A cross-domain intelligent fault diagnosis method based on feature transfer with improved Inception ResNet for rolling bearings under varying working condition

With the popularity of smart manufacturing, data-driven fault diagnosis methods for rolling bearings have been extensively studied in recent years. Existing rolling bearing fault diagnosis method has problems such as low precision and poor generalization ability when diagnosing multi-working conditi...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Jiaqi TIAN [verfasserIn]

Bin GU [verfasserIn]

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2024

Schlagwörter:

fault diagnosis

deep learning

convolution neural network

transfer learning

residual network

Übergeordnetes Werk:

In: Journal of Advanced Mechanical Design, Systems, and Manufacturing - The Japan Society of Mechanical Engineers, 2022, 18(2024), 2, Seite JAMDSM0012-JAMDSM0012

Übergeordnetes Werk:

volume:18 ; year:2024 ; number:2 ; pages:JAMDSM0012-JAMDSM0012

Links:

Link aufrufen
Link aufrufen
Link aufrufen
Journal toc

DOI / URN:

10.1299/jamdsm.2024jamdsm0012

Katalog-ID:

DOAJ092477267

Nicht das Richtige dabei?

Schreiben Sie uns!