Methodologies for modeling and identification of breathing crack: A review
Swift development of technology for monitoring complex structures demands major attention on the precision of damage detection methods. The early detection of any type of deterioration or degradation of structures is of paramount importance to avoid sudden catastrophic failure. It warns users about...
Ausführliche Beschreibung
Autor*in: |
Sayandip Ganguly [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: MethodsX - Elsevier, 2015, 11(2023), Seite 102420- |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:2023 ; pages:102420- |
Links: |
---|
DOI / URN: |
10.1016/j.mex.2023.102420 |
---|
Katalog-ID: |
DOAJ091944031 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ091944031 | ||
003 | DE-627 | ||
005 | 20240414070512.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240412s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.mex.2023.102420 |2 doi | |
035 | |a (DE-627)DOAJ091944031 | ||
035 | |a (DE-599)DOAJ19923007b1f046509fbd59cd2139b094 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Sayandip Ganguly |e verfasserin |4 aut | |
245 | 1 | 0 | |a Methodologies for modeling and identification of breathing crack: A review |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Swift development of technology for monitoring complex structures demands major attention on the precision of damage detection methods. The early detection of any type of deterioration or degradation of structures is of paramount importance to avoid sudden catastrophic failure. It warns users about the impending state of the system. At the initiation of a crack or some other system faults, the system may generate a time-varying state of crack under ambient vibration. It represents the nonlinear breathing phenomena of crack. An assessment of this degree of nonlinearity can be utilized for the detection, localization, and quantification of breathing cracks. Appropriate modeling of such cracks is thus necessary to capture distinctive nonlinear features. Recognizing this importance, various methods of modeling and nonlinear system identification which have been employed in the past for the detection of breathing crack are reviewed. The present study also explores some of the available vibration as well as acoustic-based damage identification techniques, chronologically connecting their evolutions. It summarizes the advantages and limitations of the methods to inspect potential future applications. The future scopes drawn from this review are highlighted to pave the path of wide-spread applications of nonlinear features of crack. | ||
650 | 4 | |a Volterra series, higher order frequency response function, nonlinear output frequency response function, general frequency response function, output frequency response function, perturbation method, harmonic balance method, acoustic methods, vibro-acoustic methods | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
773 | 0 | 8 | |i In |t MethodsX |d Elsevier, 2015 |g 11(2023), Seite 102420- |w (DE-627)832786675 |w (DE-600)2830212-6 |x 22150161 |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:2023 |g pages:102420- |
856 | 4 | 0 | |u https://doi.org/10.1016/j.mex.2023.102420 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/19923007b1f046509fbd59cd2139b094 |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S2215016123004168 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2215-0161 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 11 |j 2023 |h 102420- |
author_variant |
s g sg |
---|---|
matchkey_str |
article:22150161:2023----::ehdlgefroeignietfctoobet |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.1016/j.mex.2023.102420 doi (DE-627)DOAJ091944031 (DE-599)DOAJ19923007b1f046509fbd59cd2139b094 DE-627 ger DE-627 rakwb eng Sayandip Ganguly verfasserin aut Methodologies for modeling and identification of breathing crack: A review 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Swift development of technology for monitoring complex structures demands major attention on the precision of damage detection methods. The early detection of any type of deterioration or degradation of structures is of paramount importance to avoid sudden catastrophic failure. It warns users about the impending state of the system. At the initiation of a crack or some other system faults, the system may generate a time-varying state of crack under ambient vibration. It represents the nonlinear breathing phenomena of crack. An assessment of this degree of nonlinearity can be utilized for the detection, localization, and quantification of breathing cracks. Appropriate modeling of such cracks is thus necessary to capture distinctive nonlinear features. Recognizing this importance, various methods of modeling and nonlinear system identification which have been employed in the past for the detection of breathing crack are reviewed. The present study also explores some of the available vibration as well as acoustic-based damage identification techniques, chronologically connecting their evolutions. It summarizes the advantages and limitations of the methods to inspect potential future applications. The future scopes drawn from this review are highlighted to pave the path of wide-spread applications of nonlinear features of crack. Volterra series, higher order frequency response function, nonlinear output frequency response function, general frequency response function, output frequency response function, perturbation method, harmonic balance method, acoustic methods, vibro-acoustic methods Science Q In MethodsX Elsevier, 2015 11(2023), Seite 102420- (DE-627)832786675 (DE-600)2830212-6 22150161 nnns volume:11 year:2023 pages:102420- https://doi.org/10.1016/j.mex.2023.102420 kostenfrei https://doaj.org/article/19923007b1f046509fbd59cd2139b094 kostenfrei http://www.sciencedirect.com/science/article/pii/S2215016123004168 kostenfrei https://doaj.org/toc/2215-0161 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 11 2023 102420- |
spelling |
10.1016/j.mex.2023.102420 doi (DE-627)DOAJ091944031 (DE-599)DOAJ19923007b1f046509fbd59cd2139b094 DE-627 ger DE-627 rakwb eng Sayandip Ganguly verfasserin aut Methodologies for modeling and identification of breathing crack: A review 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Swift development of technology for monitoring complex structures demands major attention on the precision of damage detection methods. The early detection of any type of deterioration or degradation of structures is of paramount importance to avoid sudden catastrophic failure. It warns users about the impending state of the system. At the initiation of a crack or some other system faults, the system may generate a time-varying state of crack under ambient vibration. It represents the nonlinear breathing phenomena of crack. An assessment of this degree of nonlinearity can be utilized for the detection, localization, and quantification of breathing cracks. Appropriate modeling of such cracks is thus necessary to capture distinctive nonlinear features. Recognizing this importance, various methods of modeling and nonlinear system identification which have been employed in the past for the detection of breathing crack are reviewed. The present study also explores some of the available vibration as well as acoustic-based damage identification techniques, chronologically connecting their evolutions. It summarizes the advantages and limitations of the methods to inspect potential future applications. The future scopes drawn from this review are highlighted to pave the path of wide-spread applications of nonlinear features of crack. Volterra series, higher order frequency response function, nonlinear output frequency response function, general frequency response function, output frequency response function, perturbation method, harmonic balance method, acoustic methods, vibro-acoustic methods Science Q In MethodsX Elsevier, 2015 11(2023), Seite 102420- (DE-627)832786675 (DE-600)2830212-6 22150161 nnns volume:11 year:2023 pages:102420- https://doi.org/10.1016/j.mex.2023.102420 kostenfrei https://doaj.org/article/19923007b1f046509fbd59cd2139b094 kostenfrei http://www.sciencedirect.com/science/article/pii/S2215016123004168 kostenfrei https://doaj.org/toc/2215-0161 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 11 2023 102420- |
allfields_unstemmed |
10.1016/j.mex.2023.102420 doi (DE-627)DOAJ091944031 (DE-599)DOAJ19923007b1f046509fbd59cd2139b094 DE-627 ger DE-627 rakwb eng Sayandip Ganguly verfasserin aut Methodologies for modeling and identification of breathing crack: A review 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Swift development of technology for monitoring complex structures demands major attention on the precision of damage detection methods. The early detection of any type of deterioration or degradation of structures is of paramount importance to avoid sudden catastrophic failure. It warns users about the impending state of the system. At the initiation of a crack or some other system faults, the system may generate a time-varying state of crack under ambient vibration. It represents the nonlinear breathing phenomena of crack. An assessment of this degree of nonlinearity can be utilized for the detection, localization, and quantification of breathing cracks. Appropriate modeling of such cracks is thus necessary to capture distinctive nonlinear features. Recognizing this importance, various methods of modeling and nonlinear system identification which have been employed in the past for the detection of breathing crack are reviewed. The present study also explores some of the available vibration as well as acoustic-based damage identification techniques, chronologically connecting their evolutions. It summarizes the advantages and limitations of the methods to inspect potential future applications. The future scopes drawn from this review are highlighted to pave the path of wide-spread applications of nonlinear features of crack. Volterra series, higher order frequency response function, nonlinear output frequency response function, general frequency response function, output frequency response function, perturbation method, harmonic balance method, acoustic methods, vibro-acoustic methods Science Q In MethodsX Elsevier, 2015 11(2023), Seite 102420- (DE-627)832786675 (DE-600)2830212-6 22150161 nnns volume:11 year:2023 pages:102420- https://doi.org/10.1016/j.mex.2023.102420 kostenfrei https://doaj.org/article/19923007b1f046509fbd59cd2139b094 kostenfrei http://www.sciencedirect.com/science/article/pii/S2215016123004168 kostenfrei https://doaj.org/toc/2215-0161 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 11 2023 102420- |
allfieldsGer |
10.1016/j.mex.2023.102420 doi (DE-627)DOAJ091944031 (DE-599)DOAJ19923007b1f046509fbd59cd2139b094 DE-627 ger DE-627 rakwb eng Sayandip Ganguly verfasserin aut Methodologies for modeling and identification of breathing crack: A review 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Swift development of technology for monitoring complex structures demands major attention on the precision of damage detection methods. The early detection of any type of deterioration or degradation of structures is of paramount importance to avoid sudden catastrophic failure. It warns users about the impending state of the system. At the initiation of a crack or some other system faults, the system may generate a time-varying state of crack under ambient vibration. It represents the nonlinear breathing phenomena of crack. An assessment of this degree of nonlinearity can be utilized for the detection, localization, and quantification of breathing cracks. Appropriate modeling of such cracks is thus necessary to capture distinctive nonlinear features. Recognizing this importance, various methods of modeling and nonlinear system identification which have been employed in the past for the detection of breathing crack are reviewed. The present study also explores some of the available vibration as well as acoustic-based damage identification techniques, chronologically connecting their evolutions. It summarizes the advantages and limitations of the methods to inspect potential future applications. The future scopes drawn from this review are highlighted to pave the path of wide-spread applications of nonlinear features of crack. Volterra series, higher order frequency response function, nonlinear output frequency response function, general frequency response function, output frequency response function, perturbation method, harmonic balance method, acoustic methods, vibro-acoustic methods Science Q In MethodsX Elsevier, 2015 11(2023), Seite 102420- (DE-627)832786675 (DE-600)2830212-6 22150161 nnns volume:11 year:2023 pages:102420- https://doi.org/10.1016/j.mex.2023.102420 kostenfrei https://doaj.org/article/19923007b1f046509fbd59cd2139b094 kostenfrei http://www.sciencedirect.com/science/article/pii/S2215016123004168 kostenfrei https://doaj.org/toc/2215-0161 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 11 2023 102420- |
allfieldsSound |
10.1016/j.mex.2023.102420 doi (DE-627)DOAJ091944031 (DE-599)DOAJ19923007b1f046509fbd59cd2139b094 DE-627 ger DE-627 rakwb eng Sayandip Ganguly verfasserin aut Methodologies for modeling and identification of breathing crack: A review 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Swift development of technology for monitoring complex structures demands major attention on the precision of damage detection methods. The early detection of any type of deterioration or degradation of structures is of paramount importance to avoid sudden catastrophic failure. It warns users about the impending state of the system. At the initiation of a crack or some other system faults, the system may generate a time-varying state of crack under ambient vibration. It represents the nonlinear breathing phenomena of crack. An assessment of this degree of nonlinearity can be utilized for the detection, localization, and quantification of breathing cracks. Appropriate modeling of such cracks is thus necessary to capture distinctive nonlinear features. Recognizing this importance, various methods of modeling and nonlinear system identification which have been employed in the past for the detection of breathing crack are reviewed. The present study also explores some of the available vibration as well as acoustic-based damage identification techniques, chronologically connecting their evolutions. It summarizes the advantages and limitations of the methods to inspect potential future applications. The future scopes drawn from this review are highlighted to pave the path of wide-spread applications of nonlinear features of crack. Volterra series, higher order frequency response function, nonlinear output frequency response function, general frequency response function, output frequency response function, perturbation method, harmonic balance method, acoustic methods, vibro-acoustic methods Science Q In MethodsX Elsevier, 2015 11(2023), Seite 102420- (DE-627)832786675 (DE-600)2830212-6 22150161 nnns volume:11 year:2023 pages:102420- https://doi.org/10.1016/j.mex.2023.102420 kostenfrei https://doaj.org/article/19923007b1f046509fbd59cd2139b094 kostenfrei http://www.sciencedirect.com/science/article/pii/S2215016123004168 kostenfrei https://doaj.org/toc/2215-0161 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 11 2023 102420- |
language |
English |
source |
In MethodsX 11(2023), Seite 102420- volume:11 year:2023 pages:102420- |
sourceStr |
In MethodsX 11(2023), Seite 102420- volume:11 year:2023 pages:102420- |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Volterra series, higher order frequency response function, nonlinear output frequency response function, general frequency response function, output frequency response function, perturbation method, harmonic balance method, acoustic methods, vibro-acoustic methods Science Q |
isfreeaccess_bool |
true |
container_title |
MethodsX |
authorswithroles_txt_mv |
Sayandip Ganguly @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
832786675 |
id |
DOAJ091944031 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ091944031</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414070512.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240412s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.mex.2023.102420</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ091944031</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ19923007b1f046509fbd59cd2139b094</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Sayandip Ganguly</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Methodologies for modeling and identification of breathing crack: A review</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Swift development of technology for monitoring complex structures demands major attention on the precision of damage detection methods. The early detection of any type of deterioration or degradation of structures is of paramount importance to avoid sudden catastrophic failure. It warns users about the impending state of the system. At the initiation of a crack or some other system faults, the system may generate a time-varying state of crack under ambient vibration. It represents the nonlinear breathing phenomena of crack. An assessment of this degree of nonlinearity can be utilized for the detection, localization, and quantification of breathing cracks. Appropriate modeling of such cracks is thus necessary to capture distinctive nonlinear features. Recognizing this importance, various methods of modeling and nonlinear system identification which have been employed in the past for the detection of breathing crack are reviewed. The present study also explores some of the available vibration as well as acoustic-based damage identification techniques, chronologically connecting their evolutions. It summarizes the advantages and limitations of the methods to inspect potential future applications. The future scopes drawn from this review are highlighted to pave the path of wide-spread applications of nonlinear features of crack.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Volterra series, higher order frequency response function, nonlinear output frequency response function, general frequency response function, output frequency response function, perturbation method, harmonic balance method, acoustic methods, vibro-acoustic methods</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">MethodsX</subfield><subfield code="d">Elsevier, 2015</subfield><subfield code="g">11(2023), Seite 102420-</subfield><subfield code="w">(DE-627)832786675</subfield><subfield code="w">(DE-600)2830212-6</subfield><subfield code="x">22150161</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2023</subfield><subfield code="g">pages:102420-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.mex.2023.102420</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/19923007b1f046509fbd59cd2139b094</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2215016123004168</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2215-0161</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2023</subfield><subfield code="h">102420-</subfield></datafield></record></collection>
|
author |
Sayandip Ganguly |
spellingShingle |
Sayandip Ganguly misc Volterra series, higher order frequency response function, nonlinear output frequency response function, general frequency response function, output frequency response function, perturbation method, harmonic balance method, acoustic methods, vibro-acoustic methods misc Science misc Q Methodologies for modeling and identification of breathing crack: A review |
authorStr |
Sayandip Ganguly |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)832786675 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
22150161 |
topic_title |
Methodologies for modeling and identification of breathing crack: A review Volterra series, higher order frequency response function, nonlinear output frequency response function, general frequency response function, output frequency response function, perturbation method, harmonic balance method, acoustic methods, vibro-acoustic methods |
topic |
misc Volterra series, higher order frequency response function, nonlinear output frequency response function, general frequency response function, output frequency response function, perturbation method, harmonic balance method, acoustic methods, vibro-acoustic methods misc Science misc Q |
topic_unstemmed |
misc Volterra series, higher order frequency response function, nonlinear output frequency response function, general frequency response function, output frequency response function, perturbation method, harmonic balance method, acoustic methods, vibro-acoustic methods misc Science misc Q |
topic_browse |
misc Volterra series, higher order frequency response function, nonlinear output frequency response function, general frequency response function, output frequency response function, perturbation method, harmonic balance method, acoustic methods, vibro-acoustic methods misc Science misc Q |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
MethodsX |
hierarchy_parent_id |
832786675 |
hierarchy_top_title |
MethodsX |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)832786675 (DE-600)2830212-6 |
title |
Methodologies for modeling and identification of breathing crack: A review |
ctrlnum |
(DE-627)DOAJ091944031 (DE-599)DOAJ19923007b1f046509fbd59cd2139b094 |
title_full |
Methodologies for modeling and identification of breathing crack: A review |
author_sort |
Sayandip Ganguly |
journal |
MethodsX |
journalStr |
MethodsX |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
container_start_page |
102420 |
author_browse |
Sayandip Ganguly |
container_volume |
11 |
format_se |
Elektronische Aufsätze |
author-letter |
Sayandip Ganguly |
doi_str_mv |
10.1016/j.mex.2023.102420 |
title_sort |
methodologies for modeling and identification of breathing crack: a review |
title_auth |
Methodologies for modeling and identification of breathing crack: A review |
abstract |
Swift development of technology for monitoring complex structures demands major attention on the precision of damage detection methods. The early detection of any type of deterioration or degradation of structures is of paramount importance to avoid sudden catastrophic failure. It warns users about the impending state of the system. At the initiation of a crack or some other system faults, the system may generate a time-varying state of crack under ambient vibration. It represents the nonlinear breathing phenomena of crack. An assessment of this degree of nonlinearity can be utilized for the detection, localization, and quantification of breathing cracks. Appropriate modeling of such cracks is thus necessary to capture distinctive nonlinear features. Recognizing this importance, various methods of modeling and nonlinear system identification which have been employed in the past for the detection of breathing crack are reviewed. The present study also explores some of the available vibration as well as acoustic-based damage identification techniques, chronologically connecting their evolutions. It summarizes the advantages and limitations of the methods to inspect potential future applications. The future scopes drawn from this review are highlighted to pave the path of wide-spread applications of nonlinear features of crack. |
abstractGer |
Swift development of technology for monitoring complex structures demands major attention on the precision of damage detection methods. The early detection of any type of deterioration or degradation of structures is of paramount importance to avoid sudden catastrophic failure. It warns users about the impending state of the system. At the initiation of a crack or some other system faults, the system may generate a time-varying state of crack under ambient vibration. It represents the nonlinear breathing phenomena of crack. An assessment of this degree of nonlinearity can be utilized for the detection, localization, and quantification of breathing cracks. Appropriate modeling of such cracks is thus necessary to capture distinctive nonlinear features. Recognizing this importance, various methods of modeling and nonlinear system identification which have been employed in the past for the detection of breathing crack are reviewed. The present study also explores some of the available vibration as well as acoustic-based damage identification techniques, chronologically connecting their evolutions. It summarizes the advantages and limitations of the methods to inspect potential future applications. The future scopes drawn from this review are highlighted to pave the path of wide-spread applications of nonlinear features of crack. |
abstract_unstemmed |
Swift development of technology for monitoring complex structures demands major attention on the precision of damage detection methods. The early detection of any type of deterioration or degradation of structures is of paramount importance to avoid sudden catastrophic failure. It warns users about the impending state of the system. At the initiation of a crack or some other system faults, the system may generate a time-varying state of crack under ambient vibration. It represents the nonlinear breathing phenomena of crack. An assessment of this degree of nonlinearity can be utilized for the detection, localization, and quantification of breathing cracks. Appropriate modeling of such cracks is thus necessary to capture distinctive nonlinear features. Recognizing this importance, various methods of modeling and nonlinear system identification which have been employed in the past for the detection of breathing crack are reviewed. The present study also explores some of the available vibration as well as acoustic-based damage identification techniques, chronologically connecting their evolutions. It summarizes the advantages and limitations of the methods to inspect potential future applications. The future scopes drawn from this review are highlighted to pave the path of wide-spread applications of nonlinear features of crack. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Methodologies for modeling and identification of breathing crack: A review |
url |
https://doi.org/10.1016/j.mex.2023.102420 https://doaj.org/article/19923007b1f046509fbd59cd2139b094 http://www.sciencedirect.com/science/article/pii/S2215016123004168 https://doaj.org/toc/2215-0161 |
remote_bool |
true |
ppnlink |
832786675 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.mex.2023.102420 |
up_date |
2024-07-03T23:11:24.794Z |
_version_ |
1803601350279299072 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ091944031</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414070512.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240412s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.mex.2023.102420</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ091944031</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ19923007b1f046509fbd59cd2139b094</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Sayandip Ganguly</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Methodologies for modeling and identification of breathing crack: A review</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Swift development of technology for monitoring complex structures demands major attention on the precision of damage detection methods. The early detection of any type of deterioration or degradation of structures is of paramount importance to avoid sudden catastrophic failure. It warns users about the impending state of the system. At the initiation of a crack or some other system faults, the system may generate a time-varying state of crack under ambient vibration. It represents the nonlinear breathing phenomena of crack. An assessment of this degree of nonlinearity can be utilized for the detection, localization, and quantification of breathing cracks. Appropriate modeling of such cracks is thus necessary to capture distinctive nonlinear features. Recognizing this importance, various methods of modeling and nonlinear system identification which have been employed in the past for the detection of breathing crack are reviewed. The present study also explores some of the available vibration as well as acoustic-based damage identification techniques, chronologically connecting their evolutions. It summarizes the advantages and limitations of the methods to inspect potential future applications. The future scopes drawn from this review are highlighted to pave the path of wide-spread applications of nonlinear features of crack.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Volterra series, higher order frequency response function, nonlinear output frequency response function, general frequency response function, output frequency response function, perturbation method, harmonic balance method, acoustic methods, vibro-acoustic methods</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">MethodsX</subfield><subfield code="d">Elsevier, 2015</subfield><subfield code="g">11(2023), Seite 102420-</subfield><subfield code="w">(DE-627)832786675</subfield><subfield code="w">(DE-600)2830212-6</subfield><subfield code="x">22150161</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2023</subfield><subfield code="g">pages:102420-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.mex.2023.102420</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/19923007b1f046509fbd59cd2139b094</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2215016123004168</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2215-0161</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2023</subfield><subfield code="h">102420-</subfield></datafield></record></collection>
|
score |
7.401886 |