Effects of background doping, interdiffusion and layer thickness fluctuation on the transport characteristics of THz quantum cascade lasers
Abstract In this work, we investigate the effects of n and p-type background doping, interface composition diffusion (interdiffusion) of the barrier material and layer thickness variation during molecular beam epitaxy (MBE) growth on transport characteristics of terahertz-frequency quantum cascade l...
Ausführliche Beschreibung
Autor*in: |
Novak Stanojević [verfasserIn] Aleksandar Demić [verfasserIn] Nikola Vuković [verfasserIn] Paul Dean [verfasserIn] Zoran Ikonić [verfasserIn] Dragan Indjin [verfasserIn] Jelena Radovanović [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Übergeordnetes Werk: |
In: Scientific Reports - Nature Portfolio, 2011, 14(2024), 1, Seite 13 |
---|---|
Übergeordnetes Werk: |
volume:14 ; year:2024 ; number:1 ; pages:13 |
Links: |
---|
DOI / URN: |
10.1038/s41598-024-55700-7 |
---|
Katalog-ID: |
DOAJ092313663 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ092313663 | ||
003 | DE-627 | ||
005 | 20240412121426.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240412s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1038/s41598-024-55700-7 |2 doi | |
035 | |a (DE-627)DOAJ092313663 | ||
035 | |a (DE-599)DOAJa9129d27a7f94961821d8b0638fd5a4a | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Novak Stanojević |e verfasserin |4 aut | |
245 | 1 | 0 | |a Effects of background doping, interdiffusion and layer thickness fluctuation on the transport characteristics of THz quantum cascade lasers |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract In this work, we investigate the effects of n and p-type background doping, interface composition diffusion (interdiffusion) of the barrier material and layer thickness variation during molecular beam epitaxy (MBE) growth on transport characteristics of terahertz-frequency quantum cascade lasers (THz QCLs). We analysed four exemplary structures: a bound-to-continuum design, hybrid design, LO-phonon design and a two-well high-temperature performance LO-phonon design. The exemplary bound-to-continuum design has shown to be the most sensitive to the background doping as it stops lasing for concentrations around $$1.0\cdot 10^{15}$$ 1.0 · 10 15 – $$2.0\cdot 10^{15}$$ 2.0 · 10 15 cm $$^{-3}$$ - 3 . The LO-phonon design is the most sensitive to growth fluctuations during MBE and this is critical for novel LO-phonon structures optimised for high-temperature performance. We predict that interdiffusion mostly affects current density for designs with narrow barrier layers and higher $$\textrm{Al}$$ Al composition. We show that layer thickness variation leads to significant changes in material gain and current density, and in some cases to the growth of nonfunctional devices. These effects serve as a beacon of fundamental calibration steps required for successful realisation of THz QCLs. | ||
653 | 0 | |a Medicine | |
653 | 0 | |a R | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
700 | 0 | |a Aleksandar Demić |e verfasserin |4 aut | |
700 | 0 | |a Nikola Vuković |e verfasserin |4 aut | |
700 | 0 | |a Paul Dean |e verfasserin |4 aut | |
700 | 0 | |a Zoran Ikonić |e verfasserin |4 aut | |
700 | 0 | |a Dragan Indjin |e verfasserin |4 aut | |
700 | 0 | |a Jelena Radovanović |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Scientific Reports |d Nature Portfolio, 2011 |g 14(2024), 1, Seite 13 |w (DE-627)663366712 |w (DE-600)2615211-3 |x 20452322 |7 nnns |
773 | 1 | 8 | |g volume:14 |g year:2024 |g number:1 |g pages:13 |
856 | 4 | 0 | |u https://doi.org/10.1038/s41598-024-55700-7 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/a9129d27a7f94961821d8b0638fd5a4a |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1038/s41598-024-55700-7 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2045-2322 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_381 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 14 |j 2024 |e 1 |h 13 |
author_variant |
n s ns a d ad n v nv p d pd z i zi d i di j r jr |
---|---|
matchkey_str |
article:20452322:2024----::fetobcgondpnitrifsoadaetikeslcutooternprcaatr |
hierarchy_sort_str |
2024 |
publishDate |
2024 |
allfields |
10.1038/s41598-024-55700-7 doi (DE-627)DOAJ092313663 (DE-599)DOAJa9129d27a7f94961821d8b0638fd5a4a DE-627 ger DE-627 rakwb eng Novak Stanojević verfasserin aut Effects of background doping, interdiffusion and layer thickness fluctuation on the transport characteristics of THz quantum cascade lasers 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In this work, we investigate the effects of n and p-type background doping, interface composition diffusion (interdiffusion) of the barrier material and layer thickness variation during molecular beam epitaxy (MBE) growth on transport characteristics of terahertz-frequency quantum cascade lasers (THz QCLs). We analysed four exemplary structures: a bound-to-continuum design, hybrid design, LO-phonon design and a two-well high-temperature performance LO-phonon design. The exemplary bound-to-continuum design has shown to be the most sensitive to the background doping as it stops lasing for concentrations around $$1.0\cdot 10^{15}$$ 1.0 · 10 15 – $$2.0\cdot 10^{15}$$ 2.0 · 10 15 cm $$^{-3}$$ - 3 . The LO-phonon design is the most sensitive to growth fluctuations during MBE and this is critical for novel LO-phonon structures optimised for high-temperature performance. We predict that interdiffusion mostly affects current density for designs with narrow barrier layers and higher $$\textrm{Al}$$ Al composition. We show that layer thickness variation leads to significant changes in material gain and current density, and in some cases to the growth of nonfunctional devices. These effects serve as a beacon of fundamental calibration steps required for successful realisation of THz QCLs. Medicine R Science Q Aleksandar Demić verfasserin aut Nikola Vuković verfasserin aut Paul Dean verfasserin aut Zoran Ikonić verfasserin aut Dragan Indjin verfasserin aut Jelena Radovanović verfasserin aut In Scientific Reports Nature Portfolio, 2011 14(2024), 1, Seite 13 (DE-627)663366712 (DE-600)2615211-3 20452322 nnns volume:14 year:2024 number:1 pages:13 https://doi.org/10.1038/s41598-024-55700-7 kostenfrei https://doaj.org/article/a9129d27a7f94961821d8b0638fd5a4a kostenfrei https://doi.org/10.1038/s41598-024-55700-7 kostenfrei https://doaj.org/toc/2045-2322 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2024 1 13 |
spelling |
10.1038/s41598-024-55700-7 doi (DE-627)DOAJ092313663 (DE-599)DOAJa9129d27a7f94961821d8b0638fd5a4a DE-627 ger DE-627 rakwb eng Novak Stanojević verfasserin aut Effects of background doping, interdiffusion and layer thickness fluctuation on the transport characteristics of THz quantum cascade lasers 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In this work, we investigate the effects of n and p-type background doping, interface composition diffusion (interdiffusion) of the barrier material and layer thickness variation during molecular beam epitaxy (MBE) growth on transport characteristics of terahertz-frequency quantum cascade lasers (THz QCLs). We analysed four exemplary structures: a bound-to-continuum design, hybrid design, LO-phonon design and a two-well high-temperature performance LO-phonon design. The exemplary bound-to-continuum design has shown to be the most sensitive to the background doping as it stops lasing for concentrations around $$1.0\cdot 10^{15}$$ 1.0 · 10 15 – $$2.0\cdot 10^{15}$$ 2.0 · 10 15 cm $$^{-3}$$ - 3 . The LO-phonon design is the most sensitive to growth fluctuations during MBE and this is critical for novel LO-phonon structures optimised for high-temperature performance. We predict that interdiffusion mostly affects current density for designs with narrow barrier layers and higher $$\textrm{Al}$$ Al composition. We show that layer thickness variation leads to significant changes in material gain and current density, and in some cases to the growth of nonfunctional devices. These effects serve as a beacon of fundamental calibration steps required for successful realisation of THz QCLs. Medicine R Science Q Aleksandar Demić verfasserin aut Nikola Vuković verfasserin aut Paul Dean verfasserin aut Zoran Ikonić verfasserin aut Dragan Indjin verfasserin aut Jelena Radovanović verfasserin aut In Scientific Reports Nature Portfolio, 2011 14(2024), 1, Seite 13 (DE-627)663366712 (DE-600)2615211-3 20452322 nnns volume:14 year:2024 number:1 pages:13 https://doi.org/10.1038/s41598-024-55700-7 kostenfrei https://doaj.org/article/a9129d27a7f94961821d8b0638fd5a4a kostenfrei https://doi.org/10.1038/s41598-024-55700-7 kostenfrei https://doaj.org/toc/2045-2322 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2024 1 13 |
allfields_unstemmed |
10.1038/s41598-024-55700-7 doi (DE-627)DOAJ092313663 (DE-599)DOAJa9129d27a7f94961821d8b0638fd5a4a DE-627 ger DE-627 rakwb eng Novak Stanojević verfasserin aut Effects of background doping, interdiffusion and layer thickness fluctuation on the transport characteristics of THz quantum cascade lasers 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In this work, we investigate the effects of n and p-type background doping, interface composition diffusion (interdiffusion) of the barrier material and layer thickness variation during molecular beam epitaxy (MBE) growth on transport characteristics of terahertz-frequency quantum cascade lasers (THz QCLs). We analysed four exemplary structures: a bound-to-continuum design, hybrid design, LO-phonon design and a two-well high-temperature performance LO-phonon design. The exemplary bound-to-continuum design has shown to be the most sensitive to the background doping as it stops lasing for concentrations around $$1.0\cdot 10^{15}$$ 1.0 · 10 15 – $$2.0\cdot 10^{15}$$ 2.0 · 10 15 cm $$^{-3}$$ - 3 . The LO-phonon design is the most sensitive to growth fluctuations during MBE and this is critical for novel LO-phonon structures optimised for high-temperature performance. We predict that interdiffusion mostly affects current density for designs with narrow barrier layers and higher $$\textrm{Al}$$ Al composition. We show that layer thickness variation leads to significant changes in material gain and current density, and in some cases to the growth of nonfunctional devices. These effects serve as a beacon of fundamental calibration steps required for successful realisation of THz QCLs. Medicine R Science Q Aleksandar Demić verfasserin aut Nikola Vuković verfasserin aut Paul Dean verfasserin aut Zoran Ikonić verfasserin aut Dragan Indjin verfasserin aut Jelena Radovanović verfasserin aut In Scientific Reports Nature Portfolio, 2011 14(2024), 1, Seite 13 (DE-627)663366712 (DE-600)2615211-3 20452322 nnns volume:14 year:2024 number:1 pages:13 https://doi.org/10.1038/s41598-024-55700-7 kostenfrei https://doaj.org/article/a9129d27a7f94961821d8b0638fd5a4a kostenfrei https://doi.org/10.1038/s41598-024-55700-7 kostenfrei https://doaj.org/toc/2045-2322 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2024 1 13 |
allfieldsGer |
10.1038/s41598-024-55700-7 doi (DE-627)DOAJ092313663 (DE-599)DOAJa9129d27a7f94961821d8b0638fd5a4a DE-627 ger DE-627 rakwb eng Novak Stanojević verfasserin aut Effects of background doping, interdiffusion and layer thickness fluctuation on the transport characteristics of THz quantum cascade lasers 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In this work, we investigate the effects of n and p-type background doping, interface composition diffusion (interdiffusion) of the barrier material and layer thickness variation during molecular beam epitaxy (MBE) growth on transport characteristics of terahertz-frequency quantum cascade lasers (THz QCLs). We analysed four exemplary structures: a bound-to-continuum design, hybrid design, LO-phonon design and a two-well high-temperature performance LO-phonon design. The exemplary bound-to-continuum design has shown to be the most sensitive to the background doping as it stops lasing for concentrations around $$1.0\cdot 10^{15}$$ 1.0 · 10 15 – $$2.0\cdot 10^{15}$$ 2.0 · 10 15 cm $$^{-3}$$ - 3 . The LO-phonon design is the most sensitive to growth fluctuations during MBE and this is critical for novel LO-phonon structures optimised for high-temperature performance. We predict that interdiffusion mostly affects current density for designs with narrow barrier layers and higher $$\textrm{Al}$$ Al composition. We show that layer thickness variation leads to significant changes in material gain and current density, and in some cases to the growth of nonfunctional devices. These effects serve as a beacon of fundamental calibration steps required for successful realisation of THz QCLs. Medicine R Science Q Aleksandar Demić verfasserin aut Nikola Vuković verfasserin aut Paul Dean verfasserin aut Zoran Ikonić verfasserin aut Dragan Indjin verfasserin aut Jelena Radovanović verfasserin aut In Scientific Reports Nature Portfolio, 2011 14(2024), 1, Seite 13 (DE-627)663366712 (DE-600)2615211-3 20452322 nnns volume:14 year:2024 number:1 pages:13 https://doi.org/10.1038/s41598-024-55700-7 kostenfrei https://doaj.org/article/a9129d27a7f94961821d8b0638fd5a4a kostenfrei https://doi.org/10.1038/s41598-024-55700-7 kostenfrei https://doaj.org/toc/2045-2322 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2024 1 13 |
allfieldsSound |
10.1038/s41598-024-55700-7 doi (DE-627)DOAJ092313663 (DE-599)DOAJa9129d27a7f94961821d8b0638fd5a4a DE-627 ger DE-627 rakwb eng Novak Stanojević verfasserin aut Effects of background doping, interdiffusion and layer thickness fluctuation on the transport characteristics of THz quantum cascade lasers 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In this work, we investigate the effects of n and p-type background doping, interface composition diffusion (interdiffusion) of the barrier material and layer thickness variation during molecular beam epitaxy (MBE) growth on transport characteristics of terahertz-frequency quantum cascade lasers (THz QCLs). We analysed four exemplary structures: a bound-to-continuum design, hybrid design, LO-phonon design and a two-well high-temperature performance LO-phonon design. The exemplary bound-to-continuum design has shown to be the most sensitive to the background doping as it stops lasing for concentrations around $$1.0\cdot 10^{15}$$ 1.0 · 10 15 – $$2.0\cdot 10^{15}$$ 2.0 · 10 15 cm $$^{-3}$$ - 3 . The LO-phonon design is the most sensitive to growth fluctuations during MBE and this is critical for novel LO-phonon structures optimised for high-temperature performance. We predict that interdiffusion mostly affects current density for designs with narrow barrier layers and higher $$\textrm{Al}$$ Al composition. We show that layer thickness variation leads to significant changes in material gain and current density, and in some cases to the growth of nonfunctional devices. These effects serve as a beacon of fundamental calibration steps required for successful realisation of THz QCLs. Medicine R Science Q Aleksandar Demić verfasserin aut Nikola Vuković verfasserin aut Paul Dean verfasserin aut Zoran Ikonić verfasserin aut Dragan Indjin verfasserin aut Jelena Radovanović verfasserin aut In Scientific Reports Nature Portfolio, 2011 14(2024), 1, Seite 13 (DE-627)663366712 (DE-600)2615211-3 20452322 nnns volume:14 year:2024 number:1 pages:13 https://doi.org/10.1038/s41598-024-55700-7 kostenfrei https://doaj.org/article/a9129d27a7f94961821d8b0638fd5a4a kostenfrei https://doi.org/10.1038/s41598-024-55700-7 kostenfrei https://doaj.org/toc/2045-2322 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2024 1 13 |
language |
English |
source |
In Scientific Reports 14(2024), 1, Seite 13 volume:14 year:2024 number:1 pages:13 |
sourceStr |
In Scientific Reports 14(2024), 1, Seite 13 volume:14 year:2024 number:1 pages:13 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Medicine R Science Q |
isfreeaccess_bool |
true |
container_title |
Scientific Reports |
authorswithroles_txt_mv |
Novak Stanojević @@aut@@ Aleksandar Demić @@aut@@ Nikola Vuković @@aut@@ Paul Dean @@aut@@ Zoran Ikonić @@aut@@ Dragan Indjin @@aut@@ Jelena Radovanović @@aut@@ |
publishDateDaySort_date |
2024-01-01T00:00:00Z |
hierarchy_top_id |
663366712 |
id |
DOAJ092313663 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ092313663</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412121426.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240412s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1038/s41598-024-55700-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ092313663</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJa9129d27a7f94961821d8b0638fd5a4a</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Novak Stanojević</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Effects of background doping, interdiffusion and layer thickness fluctuation on the transport characteristics of THz quantum cascade lasers</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this work, we investigate the effects of n and p-type background doping, interface composition diffusion (interdiffusion) of the barrier material and layer thickness variation during molecular beam epitaxy (MBE) growth on transport characteristics of terahertz-frequency quantum cascade lasers (THz QCLs). We analysed four exemplary structures: a bound-to-continuum design, hybrid design, LO-phonon design and a two-well high-temperature performance LO-phonon design. The exemplary bound-to-continuum design has shown to be the most sensitive to the background doping as it stops lasing for concentrations around $$1.0\cdot 10^{15}$$ 1.0 · 10 15 – $$2.0\cdot 10^{15}$$ 2.0 · 10 15 cm $$^{-3}$$ - 3 . The LO-phonon design is the most sensitive to growth fluctuations during MBE and this is critical for novel LO-phonon structures optimised for high-temperature performance. We predict that interdiffusion mostly affects current density for designs with narrow barrier layers and higher $$\textrm{Al}$$ Al composition. We show that layer thickness variation leads to significant changes in material gain and current density, and in some cases to the growth of nonfunctional devices. These effects serve as a beacon of fundamental calibration steps required for successful realisation of THz QCLs.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Aleksandar Demić</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nikola Vuković</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Paul Dean</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zoran Ikonić</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dragan Indjin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jelena Radovanović</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Scientific Reports</subfield><subfield code="d">Nature Portfolio, 2011</subfield><subfield code="g">14(2024), 1, Seite 13</subfield><subfield code="w">(DE-627)663366712</subfield><subfield code="w">(DE-600)2615211-3</subfield><subfield code="x">20452322</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:13</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1038/s41598-024-55700-7</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/a9129d27a7f94961821d8b0638fd5a4a</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1038/s41598-024-55700-7</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2045-2322</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_381</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2024</subfield><subfield code="e">1</subfield><subfield code="h">13</subfield></datafield></record></collection>
|
author |
Novak Stanojević |
spellingShingle |
Novak Stanojević misc Medicine misc R misc Science misc Q Effects of background doping, interdiffusion and layer thickness fluctuation on the transport characteristics of THz quantum cascade lasers |
authorStr |
Novak Stanojević |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)663366712 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
20452322 |
topic_title |
Effects of background doping, interdiffusion and layer thickness fluctuation on the transport characteristics of THz quantum cascade lasers |
topic |
misc Medicine misc R misc Science misc Q |
topic_unstemmed |
misc Medicine misc R misc Science misc Q |
topic_browse |
misc Medicine misc R misc Science misc Q |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Scientific Reports |
hierarchy_parent_id |
663366712 |
hierarchy_top_title |
Scientific Reports |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)663366712 (DE-600)2615211-3 |
title |
Effects of background doping, interdiffusion and layer thickness fluctuation on the transport characteristics of THz quantum cascade lasers |
ctrlnum |
(DE-627)DOAJ092313663 (DE-599)DOAJa9129d27a7f94961821d8b0638fd5a4a |
title_full |
Effects of background doping, interdiffusion and layer thickness fluctuation on the transport characteristics of THz quantum cascade lasers |
author_sort |
Novak Stanojević |
journal |
Scientific Reports |
journalStr |
Scientific Reports |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
container_start_page |
13 |
author_browse |
Novak Stanojević Aleksandar Demić Nikola Vuković Paul Dean Zoran Ikonić Dragan Indjin Jelena Radovanović |
container_volume |
14 |
format_se |
Elektronische Aufsätze |
author-letter |
Novak Stanojević |
doi_str_mv |
10.1038/s41598-024-55700-7 |
author2-role |
verfasserin |
title_sort |
effects of background doping, interdiffusion and layer thickness fluctuation on the transport characteristics of thz quantum cascade lasers |
title_auth |
Effects of background doping, interdiffusion and layer thickness fluctuation on the transport characteristics of THz quantum cascade lasers |
abstract |
Abstract In this work, we investigate the effects of n and p-type background doping, interface composition diffusion (interdiffusion) of the barrier material and layer thickness variation during molecular beam epitaxy (MBE) growth on transport characteristics of terahertz-frequency quantum cascade lasers (THz QCLs). We analysed four exemplary structures: a bound-to-continuum design, hybrid design, LO-phonon design and a two-well high-temperature performance LO-phonon design. The exemplary bound-to-continuum design has shown to be the most sensitive to the background doping as it stops lasing for concentrations around $$1.0\cdot 10^{15}$$ 1.0 · 10 15 – $$2.0\cdot 10^{15}$$ 2.0 · 10 15 cm $$^{-3}$$ - 3 . The LO-phonon design is the most sensitive to growth fluctuations during MBE and this is critical for novel LO-phonon structures optimised for high-temperature performance. We predict that interdiffusion mostly affects current density for designs with narrow barrier layers and higher $$\textrm{Al}$$ Al composition. We show that layer thickness variation leads to significant changes in material gain and current density, and in some cases to the growth of nonfunctional devices. These effects serve as a beacon of fundamental calibration steps required for successful realisation of THz QCLs. |
abstractGer |
Abstract In this work, we investigate the effects of n and p-type background doping, interface composition diffusion (interdiffusion) of the barrier material and layer thickness variation during molecular beam epitaxy (MBE) growth on transport characteristics of terahertz-frequency quantum cascade lasers (THz QCLs). We analysed four exemplary structures: a bound-to-continuum design, hybrid design, LO-phonon design and a two-well high-temperature performance LO-phonon design. The exemplary bound-to-continuum design has shown to be the most sensitive to the background doping as it stops lasing for concentrations around $$1.0\cdot 10^{15}$$ 1.0 · 10 15 – $$2.0\cdot 10^{15}$$ 2.0 · 10 15 cm $$^{-3}$$ - 3 . The LO-phonon design is the most sensitive to growth fluctuations during MBE and this is critical for novel LO-phonon structures optimised for high-temperature performance. We predict that interdiffusion mostly affects current density for designs with narrow barrier layers and higher $$\textrm{Al}$$ Al composition. We show that layer thickness variation leads to significant changes in material gain and current density, and in some cases to the growth of nonfunctional devices. These effects serve as a beacon of fundamental calibration steps required for successful realisation of THz QCLs. |
abstract_unstemmed |
Abstract In this work, we investigate the effects of n and p-type background doping, interface composition diffusion (interdiffusion) of the barrier material and layer thickness variation during molecular beam epitaxy (MBE) growth on transport characteristics of terahertz-frequency quantum cascade lasers (THz QCLs). We analysed four exemplary structures: a bound-to-continuum design, hybrid design, LO-phonon design and a two-well high-temperature performance LO-phonon design. The exemplary bound-to-continuum design has shown to be the most sensitive to the background doping as it stops lasing for concentrations around $$1.0\cdot 10^{15}$$ 1.0 · 10 15 – $$2.0\cdot 10^{15}$$ 2.0 · 10 15 cm $$^{-3}$$ - 3 . The LO-phonon design is the most sensitive to growth fluctuations during MBE and this is critical for novel LO-phonon structures optimised for high-temperature performance. We predict that interdiffusion mostly affects current density for designs with narrow barrier layers and higher $$\textrm{Al}$$ Al composition. We show that layer thickness variation leads to significant changes in material gain and current density, and in some cases to the growth of nonfunctional devices. These effects serve as a beacon of fundamental calibration steps required for successful realisation of THz QCLs. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Effects of background doping, interdiffusion and layer thickness fluctuation on the transport characteristics of THz quantum cascade lasers |
url |
https://doi.org/10.1038/s41598-024-55700-7 https://doaj.org/article/a9129d27a7f94961821d8b0638fd5a4a https://doaj.org/toc/2045-2322 |
remote_bool |
true |
author2 |
Aleksandar Demić Nikola Vuković Paul Dean Zoran Ikonić Dragan Indjin Jelena Radovanović |
author2Str |
Aleksandar Demić Nikola Vuković Paul Dean Zoran Ikonić Dragan Indjin Jelena Radovanović |
ppnlink |
663366712 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1038/s41598-024-55700-7 |
up_date |
2024-07-04T00:55:21.363Z |
_version_ |
1803607889794826240 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ092313663</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412121426.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240412s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1038/s41598-024-55700-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ092313663</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJa9129d27a7f94961821d8b0638fd5a4a</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Novak Stanojević</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Effects of background doping, interdiffusion and layer thickness fluctuation on the transport characteristics of THz quantum cascade lasers</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this work, we investigate the effects of n and p-type background doping, interface composition diffusion (interdiffusion) of the barrier material and layer thickness variation during molecular beam epitaxy (MBE) growth on transport characteristics of terahertz-frequency quantum cascade lasers (THz QCLs). We analysed four exemplary structures: a bound-to-continuum design, hybrid design, LO-phonon design and a two-well high-temperature performance LO-phonon design. The exemplary bound-to-continuum design has shown to be the most sensitive to the background doping as it stops lasing for concentrations around $$1.0\cdot 10^{15}$$ 1.0 · 10 15 – $$2.0\cdot 10^{15}$$ 2.0 · 10 15 cm $$^{-3}$$ - 3 . The LO-phonon design is the most sensitive to growth fluctuations during MBE and this is critical for novel LO-phonon structures optimised for high-temperature performance. We predict that interdiffusion mostly affects current density for designs with narrow barrier layers and higher $$\textrm{Al}$$ Al composition. We show that layer thickness variation leads to significant changes in material gain and current density, and in some cases to the growth of nonfunctional devices. These effects serve as a beacon of fundamental calibration steps required for successful realisation of THz QCLs.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Aleksandar Demić</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nikola Vuković</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Paul Dean</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zoran Ikonić</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dragan Indjin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jelena Radovanović</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Scientific Reports</subfield><subfield code="d">Nature Portfolio, 2011</subfield><subfield code="g">14(2024), 1, Seite 13</subfield><subfield code="w">(DE-627)663366712</subfield><subfield code="w">(DE-600)2615211-3</subfield><subfield code="x">20452322</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:13</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1038/s41598-024-55700-7</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/a9129d27a7f94961821d8b0638fd5a4a</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1038/s41598-024-55700-7</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2045-2322</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_381</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2024</subfield><subfield code="e">1</subfield><subfield code="h">13</subfield></datafield></record></collection>
|
score |
7.400613 |