL-ASCM method is to other methods already in use. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Hunger games search optimization with deep learning model for sustainable supply chain management |
url |
https://doi.org/10.1007/s43926-023-00040-7 https://doaj.org/article/f84a92d14fae4374b2ada5cf56df5f36 https://doaj.org/toc/2730-7239 |
remote_bool |
true |
author2 |
Deepak Kumar Jain S. Neelakandan Jemal Abawajy |
author2Str |
Deepak Kumar Jain S. Neelakandan Jemal Abawajy |
ppnlink |
1750132583 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1007/s43926-023-00040-7 |
callnumber-a |
TK7885-7895 |
up_date |
2024-07-03T22:32:59.396Z |
_version_ |
1803598932898480128 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ091834910</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412215956.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240412s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s43926-023-00040-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ091834910</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJf84a92d14fae4374b2ada5cf56df5f36</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK7885-7895</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA76.75-76.765</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Zheng Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hunger games search optimization with deep learning model for sustainable supply chain management</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The supply chain network is one of the most important areas of focus in the majority of business circumstances. Blockchain technology is a feasible choice for secure information sharing in a supply chain network. Despite the fact that maintaining security at all levels of the blockchain is difficult, cryptographic methods are commonly used in existing works. Effective supply chain management (SCM) offers various benefits to organizations, such as enhanced customer satisfaction, increased operational efficiency, competitive advantage, and cost reduction. Potential SCM for agricultural and food supply chains needs distributors, coordination and collaboration among farmers, retailers, and stakeholders. The use of technology like Block Chain (BC), sensors, and data analytics, can boost traceability and visibility, decrease waste, and ensure safety and quality throughout the supply chain. Therefore, this study develops a Hunger Games Search Optimization with Deep Learning Model for Sustainable agricultural and food Supply Chain Management (HGSODL-ASCM) technique. The fundamental goal of the HGSODL-ASCM technique is to improve decision-making processes for agricultural and food commodity production and storage in order to optimise revenue. In the provided HGSODL-ASCM technique, a bidirectional long short-term memory (Bi-LSTM) model is built to determine the amount of productivity and storage required to maximise profit. In order to boost the performance of the Bi-LSTM classification process, the HGSO algorithm has been utilized in this work. The presented HGSODL-ASCM technique can independently achieve the SCM policies via interaction with complicated and adaptive environments. A brief set of simulations were performed to ensure the improved performance of the HGSODL-ASCM technique. The simulation results demonstrated how superior the HGSODL-ASCM method is to other methods already in use.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Supply chain management</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Agricultural and food supply</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deep learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metaheuristics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data analytics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sustainability</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Computer engineering. Computer hardware</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Computer software</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Deepak Kumar Jain</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">S. Neelakandan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jemal Abawajy</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Discover Internet of Things</subfield><subfield code="d">Springer, 2021</subfield><subfield code="g">3(2023), 1, Seite 17</subfield><subfield code="w">(DE-627)1750132583</subfield><subfield code="x">27307239</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:3</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:17</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/s43926-023-00040-7</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/f84a92d14fae4374b2ada5cf56df5f36</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/s43926-023-00040-7</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2730-7239</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">3</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="h">17</subfield></datafield></record></collection>
|
score |
7.40246 |