Toward Self‐Supported Bifunctional Air Electrodes for Flexible Solid‐State Zn–Air Batteries
The demand for flexibility and rechargeability in tandem with high energy density, reliability, and safety in energy‐storage devices to power wearable electronics has translated to significant advances in flexible solid‐state Zn–air batteries (FSZABs) technology. FSZABs using self‐supported bifuncti...
Ausführliche Beschreibung
Autor*in: |
Xixi Wang [verfasserIn] Lei Xu [verfasserIn] Chuan Zhou [verfasserIn] Ngie Hing Wong [verfasserIn] Jaka Sunarso [verfasserIn] Ran Ran [verfasserIn] Wei Zhou [verfasserIn] Zongping Shao [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
flexible solid-state Zn–air batteries oxygen reduction and evolution reaction |
---|
Übergeordnetes Werk: |
In: Small Science - Wiley-VCH, 2021, 3(2023), 10, Seite n/a-n/a |
---|---|
Übergeordnetes Werk: |
volume:3 ; year:2023 ; number:10 ; pages:n/a-n/a |
Links: |
---|
DOI / URN: |
10.1002/smsc.202300066 |
---|
Katalog-ID: |
DOAJ091900409 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ091900409 | ||
003 | DE-627 | ||
005 | 20240412105919.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240412s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1002/smsc.202300066 |2 doi | |
035 | |a (DE-627)DOAJ091900409 | ||
035 | |a (DE-599)DOAJ4f816a9bae9544a2ba696b68ad066b8d | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TA401-492 | |
100 | 0 | |a Xixi Wang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Toward Self‐Supported Bifunctional Air Electrodes for Flexible Solid‐State Zn–Air Batteries |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The demand for flexibility and rechargeability in tandem with high energy density, reliability, and safety in energy‐storage devices to power wearable electronics has translated to significant advances in flexible solid‐state Zn–air batteries (FSZABs) technology. FSZABs using self‐supported bifunctional air electrodes are currently one of the most attractive alternatives to Li‐ion battery technology for next‐generation wearable electronics. Unlike the conventional powder‐based air electrodes, self‐supported bifunctional air electrodes offer higher electron‐transfer rate, larger specific surface area (and catalyst–reactant–product interfacial contact area), mechanical flexibility, and better operational robustness. To realize their potential nonetheless, self‐supported bifunctional air electrodes should have high and stable bifunctional catalytic activity, low cost, and environmental compatibility. This review first summarizes the three typical configurations and working principles of FSZABs. Then, significant development of self‐supported bifunctional air electrodes for FSZABs and efficient synthesis strategies are emphasized. The review concludes by providing perspectives on how to further improve the electrochemical performance of FSZABs and their suitability for next‐generation wearable electronic devices. | ||
650 | 4 | |a flexible solid-state Zn–air batteries | |
650 | 4 | |a oxygen reduction and evolution reaction | |
650 | 4 | |a self-supported bifunctional air electrodes | |
650 | 4 | |a synthesis strategies | |
650 | 4 | |a wearable electronic devices | |
653 | 0 | |a Materials of engineering and construction. Mechanics of materials | |
700 | 0 | |a Lei Xu |e verfasserin |4 aut | |
700 | 0 | |a Chuan Zhou |e verfasserin |4 aut | |
700 | 0 | |a Ngie Hing Wong |e verfasserin |4 aut | |
700 | 0 | |a Jaka Sunarso |e verfasserin |4 aut | |
700 | 0 | |a Ran Ran |e verfasserin |4 aut | |
700 | 0 | |a Wei Zhou |e verfasserin |4 aut | |
700 | 0 | |a Zongping Shao |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Small Science |d Wiley-VCH, 2021 |g 3(2023), 10, Seite n/a-n/a |w (DE-627)1736479490 |w (DE-600)3042766-6 |x 26884046 |7 nnns |
773 | 1 | 8 | |g volume:3 |g year:2023 |g number:10 |g pages:n/a-n/a |
856 | 4 | 0 | |u https://doi.org/10.1002/smsc.202300066 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/4f816a9bae9544a2ba696b68ad066b8d |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1002/smsc.202300066 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2688-4046 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 3 |j 2023 |e 10 |h n/a-n/a |
author_variant |
x w xw l x lx c z cz n h w nhw j s js r r rr w z wz z s zs |
---|---|
matchkey_str |
article:26884046:2023----::oadefuprebfntoaarlcrdsofeils |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
TA |
publishDate |
2023 |
allfields |
10.1002/smsc.202300066 doi (DE-627)DOAJ091900409 (DE-599)DOAJ4f816a9bae9544a2ba696b68ad066b8d DE-627 ger DE-627 rakwb eng TA401-492 Xixi Wang verfasserin aut Toward Self‐Supported Bifunctional Air Electrodes for Flexible Solid‐State Zn–Air Batteries 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The demand for flexibility and rechargeability in tandem with high energy density, reliability, and safety in energy‐storage devices to power wearable electronics has translated to significant advances in flexible solid‐state Zn–air batteries (FSZABs) technology. FSZABs using self‐supported bifunctional air electrodes are currently one of the most attractive alternatives to Li‐ion battery technology for next‐generation wearable electronics. Unlike the conventional powder‐based air electrodes, self‐supported bifunctional air electrodes offer higher electron‐transfer rate, larger specific surface area (and catalyst–reactant–product interfacial contact area), mechanical flexibility, and better operational robustness. To realize their potential nonetheless, self‐supported bifunctional air electrodes should have high and stable bifunctional catalytic activity, low cost, and environmental compatibility. This review first summarizes the three typical configurations and working principles of FSZABs. Then, significant development of self‐supported bifunctional air electrodes for FSZABs and efficient synthesis strategies are emphasized. The review concludes by providing perspectives on how to further improve the electrochemical performance of FSZABs and their suitability for next‐generation wearable electronic devices. flexible solid-state Zn–air batteries oxygen reduction and evolution reaction self-supported bifunctional air electrodes synthesis strategies wearable electronic devices Materials of engineering and construction. Mechanics of materials Lei Xu verfasserin aut Chuan Zhou verfasserin aut Ngie Hing Wong verfasserin aut Jaka Sunarso verfasserin aut Ran Ran verfasserin aut Wei Zhou verfasserin aut Zongping Shao verfasserin aut In Small Science Wiley-VCH, 2021 3(2023), 10, Seite n/a-n/a (DE-627)1736479490 (DE-600)3042766-6 26884046 nnns volume:3 year:2023 number:10 pages:n/a-n/a https://doi.org/10.1002/smsc.202300066 kostenfrei https://doaj.org/article/4f816a9bae9544a2ba696b68ad066b8d kostenfrei https://doi.org/10.1002/smsc.202300066 kostenfrei https://doaj.org/toc/2688-4046 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 3 2023 10 n/a-n/a |
spelling |
10.1002/smsc.202300066 doi (DE-627)DOAJ091900409 (DE-599)DOAJ4f816a9bae9544a2ba696b68ad066b8d DE-627 ger DE-627 rakwb eng TA401-492 Xixi Wang verfasserin aut Toward Self‐Supported Bifunctional Air Electrodes for Flexible Solid‐State Zn–Air Batteries 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The demand for flexibility and rechargeability in tandem with high energy density, reliability, and safety in energy‐storage devices to power wearable electronics has translated to significant advances in flexible solid‐state Zn–air batteries (FSZABs) technology. FSZABs using self‐supported bifunctional air electrodes are currently one of the most attractive alternatives to Li‐ion battery technology for next‐generation wearable electronics. Unlike the conventional powder‐based air electrodes, self‐supported bifunctional air electrodes offer higher electron‐transfer rate, larger specific surface area (and catalyst–reactant–product interfacial contact area), mechanical flexibility, and better operational robustness. To realize their potential nonetheless, self‐supported bifunctional air electrodes should have high and stable bifunctional catalytic activity, low cost, and environmental compatibility. This review first summarizes the three typical configurations and working principles of FSZABs. Then, significant development of self‐supported bifunctional air electrodes for FSZABs and efficient synthesis strategies are emphasized. The review concludes by providing perspectives on how to further improve the electrochemical performance of FSZABs and their suitability for next‐generation wearable electronic devices. flexible solid-state Zn–air batteries oxygen reduction and evolution reaction self-supported bifunctional air electrodes synthesis strategies wearable electronic devices Materials of engineering and construction. Mechanics of materials Lei Xu verfasserin aut Chuan Zhou verfasserin aut Ngie Hing Wong verfasserin aut Jaka Sunarso verfasserin aut Ran Ran verfasserin aut Wei Zhou verfasserin aut Zongping Shao verfasserin aut In Small Science Wiley-VCH, 2021 3(2023), 10, Seite n/a-n/a (DE-627)1736479490 (DE-600)3042766-6 26884046 nnns volume:3 year:2023 number:10 pages:n/a-n/a https://doi.org/10.1002/smsc.202300066 kostenfrei https://doaj.org/article/4f816a9bae9544a2ba696b68ad066b8d kostenfrei https://doi.org/10.1002/smsc.202300066 kostenfrei https://doaj.org/toc/2688-4046 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 3 2023 10 n/a-n/a |
allfields_unstemmed |
10.1002/smsc.202300066 doi (DE-627)DOAJ091900409 (DE-599)DOAJ4f816a9bae9544a2ba696b68ad066b8d DE-627 ger DE-627 rakwb eng TA401-492 Xixi Wang verfasserin aut Toward Self‐Supported Bifunctional Air Electrodes for Flexible Solid‐State Zn–Air Batteries 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The demand for flexibility and rechargeability in tandem with high energy density, reliability, and safety in energy‐storage devices to power wearable electronics has translated to significant advances in flexible solid‐state Zn–air batteries (FSZABs) technology. FSZABs using self‐supported bifunctional air electrodes are currently one of the most attractive alternatives to Li‐ion battery technology for next‐generation wearable electronics. Unlike the conventional powder‐based air electrodes, self‐supported bifunctional air electrodes offer higher electron‐transfer rate, larger specific surface area (and catalyst–reactant–product interfacial contact area), mechanical flexibility, and better operational robustness. To realize their potential nonetheless, self‐supported bifunctional air electrodes should have high and stable bifunctional catalytic activity, low cost, and environmental compatibility. This review first summarizes the three typical configurations and working principles of FSZABs. Then, significant development of self‐supported bifunctional air electrodes for FSZABs and efficient synthesis strategies are emphasized. The review concludes by providing perspectives on how to further improve the electrochemical performance of FSZABs and their suitability for next‐generation wearable electronic devices. flexible solid-state Zn–air batteries oxygen reduction and evolution reaction self-supported bifunctional air electrodes synthesis strategies wearable electronic devices Materials of engineering and construction. Mechanics of materials Lei Xu verfasserin aut Chuan Zhou verfasserin aut Ngie Hing Wong verfasserin aut Jaka Sunarso verfasserin aut Ran Ran verfasserin aut Wei Zhou verfasserin aut Zongping Shao verfasserin aut In Small Science Wiley-VCH, 2021 3(2023), 10, Seite n/a-n/a (DE-627)1736479490 (DE-600)3042766-6 26884046 nnns volume:3 year:2023 number:10 pages:n/a-n/a https://doi.org/10.1002/smsc.202300066 kostenfrei https://doaj.org/article/4f816a9bae9544a2ba696b68ad066b8d kostenfrei https://doi.org/10.1002/smsc.202300066 kostenfrei https://doaj.org/toc/2688-4046 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 3 2023 10 n/a-n/a |
allfieldsGer |
10.1002/smsc.202300066 doi (DE-627)DOAJ091900409 (DE-599)DOAJ4f816a9bae9544a2ba696b68ad066b8d DE-627 ger DE-627 rakwb eng TA401-492 Xixi Wang verfasserin aut Toward Self‐Supported Bifunctional Air Electrodes for Flexible Solid‐State Zn–Air Batteries 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The demand for flexibility and rechargeability in tandem with high energy density, reliability, and safety in energy‐storage devices to power wearable electronics has translated to significant advances in flexible solid‐state Zn–air batteries (FSZABs) technology. FSZABs using self‐supported bifunctional air electrodes are currently one of the most attractive alternatives to Li‐ion battery technology for next‐generation wearable electronics. Unlike the conventional powder‐based air electrodes, self‐supported bifunctional air electrodes offer higher electron‐transfer rate, larger specific surface area (and catalyst–reactant–product interfacial contact area), mechanical flexibility, and better operational robustness. To realize their potential nonetheless, self‐supported bifunctional air electrodes should have high and stable bifunctional catalytic activity, low cost, and environmental compatibility. This review first summarizes the three typical configurations and working principles of FSZABs. Then, significant development of self‐supported bifunctional air electrodes for FSZABs and efficient synthesis strategies are emphasized. The review concludes by providing perspectives on how to further improve the electrochemical performance of FSZABs and their suitability for next‐generation wearable electronic devices. flexible solid-state Zn–air batteries oxygen reduction and evolution reaction self-supported bifunctional air electrodes synthesis strategies wearable electronic devices Materials of engineering and construction. Mechanics of materials Lei Xu verfasserin aut Chuan Zhou verfasserin aut Ngie Hing Wong verfasserin aut Jaka Sunarso verfasserin aut Ran Ran verfasserin aut Wei Zhou verfasserin aut Zongping Shao verfasserin aut In Small Science Wiley-VCH, 2021 3(2023), 10, Seite n/a-n/a (DE-627)1736479490 (DE-600)3042766-6 26884046 nnns volume:3 year:2023 number:10 pages:n/a-n/a https://doi.org/10.1002/smsc.202300066 kostenfrei https://doaj.org/article/4f816a9bae9544a2ba696b68ad066b8d kostenfrei https://doi.org/10.1002/smsc.202300066 kostenfrei https://doaj.org/toc/2688-4046 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 3 2023 10 n/a-n/a |
allfieldsSound |
10.1002/smsc.202300066 doi (DE-627)DOAJ091900409 (DE-599)DOAJ4f816a9bae9544a2ba696b68ad066b8d DE-627 ger DE-627 rakwb eng TA401-492 Xixi Wang verfasserin aut Toward Self‐Supported Bifunctional Air Electrodes for Flexible Solid‐State Zn–Air Batteries 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The demand for flexibility and rechargeability in tandem with high energy density, reliability, and safety in energy‐storage devices to power wearable electronics has translated to significant advances in flexible solid‐state Zn–air batteries (FSZABs) technology. FSZABs using self‐supported bifunctional air electrodes are currently one of the most attractive alternatives to Li‐ion battery technology for next‐generation wearable electronics. Unlike the conventional powder‐based air electrodes, self‐supported bifunctional air electrodes offer higher electron‐transfer rate, larger specific surface area (and catalyst–reactant–product interfacial contact area), mechanical flexibility, and better operational robustness. To realize their potential nonetheless, self‐supported bifunctional air electrodes should have high and stable bifunctional catalytic activity, low cost, and environmental compatibility. This review first summarizes the three typical configurations and working principles of FSZABs. Then, significant development of self‐supported bifunctional air electrodes for FSZABs and efficient synthesis strategies are emphasized. The review concludes by providing perspectives on how to further improve the electrochemical performance of FSZABs and their suitability for next‐generation wearable electronic devices. flexible solid-state Zn–air batteries oxygen reduction and evolution reaction self-supported bifunctional air electrodes synthesis strategies wearable electronic devices Materials of engineering and construction. Mechanics of materials Lei Xu verfasserin aut Chuan Zhou verfasserin aut Ngie Hing Wong verfasserin aut Jaka Sunarso verfasserin aut Ran Ran verfasserin aut Wei Zhou verfasserin aut Zongping Shao verfasserin aut In Small Science Wiley-VCH, 2021 3(2023), 10, Seite n/a-n/a (DE-627)1736479490 (DE-600)3042766-6 26884046 nnns volume:3 year:2023 number:10 pages:n/a-n/a https://doi.org/10.1002/smsc.202300066 kostenfrei https://doaj.org/article/4f816a9bae9544a2ba696b68ad066b8d kostenfrei https://doi.org/10.1002/smsc.202300066 kostenfrei https://doaj.org/toc/2688-4046 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 3 2023 10 n/a-n/a |
language |
English |
source |
In Small Science 3(2023), 10, Seite n/a-n/a volume:3 year:2023 number:10 pages:n/a-n/a |
sourceStr |
In Small Science 3(2023), 10, Seite n/a-n/a volume:3 year:2023 number:10 pages:n/a-n/a |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
flexible solid-state Zn–air batteries oxygen reduction and evolution reaction self-supported bifunctional air electrodes synthesis strategies wearable electronic devices Materials of engineering and construction. Mechanics of materials |
isfreeaccess_bool |
true |
container_title |
Small Science |
authorswithroles_txt_mv |
Xixi Wang @@aut@@ Lei Xu @@aut@@ Chuan Zhou @@aut@@ Ngie Hing Wong @@aut@@ Jaka Sunarso @@aut@@ Ran Ran @@aut@@ Wei Zhou @@aut@@ Zongping Shao @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
1736479490 |
id |
DOAJ091900409 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ091900409</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412105919.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240412s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/smsc.202300066</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ091900409</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ4f816a9bae9544a2ba696b68ad066b8d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA401-492</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xixi Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Toward Self‐Supported Bifunctional Air Electrodes for Flexible Solid‐State Zn–Air Batteries</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The demand for flexibility and rechargeability in tandem with high energy density, reliability, and safety in energy‐storage devices to power wearable electronics has translated to significant advances in flexible solid‐state Zn–air batteries (FSZABs) technology. FSZABs using self‐supported bifunctional air electrodes are currently one of the most attractive alternatives to Li‐ion battery technology for next‐generation wearable electronics. Unlike the conventional powder‐based air electrodes, self‐supported bifunctional air electrodes offer higher electron‐transfer rate, larger specific surface area (and catalyst–reactant–product interfacial contact area), mechanical flexibility, and better operational robustness. To realize their potential nonetheless, self‐supported bifunctional air electrodes should have high and stable bifunctional catalytic activity, low cost, and environmental compatibility. This review first summarizes the three typical configurations and working principles of FSZABs. Then, significant development of self‐supported bifunctional air electrodes for FSZABs and efficient synthesis strategies are emphasized. The review concludes by providing perspectives on how to further improve the electrochemical performance of FSZABs and their suitability for next‐generation wearable electronic devices.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">flexible solid-state Zn–air batteries</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">oxygen reduction and evolution reaction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">self-supported bifunctional air electrodes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">synthesis strategies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wearable electronic devices</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Materials of engineering and construction. Mechanics of materials</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lei Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chuan Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ngie Hing Wong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jaka Sunarso</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ran Ran</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wei Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zongping Shao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Small Science</subfield><subfield code="d">Wiley-VCH, 2021</subfield><subfield code="g">3(2023), 10, Seite n/a-n/a</subfield><subfield code="w">(DE-627)1736479490</subfield><subfield code="w">(DE-600)3042766-6</subfield><subfield code="x">26884046</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:3</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:10</subfield><subfield code="g">pages:n/a-n/a</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/smsc.202300066</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/4f816a9bae9544a2ba696b68ad066b8d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/smsc.202300066</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2688-4046</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">3</subfield><subfield code="j">2023</subfield><subfield code="e">10</subfield><subfield code="h">n/a-n/a</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Xixi Wang |
spellingShingle |
Xixi Wang misc TA401-492 misc flexible solid-state Zn–air batteries misc oxygen reduction and evolution reaction misc self-supported bifunctional air electrodes misc synthesis strategies misc wearable electronic devices misc Materials of engineering and construction. Mechanics of materials Toward Self‐Supported Bifunctional Air Electrodes for Flexible Solid‐State Zn–Air Batteries |
authorStr |
Xixi Wang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1736479490 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA401-492 |
illustrated |
Not Illustrated |
issn |
26884046 |
topic_title |
TA401-492 Toward Self‐Supported Bifunctional Air Electrodes for Flexible Solid‐State Zn–Air Batteries flexible solid-state Zn–air batteries oxygen reduction and evolution reaction self-supported bifunctional air electrodes synthesis strategies wearable electronic devices |
topic |
misc TA401-492 misc flexible solid-state Zn–air batteries misc oxygen reduction and evolution reaction misc self-supported bifunctional air electrodes misc synthesis strategies misc wearable electronic devices misc Materials of engineering and construction. Mechanics of materials |
topic_unstemmed |
misc TA401-492 misc flexible solid-state Zn–air batteries misc oxygen reduction and evolution reaction misc self-supported bifunctional air electrodes misc synthesis strategies misc wearable electronic devices misc Materials of engineering and construction. Mechanics of materials |
topic_browse |
misc TA401-492 misc flexible solid-state Zn–air batteries misc oxygen reduction and evolution reaction misc self-supported bifunctional air electrodes misc synthesis strategies misc wearable electronic devices misc Materials of engineering and construction. Mechanics of materials |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Small Science |
hierarchy_parent_id |
1736479490 |
hierarchy_top_title |
Small Science |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1736479490 (DE-600)3042766-6 |
title |
Toward Self‐Supported Bifunctional Air Electrodes for Flexible Solid‐State Zn–Air Batteries |
ctrlnum |
(DE-627)DOAJ091900409 (DE-599)DOAJ4f816a9bae9544a2ba696b68ad066b8d |
title_full |
Toward Self‐Supported Bifunctional Air Electrodes for Flexible Solid‐State Zn–Air Batteries |
author_sort |
Xixi Wang |
journal |
Small Science |
journalStr |
Small Science |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Xixi Wang Lei Xu Chuan Zhou Ngie Hing Wong Jaka Sunarso Ran Ran Wei Zhou Zongping Shao |
container_volume |
3 |
class |
TA401-492 |
format_se |
Elektronische Aufsätze |
author-letter |
Xixi Wang |
doi_str_mv |
10.1002/smsc.202300066 |
author2-role |
verfasserin |
title_sort |
toward self‐supported bifunctional air electrodes for flexible solid‐state zn–air batteries |
callnumber |
TA401-492 |
title_auth |
Toward Self‐Supported Bifunctional Air Electrodes for Flexible Solid‐State Zn–Air Batteries |
abstract |
The demand for flexibility and rechargeability in tandem with high energy density, reliability, and safety in energy‐storage devices to power wearable electronics has translated to significant advances in flexible solid‐state Zn–air batteries (FSZABs) technology. FSZABs using self‐supported bifunctional air electrodes are currently one of the most attractive alternatives to Li‐ion battery technology for next‐generation wearable electronics. Unlike the conventional powder‐based air electrodes, self‐supported bifunctional air electrodes offer higher electron‐transfer rate, larger specific surface area (and catalyst–reactant–product interfacial contact area), mechanical flexibility, and better operational robustness. To realize their potential nonetheless, self‐supported bifunctional air electrodes should have high and stable bifunctional catalytic activity, low cost, and environmental compatibility. This review first summarizes the three typical configurations and working principles of FSZABs. Then, significant development of self‐supported bifunctional air electrodes for FSZABs and efficient synthesis strategies are emphasized. The review concludes by providing perspectives on how to further improve the electrochemical performance of FSZABs and their suitability for next‐generation wearable electronic devices. |
abstractGer |
The demand for flexibility and rechargeability in tandem with high energy density, reliability, and safety in energy‐storage devices to power wearable electronics has translated to significant advances in flexible solid‐state Zn–air batteries (FSZABs) technology. FSZABs using self‐supported bifunctional air electrodes are currently one of the most attractive alternatives to Li‐ion battery technology for next‐generation wearable electronics. Unlike the conventional powder‐based air electrodes, self‐supported bifunctional air electrodes offer higher electron‐transfer rate, larger specific surface area (and catalyst–reactant–product interfacial contact area), mechanical flexibility, and better operational robustness. To realize their potential nonetheless, self‐supported bifunctional air electrodes should have high and stable bifunctional catalytic activity, low cost, and environmental compatibility. This review first summarizes the three typical configurations and working principles of FSZABs. Then, significant development of self‐supported bifunctional air electrodes for FSZABs and efficient synthesis strategies are emphasized. The review concludes by providing perspectives on how to further improve the electrochemical performance of FSZABs and their suitability for next‐generation wearable electronic devices. |
abstract_unstemmed |
The demand for flexibility and rechargeability in tandem with high energy density, reliability, and safety in energy‐storage devices to power wearable electronics has translated to significant advances in flexible solid‐state Zn–air batteries (FSZABs) technology. FSZABs using self‐supported bifunctional air electrodes are currently one of the most attractive alternatives to Li‐ion battery technology for next‐generation wearable electronics. Unlike the conventional powder‐based air electrodes, self‐supported bifunctional air electrodes offer higher electron‐transfer rate, larger specific surface area (and catalyst–reactant–product interfacial contact area), mechanical flexibility, and better operational robustness. To realize their potential nonetheless, self‐supported bifunctional air electrodes should have high and stable bifunctional catalytic activity, low cost, and environmental compatibility. This review first summarizes the three typical configurations and working principles of FSZABs. Then, significant development of self‐supported bifunctional air electrodes for FSZABs and efficient synthesis strategies are emphasized. The review concludes by providing perspectives on how to further improve the electrochemical performance of FSZABs and their suitability for next‐generation wearable electronic devices. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
10 |
title_short |
Toward Self‐Supported Bifunctional Air Electrodes for Flexible Solid‐State Zn–Air Batteries |
url |
https://doi.org/10.1002/smsc.202300066 https://doaj.org/article/4f816a9bae9544a2ba696b68ad066b8d https://doaj.org/toc/2688-4046 |
remote_bool |
true |
author2 |
Lei Xu Chuan Zhou Ngie Hing Wong Jaka Sunarso Ran Ran Wei Zhou Zongping Shao |
author2Str |
Lei Xu Chuan Zhou Ngie Hing Wong Jaka Sunarso Ran Ran Wei Zhou Zongping Shao |
ppnlink |
1736479490 |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1002/smsc.202300066 |
callnumber-a |
TA401-492 |
up_date |
2024-07-03T22:54:59.597Z |
_version_ |
1803600317225369600 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ091900409</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412105919.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240412s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/smsc.202300066</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ091900409</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ4f816a9bae9544a2ba696b68ad066b8d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA401-492</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xixi Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Toward Self‐Supported Bifunctional Air Electrodes for Flexible Solid‐State Zn–Air Batteries</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The demand for flexibility and rechargeability in tandem with high energy density, reliability, and safety in energy‐storage devices to power wearable electronics has translated to significant advances in flexible solid‐state Zn–air batteries (FSZABs) technology. FSZABs using self‐supported bifunctional air electrodes are currently one of the most attractive alternatives to Li‐ion battery technology for next‐generation wearable electronics. Unlike the conventional powder‐based air electrodes, self‐supported bifunctional air electrodes offer higher electron‐transfer rate, larger specific surface area (and catalyst–reactant–product interfacial contact area), mechanical flexibility, and better operational robustness. To realize their potential nonetheless, self‐supported bifunctional air electrodes should have high and stable bifunctional catalytic activity, low cost, and environmental compatibility. This review first summarizes the three typical configurations and working principles of FSZABs. Then, significant development of self‐supported bifunctional air electrodes for FSZABs and efficient synthesis strategies are emphasized. The review concludes by providing perspectives on how to further improve the electrochemical performance of FSZABs and their suitability for next‐generation wearable electronic devices.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">flexible solid-state Zn–air batteries</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">oxygen reduction and evolution reaction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">self-supported bifunctional air electrodes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">synthesis strategies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wearable electronic devices</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Materials of engineering and construction. Mechanics of materials</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lei Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chuan Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ngie Hing Wong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jaka Sunarso</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ran Ran</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wei Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zongping Shao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Small Science</subfield><subfield code="d">Wiley-VCH, 2021</subfield><subfield code="g">3(2023), 10, Seite n/a-n/a</subfield><subfield code="w">(DE-627)1736479490</subfield><subfield code="w">(DE-600)3042766-6</subfield><subfield code="x">26884046</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:3</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:10</subfield><subfield code="g">pages:n/a-n/a</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/smsc.202300066</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/4f816a9bae9544a2ba696b68ad066b8d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/smsc.202300066</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2688-4046</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">3</subfield><subfield code="j">2023</subfield><subfield code="e">10</subfield><subfield code="h">n/a-n/a</subfield></datafield></record></collection>
|
score |
7.402135 |