Simultaneously enhancing the strength and electrical conductivity of Cu-Ni-Sn alloy through plastic deformation of an intermetallic compound
The precipitation strengthening can significantly increase the strength but inevitably sacrifices the electrical conductivity of Cu-Ni-Sn alloys. In this study, a Cu-9Ni-6Sn alloy was aged at various temperatures for different durations and then subjected to severe plastic deformation. When the allo...
Ausführliche Beschreibung
Autor*in: |
Haowen Jiang [verfasserIn] Lijun Peng [verfasserIn] Xujun Mi [verfasserIn] Hong Guo [verfasserIn] Haofeng Xie [verfasserIn] Dongmei Liu [verfasserIn] Feng Liu [verfasserIn] Zhen Yang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Materials & Design - Elsevier, 2019, 235(2023), Seite 112445- |
---|---|
Übergeordnetes Werk: |
volume:235 ; year:2023 ; pages:112445- |
Links: |
---|
DOI / URN: |
10.1016/j.matdes.2023.112445 |
---|
Katalog-ID: |
DOAJ092566960 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ092566960 | ||
003 | DE-627 | ||
005 | 20240412165529.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240412s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.matdes.2023.112445 |2 doi | |
035 | |a (DE-627)DOAJ092566960 | ||
035 | |a (DE-599)DOAJ6a2e0d33caf54b569fbd13c14b38ce97 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TA401-492 | |
100 | 0 | |a Haowen Jiang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Simultaneously enhancing the strength and electrical conductivity of Cu-Ni-Sn alloy through plastic deformation of an intermetallic compound |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The precipitation strengthening can significantly increase the strength but inevitably sacrifices the electrical conductivity of Cu-Ni-Sn alloys. In this study, a Cu-9Ni-6Sn alloy was aged at various temperatures for different durations and then subjected to severe plastic deformation. When the alloy was aged at 400 °C for 36 h, the uniformly distributed fine precipitates totally transitioned to discontinuous precipitates. And formed nanofibers of intermetallic compounds after plastic deformation. The tensile strength and electrical conductivity of the treated alloy were 1178 ± 3 MPa and 25.0 ± 0.1 % IACS, respectively, which were close to those of Cu-Be alloys. Compared to traditional alloys, the strength and conductivity were both improved. The main strengthening mechanisms were dislocation and fiber strengthening. Considering these mechanisms, the theoretical yield strength was determined to be 1091 MPa, which was close to the experimental value. This work provides a new approach for the preparation of copper alloys with excellent comprehensive performance. | ||
650 | 4 | |a Cu-9Ni-6Sn alloy | |
650 | 4 | |a Phase transformation | |
650 | 4 | |a Discontinuous precipitation nanofiber | |
650 | 4 | |a Strengthening mechanism | |
650 | 4 | |a Morphology | |
653 | 0 | |a Materials of engineering and construction. Mechanics of materials | |
700 | 0 | |a Lijun Peng |e verfasserin |4 aut | |
700 | 0 | |a Xujun Mi |e verfasserin |4 aut | |
700 | 0 | |a Hong Guo |e verfasserin |4 aut | |
700 | 0 | |a Haofeng Xie |e verfasserin |4 aut | |
700 | 0 | |a Dongmei Liu |e verfasserin |4 aut | |
700 | 0 | |a Feng Liu |e verfasserin |4 aut | |
700 | 0 | |a Zhen Yang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Materials & Design |d Elsevier, 2019 |g 235(2023), Seite 112445- |w (DE-627)32052857X |w (DE-600)2015480-X |x 18734197 |7 nnns |
773 | 1 | 8 | |g volume:235 |g year:2023 |g pages:112445- |
856 | 4 | 0 | |u https://doi.org/10.1016/j.matdes.2023.112445 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/6a2e0d33caf54b569fbd13c14b38ce97 |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S0264127523008602 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/0264-1275 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_165 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 235 |j 2023 |h 112445- |
author_variant |
h j hj l p lp x m xm h g hg h x hx d l dl f l fl z y zy |
---|---|
matchkey_str |
article:18734197:2023----::iutnosynacnteteghneetiacnutvtocnsalyhogpatceo |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
TA |
publishDate |
2023 |
allfields |
10.1016/j.matdes.2023.112445 doi (DE-627)DOAJ092566960 (DE-599)DOAJ6a2e0d33caf54b569fbd13c14b38ce97 DE-627 ger DE-627 rakwb eng TA401-492 Haowen Jiang verfasserin aut Simultaneously enhancing the strength and electrical conductivity of Cu-Ni-Sn alloy through plastic deformation of an intermetallic compound 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The precipitation strengthening can significantly increase the strength but inevitably sacrifices the electrical conductivity of Cu-Ni-Sn alloys. In this study, a Cu-9Ni-6Sn alloy was aged at various temperatures for different durations and then subjected to severe plastic deformation. When the alloy was aged at 400 °C for 36 h, the uniformly distributed fine precipitates totally transitioned to discontinuous precipitates. And formed nanofibers of intermetallic compounds after plastic deformation. The tensile strength and electrical conductivity of the treated alloy were 1178 ± 3 MPa and 25.0 ± 0.1 % IACS, respectively, which were close to those of Cu-Be alloys. Compared to traditional alloys, the strength and conductivity were both improved. The main strengthening mechanisms were dislocation and fiber strengthening. Considering these mechanisms, the theoretical yield strength was determined to be 1091 MPa, which was close to the experimental value. This work provides a new approach for the preparation of copper alloys with excellent comprehensive performance. Cu-9Ni-6Sn alloy Phase transformation Discontinuous precipitation nanofiber Strengthening mechanism Morphology Materials of engineering and construction. Mechanics of materials Lijun Peng verfasserin aut Xujun Mi verfasserin aut Hong Guo verfasserin aut Haofeng Xie verfasserin aut Dongmei Liu verfasserin aut Feng Liu verfasserin aut Zhen Yang verfasserin aut In Materials & Design Elsevier, 2019 235(2023), Seite 112445- (DE-627)32052857X (DE-600)2015480-X 18734197 nnns volume:235 year:2023 pages:112445- https://doi.org/10.1016/j.matdes.2023.112445 kostenfrei https://doaj.org/article/6a2e0d33caf54b569fbd13c14b38ce97 kostenfrei http://www.sciencedirect.com/science/article/pii/S0264127523008602 kostenfrei https://doaj.org/toc/0264-1275 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 235 2023 112445- |
spelling |
10.1016/j.matdes.2023.112445 doi (DE-627)DOAJ092566960 (DE-599)DOAJ6a2e0d33caf54b569fbd13c14b38ce97 DE-627 ger DE-627 rakwb eng TA401-492 Haowen Jiang verfasserin aut Simultaneously enhancing the strength and electrical conductivity of Cu-Ni-Sn alloy through plastic deformation of an intermetallic compound 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The precipitation strengthening can significantly increase the strength but inevitably sacrifices the electrical conductivity of Cu-Ni-Sn alloys. In this study, a Cu-9Ni-6Sn alloy was aged at various temperatures for different durations and then subjected to severe plastic deformation. When the alloy was aged at 400 °C for 36 h, the uniformly distributed fine precipitates totally transitioned to discontinuous precipitates. And formed nanofibers of intermetallic compounds after plastic deformation. The tensile strength and electrical conductivity of the treated alloy were 1178 ± 3 MPa and 25.0 ± 0.1 % IACS, respectively, which were close to those of Cu-Be alloys. Compared to traditional alloys, the strength and conductivity were both improved. The main strengthening mechanisms were dislocation and fiber strengthening. Considering these mechanisms, the theoretical yield strength was determined to be 1091 MPa, which was close to the experimental value. This work provides a new approach for the preparation of copper alloys with excellent comprehensive performance. Cu-9Ni-6Sn alloy Phase transformation Discontinuous precipitation nanofiber Strengthening mechanism Morphology Materials of engineering and construction. Mechanics of materials Lijun Peng verfasserin aut Xujun Mi verfasserin aut Hong Guo verfasserin aut Haofeng Xie verfasserin aut Dongmei Liu verfasserin aut Feng Liu verfasserin aut Zhen Yang verfasserin aut In Materials & Design Elsevier, 2019 235(2023), Seite 112445- (DE-627)32052857X (DE-600)2015480-X 18734197 nnns volume:235 year:2023 pages:112445- https://doi.org/10.1016/j.matdes.2023.112445 kostenfrei https://doaj.org/article/6a2e0d33caf54b569fbd13c14b38ce97 kostenfrei http://www.sciencedirect.com/science/article/pii/S0264127523008602 kostenfrei https://doaj.org/toc/0264-1275 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 235 2023 112445- |
allfields_unstemmed |
10.1016/j.matdes.2023.112445 doi (DE-627)DOAJ092566960 (DE-599)DOAJ6a2e0d33caf54b569fbd13c14b38ce97 DE-627 ger DE-627 rakwb eng TA401-492 Haowen Jiang verfasserin aut Simultaneously enhancing the strength and electrical conductivity of Cu-Ni-Sn alloy through plastic deformation of an intermetallic compound 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The precipitation strengthening can significantly increase the strength but inevitably sacrifices the electrical conductivity of Cu-Ni-Sn alloys. In this study, a Cu-9Ni-6Sn alloy was aged at various temperatures for different durations and then subjected to severe plastic deformation. When the alloy was aged at 400 °C for 36 h, the uniformly distributed fine precipitates totally transitioned to discontinuous precipitates. And formed nanofibers of intermetallic compounds after plastic deformation. The tensile strength and electrical conductivity of the treated alloy were 1178 ± 3 MPa and 25.0 ± 0.1 % IACS, respectively, which were close to those of Cu-Be alloys. Compared to traditional alloys, the strength and conductivity were both improved. The main strengthening mechanisms were dislocation and fiber strengthening. Considering these mechanisms, the theoretical yield strength was determined to be 1091 MPa, which was close to the experimental value. This work provides a new approach for the preparation of copper alloys with excellent comprehensive performance. Cu-9Ni-6Sn alloy Phase transformation Discontinuous precipitation nanofiber Strengthening mechanism Morphology Materials of engineering and construction. Mechanics of materials Lijun Peng verfasserin aut Xujun Mi verfasserin aut Hong Guo verfasserin aut Haofeng Xie verfasserin aut Dongmei Liu verfasserin aut Feng Liu verfasserin aut Zhen Yang verfasserin aut In Materials & Design Elsevier, 2019 235(2023), Seite 112445- (DE-627)32052857X (DE-600)2015480-X 18734197 nnns volume:235 year:2023 pages:112445- https://doi.org/10.1016/j.matdes.2023.112445 kostenfrei https://doaj.org/article/6a2e0d33caf54b569fbd13c14b38ce97 kostenfrei http://www.sciencedirect.com/science/article/pii/S0264127523008602 kostenfrei https://doaj.org/toc/0264-1275 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 235 2023 112445- |
allfieldsGer |
10.1016/j.matdes.2023.112445 doi (DE-627)DOAJ092566960 (DE-599)DOAJ6a2e0d33caf54b569fbd13c14b38ce97 DE-627 ger DE-627 rakwb eng TA401-492 Haowen Jiang verfasserin aut Simultaneously enhancing the strength and electrical conductivity of Cu-Ni-Sn alloy through plastic deformation of an intermetallic compound 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The precipitation strengthening can significantly increase the strength but inevitably sacrifices the electrical conductivity of Cu-Ni-Sn alloys. In this study, a Cu-9Ni-6Sn alloy was aged at various temperatures for different durations and then subjected to severe plastic deformation. When the alloy was aged at 400 °C for 36 h, the uniformly distributed fine precipitates totally transitioned to discontinuous precipitates. And formed nanofibers of intermetallic compounds after plastic deformation. The tensile strength and electrical conductivity of the treated alloy were 1178 ± 3 MPa and 25.0 ± 0.1 % IACS, respectively, which were close to those of Cu-Be alloys. Compared to traditional alloys, the strength and conductivity were both improved. The main strengthening mechanisms were dislocation and fiber strengthening. Considering these mechanisms, the theoretical yield strength was determined to be 1091 MPa, which was close to the experimental value. This work provides a new approach for the preparation of copper alloys with excellent comprehensive performance. Cu-9Ni-6Sn alloy Phase transformation Discontinuous precipitation nanofiber Strengthening mechanism Morphology Materials of engineering and construction. Mechanics of materials Lijun Peng verfasserin aut Xujun Mi verfasserin aut Hong Guo verfasserin aut Haofeng Xie verfasserin aut Dongmei Liu verfasserin aut Feng Liu verfasserin aut Zhen Yang verfasserin aut In Materials & Design Elsevier, 2019 235(2023), Seite 112445- (DE-627)32052857X (DE-600)2015480-X 18734197 nnns volume:235 year:2023 pages:112445- https://doi.org/10.1016/j.matdes.2023.112445 kostenfrei https://doaj.org/article/6a2e0d33caf54b569fbd13c14b38ce97 kostenfrei http://www.sciencedirect.com/science/article/pii/S0264127523008602 kostenfrei https://doaj.org/toc/0264-1275 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 235 2023 112445- |
allfieldsSound |
10.1016/j.matdes.2023.112445 doi (DE-627)DOAJ092566960 (DE-599)DOAJ6a2e0d33caf54b569fbd13c14b38ce97 DE-627 ger DE-627 rakwb eng TA401-492 Haowen Jiang verfasserin aut Simultaneously enhancing the strength and electrical conductivity of Cu-Ni-Sn alloy through plastic deformation of an intermetallic compound 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The precipitation strengthening can significantly increase the strength but inevitably sacrifices the electrical conductivity of Cu-Ni-Sn alloys. In this study, a Cu-9Ni-6Sn alloy was aged at various temperatures for different durations and then subjected to severe plastic deformation. When the alloy was aged at 400 °C for 36 h, the uniformly distributed fine precipitates totally transitioned to discontinuous precipitates. And formed nanofibers of intermetallic compounds after plastic deformation. The tensile strength and electrical conductivity of the treated alloy were 1178 ± 3 MPa and 25.0 ± 0.1 % IACS, respectively, which were close to those of Cu-Be alloys. Compared to traditional alloys, the strength and conductivity were both improved. The main strengthening mechanisms were dislocation and fiber strengthening. Considering these mechanisms, the theoretical yield strength was determined to be 1091 MPa, which was close to the experimental value. This work provides a new approach for the preparation of copper alloys with excellent comprehensive performance. Cu-9Ni-6Sn alloy Phase transformation Discontinuous precipitation nanofiber Strengthening mechanism Morphology Materials of engineering and construction. Mechanics of materials Lijun Peng verfasserin aut Xujun Mi verfasserin aut Hong Guo verfasserin aut Haofeng Xie verfasserin aut Dongmei Liu verfasserin aut Feng Liu verfasserin aut Zhen Yang verfasserin aut In Materials & Design Elsevier, 2019 235(2023), Seite 112445- (DE-627)32052857X (DE-600)2015480-X 18734197 nnns volume:235 year:2023 pages:112445- https://doi.org/10.1016/j.matdes.2023.112445 kostenfrei https://doaj.org/article/6a2e0d33caf54b569fbd13c14b38ce97 kostenfrei http://www.sciencedirect.com/science/article/pii/S0264127523008602 kostenfrei https://doaj.org/toc/0264-1275 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 235 2023 112445- |
language |
English |
source |
In Materials & Design 235(2023), Seite 112445- volume:235 year:2023 pages:112445- |
sourceStr |
In Materials & Design 235(2023), Seite 112445- volume:235 year:2023 pages:112445- |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Cu-9Ni-6Sn alloy Phase transformation Discontinuous precipitation nanofiber Strengthening mechanism Morphology Materials of engineering and construction. Mechanics of materials |
isfreeaccess_bool |
true |
container_title |
Materials & Design |
authorswithroles_txt_mv |
Haowen Jiang @@aut@@ Lijun Peng @@aut@@ Xujun Mi @@aut@@ Hong Guo @@aut@@ Haofeng Xie @@aut@@ Dongmei Liu @@aut@@ Feng Liu @@aut@@ Zhen Yang @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
32052857X |
id |
DOAJ092566960 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ092566960</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412165529.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240412s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.matdes.2023.112445</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ092566960</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ6a2e0d33caf54b569fbd13c14b38ce97</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA401-492</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Haowen Jiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Simultaneously enhancing the strength and electrical conductivity of Cu-Ni-Sn alloy through plastic deformation of an intermetallic compound</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The precipitation strengthening can significantly increase the strength but inevitably sacrifices the electrical conductivity of Cu-Ni-Sn alloys. In this study, a Cu-9Ni-6Sn alloy was aged at various temperatures for different durations and then subjected to severe plastic deformation. When the alloy was aged at 400 °C for 36 h, the uniformly distributed fine precipitates totally transitioned to discontinuous precipitates. And formed nanofibers of intermetallic compounds after plastic deformation. The tensile strength and electrical conductivity of the treated alloy were 1178 ± 3 MPa and 25.0 ± 0.1 % IACS, respectively, which were close to those of Cu-Be alloys. Compared to traditional alloys, the strength and conductivity were both improved. The main strengthening mechanisms were dislocation and fiber strengthening. Considering these mechanisms, the theoretical yield strength was determined to be 1091 MPa, which was close to the experimental value. This work provides a new approach for the preparation of copper alloys with excellent comprehensive performance.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cu-9Ni-6Sn alloy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phase transformation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Discontinuous precipitation nanofiber</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Strengthening mechanism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Morphology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Materials of engineering and construction. Mechanics of materials</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lijun Peng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xujun Mi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hong Guo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haofeng Xie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dongmei Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Feng Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhen Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Materials & Design</subfield><subfield code="d">Elsevier, 2019</subfield><subfield code="g">235(2023), Seite 112445-</subfield><subfield code="w">(DE-627)32052857X</subfield><subfield code="w">(DE-600)2015480-X</subfield><subfield code="x">18734197</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:235</subfield><subfield code="g">year:2023</subfield><subfield code="g">pages:112445-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.matdes.2023.112445</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/6a2e0d33caf54b569fbd13c14b38ce97</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S0264127523008602</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/0264-1275</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_165</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">235</subfield><subfield code="j">2023</subfield><subfield code="h">112445-</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Haowen Jiang |
spellingShingle |
Haowen Jiang misc TA401-492 misc Cu-9Ni-6Sn alloy misc Phase transformation misc Discontinuous precipitation nanofiber misc Strengthening mechanism misc Morphology misc Materials of engineering and construction. Mechanics of materials Simultaneously enhancing the strength and electrical conductivity of Cu-Ni-Sn alloy through plastic deformation of an intermetallic compound |
authorStr |
Haowen Jiang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)32052857X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA401-492 |
illustrated |
Not Illustrated |
issn |
18734197 |
topic_title |
TA401-492 Simultaneously enhancing the strength and electrical conductivity of Cu-Ni-Sn alloy through plastic deformation of an intermetallic compound Cu-9Ni-6Sn alloy Phase transformation Discontinuous precipitation nanofiber Strengthening mechanism Morphology |
topic |
misc TA401-492 misc Cu-9Ni-6Sn alloy misc Phase transformation misc Discontinuous precipitation nanofiber misc Strengthening mechanism misc Morphology misc Materials of engineering and construction. Mechanics of materials |
topic_unstemmed |
misc TA401-492 misc Cu-9Ni-6Sn alloy misc Phase transformation misc Discontinuous precipitation nanofiber misc Strengthening mechanism misc Morphology misc Materials of engineering and construction. Mechanics of materials |
topic_browse |
misc TA401-492 misc Cu-9Ni-6Sn alloy misc Phase transformation misc Discontinuous precipitation nanofiber misc Strengthening mechanism misc Morphology misc Materials of engineering and construction. Mechanics of materials |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Materials & Design |
hierarchy_parent_id |
32052857X |
hierarchy_top_title |
Materials & Design |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)32052857X (DE-600)2015480-X |
title |
Simultaneously enhancing the strength and electrical conductivity of Cu-Ni-Sn alloy through plastic deformation of an intermetallic compound |
ctrlnum |
(DE-627)DOAJ092566960 (DE-599)DOAJ6a2e0d33caf54b569fbd13c14b38ce97 |
title_full |
Simultaneously enhancing the strength and electrical conductivity of Cu-Ni-Sn alloy through plastic deformation of an intermetallic compound |
author_sort |
Haowen Jiang |
journal |
Materials & Design |
journalStr |
Materials & Design |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
container_start_page |
112445 |
author_browse |
Haowen Jiang Lijun Peng Xujun Mi Hong Guo Haofeng Xie Dongmei Liu Feng Liu Zhen Yang |
container_volume |
235 |
class |
TA401-492 |
format_se |
Elektronische Aufsätze |
author-letter |
Haowen Jiang |
doi_str_mv |
10.1016/j.matdes.2023.112445 |
author2-role |
verfasserin |
title_sort |
simultaneously enhancing the strength and electrical conductivity of cu-ni-sn alloy through plastic deformation of an intermetallic compound |
callnumber |
TA401-492 |
title_auth |
Simultaneously enhancing the strength and electrical conductivity of Cu-Ni-Sn alloy through plastic deformation of an intermetallic compound |
abstract |
The precipitation strengthening can significantly increase the strength but inevitably sacrifices the electrical conductivity of Cu-Ni-Sn alloys. In this study, a Cu-9Ni-6Sn alloy was aged at various temperatures for different durations and then subjected to severe plastic deformation. When the alloy was aged at 400 °C for 36 h, the uniformly distributed fine precipitates totally transitioned to discontinuous precipitates. And formed nanofibers of intermetallic compounds after plastic deformation. The tensile strength and electrical conductivity of the treated alloy were 1178 ± 3 MPa and 25.0 ± 0.1 % IACS, respectively, which were close to those of Cu-Be alloys. Compared to traditional alloys, the strength and conductivity were both improved. The main strengthening mechanisms were dislocation and fiber strengthening. Considering these mechanisms, the theoretical yield strength was determined to be 1091 MPa, which was close to the experimental value. This work provides a new approach for the preparation of copper alloys with excellent comprehensive performance. |
abstractGer |
The precipitation strengthening can significantly increase the strength but inevitably sacrifices the electrical conductivity of Cu-Ni-Sn alloys. In this study, a Cu-9Ni-6Sn alloy was aged at various temperatures for different durations and then subjected to severe plastic deformation. When the alloy was aged at 400 °C for 36 h, the uniformly distributed fine precipitates totally transitioned to discontinuous precipitates. And formed nanofibers of intermetallic compounds after plastic deformation. The tensile strength and electrical conductivity of the treated alloy were 1178 ± 3 MPa and 25.0 ± 0.1 % IACS, respectively, which were close to those of Cu-Be alloys. Compared to traditional alloys, the strength and conductivity were both improved. The main strengthening mechanisms were dislocation and fiber strengthening. Considering these mechanisms, the theoretical yield strength was determined to be 1091 MPa, which was close to the experimental value. This work provides a new approach for the preparation of copper alloys with excellent comprehensive performance. |
abstract_unstemmed |
The precipitation strengthening can significantly increase the strength but inevitably sacrifices the electrical conductivity of Cu-Ni-Sn alloys. In this study, a Cu-9Ni-6Sn alloy was aged at various temperatures for different durations and then subjected to severe plastic deformation. When the alloy was aged at 400 °C for 36 h, the uniformly distributed fine precipitates totally transitioned to discontinuous precipitates. And formed nanofibers of intermetallic compounds after plastic deformation. The tensile strength and electrical conductivity of the treated alloy were 1178 ± 3 MPa and 25.0 ± 0.1 % IACS, respectively, which were close to those of Cu-Be alloys. Compared to traditional alloys, the strength and conductivity were both improved. The main strengthening mechanisms were dislocation and fiber strengthening. Considering these mechanisms, the theoretical yield strength was determined to be 1091 MPa, which was close to the experimental value. This work provides a new approach for the preparation of copper alloys with excellent comprehensive performance. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Simultaneously enhancing the strength and electrical conductivity of Cu-Ni-Sn alloy through plastic deformation of an intermetallic compound |
url |
https://doi.org/10.1016/j.matdes.2023.112445 https://doaj.org/article/6a2e0d33caf54b569fbd13c14b38ce97 http://www.sciencedirect.com/science/article/pii/S0264127523008602 https://doaj.org/toc/0264-1275 |
remote_bool |
true |
author2 |
Lijun Peng Xujun Mi Hong Guo Haofeng Xie Dongmei Liu Feng Liu Zhen Yang |
author2Str |
Lijun Peng Xujun Mi Hong Guo Haofeng Xie Dongmei Liu Feng Liu Zhen Yang |
ppnlink |
32052857X |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.matdes.2023.112445 |
callnumber-a |
TA401-492 |
up_date |
2024-07-04T01:47:30.605Z |
_version_ |
1803611171044982784 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ092566960</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412165529.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240412s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.matdes.2023.112445</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ092566960</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ6a2e0d33caf54b569fbd13c14b38ce97</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA401-492</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Haowen Jiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Simultaneously enhancing the strength and electrical conductivity of Cu-Ni-Sn alloy through plastic deformation of an intermetallic compound</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The precipitation strengthening can significantly increase the strength but inevitably sacrifices the electrical conductivity of Cu-Ni-Sn alloys. In this study, a Cu-9Ni-6Sn alloy was aged at various temperatures for different durations and then subjected to severe plastic deformation. When the alloy was aged at 400 °C for 36 h, the uniformly distributed fine precipitates totally transitioned to discontinuous precipitates. And formed nanofibers of intermetallic compounds after plastic deformation. The tensile strength and electrical conductivity of the treated alloy were 1178 ± 3 MPa and 25.0 ± 0.1 % IACS, respectively, which were close to those of Cu-Be alloys. Compared to traditional alloys, the strength and conductivity were both improved. The main strengthening mechanisms were dislocation and fiber strengthening. Considering these mechanisms, the theoretical yield strength was determined to be 1091 MPa, which was close to the experimental value. This work provides a new approach for the preparation of copper alloys with excellent comprehensive performance.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cu-9Ni-6Sn alloy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phase transformation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Discontinuous precipitation nanofiber</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Strengthening mechanism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Morphology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Materials of engineering and construction. Mechanics of materials</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lijun Peng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xujun Mi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hong Guo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haofeng Xie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dongmei Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Feng Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhen Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Materials & Design</subfield><subfield code="d">Elsevier, 2019</subfield><subfield code="g">235(2023), Seite 112445-</subfield><subfield code="w">(DE-627)32052857X</subfield><subfield code="w">(DE-600)2015480-X</subfield><subfield code="x">18734197</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:235</subfield><subfield code="g">year:2023</subfield><subfield code="g">pages:112445-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.matdes.2023.112445</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/6a2e0d33caf54b569fbd13c14b38ce97</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S0264127523008602</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/0264-1275</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_165</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">235</subfield><subfield code="j">2023</subfield><subfield code="h">112445-</subfield></datafield></record></collection>
|
score |
7.4011316 |