Hypoglycaemia in adrenal insufficiency
Adrenal insufficiency encompasses a group of congenital and acquired disorders that lead to inadequate steroid production by the adrenal glands, mainly glucocorticoids, mineralocorticoids and androgens. These may be associated with other hormone deficiencies. Adrenal insufficiency may be primary, af...
Ausführliche Beschreibung
Autor*in: |
Shien Chen Lee [verfasserIn] Elizabeth S. Baranowski [verfasserIn] Rajesh Sakremath [verfasserIn] Vrinda Saraff [verfasserIn] Zainaba Mohamed [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Frontiers in Endocrinology - Frontiers Media S.A., 2011, 14(2023) |
---|---|
Übergeordnetes Werk: |
volume:14 ; year:2023 |
Links: |
---|
DOI / URN: |
10.3389/fendo.2023.1198519 |
---|
Katalog-ID: |
DOAJ092942482 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ092942482 | ||
003 | DE-627 | ||
005 | 20240412225313.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240412s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3389/fendo.2023.1198519 |2 doi | |
035 | |a (DE-627)DOAJ092942482 | ||
035 | |a (DE-599)DOAJ99e591fbe498437aa4ef5679726a3553 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a RC648-665 | |
100 | 0 | |a Shien Chen Lee |e verfasserin |4 aut | |
245 | 1 | 0 | |a Hypoglycaemia in adrenal insufficiency |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Adrenal insufficiency encompasses a group of congenital and acquired disorders that lead to inadequate steroid production by the adrenal glands, mainly glucocorticoids, mineralocorticoids and androgens. These may be associated with other hormone deficiencies. Adrenal insufficiency may be primary, affecting the adrenal gland’s ability to produce cortisol directly; secondary, affecting the pituitary gland’s ability to produce adrenocorticotrophic hormone (ACTH); or tertiary, affecting corticotrophin-releasing hormone (CRH) production at the level of the hypothalamus. Congenital causes of adrenal insufficiency include the subtypes of Congenital Adrenal Hyperplasia, Adrenal Hypoplasia, genetic causes of Isolated ACTH deficiency or Combined Pituitary Hormone Deficiencies, usually caused by mutations in essential transcription factors. The most commonly inherited primary cause of adrenal insufficiency is Congenital Adrenal Hyperplasia due to 21-hydroxylase deficiency; with the classical form affecting 1 in 10,000 to 15,000 cases per year. Acquired causes of adrenal insufficiency can be subtyped into autoimmune (Addison’s Disease), traumatic (including haemorrhage or infarction), infective (e.g. Tuberculosis), infiltrative (e.g. neuroblastoma) and iatrogenic. Iatrogenic acquired causes include the use of prolonged exogenous steroids and post-surgical causes, such as the excision of a hypothalamic-pituitary tumour or adrenalectomy. Clinical features of adrenal insufficiency vary with age and with aetiology. They are often non-specific and may sometimes become apparent only in times of illness. Features range from those related to hypoglycaemia such as drowsiness, collapse, jitteriness, hypothermia and seizures. Features may also include signs of hypotension such as significant electrolyte imbalances and shock. Recognition of hypoglycaemia as a symptom of adrenal insufficiency is important to prevent treatable causes of sudden deaths. Cortisol has a key role in glucose homeostasis, particularly in the counter-regulatory mechanisms to prevent hypoglycaemia in times of biological stress. Affected neonates particularly appear susceptible to the compromise of these counter-regulatory mechanisms but it is recognised that affected older children and adults remain at risk of hypoglycaemia. In this review, we summarise the pathogenesis of hypoglycaemia in the context of adrenal insufficiency. We further explore the clinical features of hypoglycaemia based on different age groups and the burden of the disease, focusing on hypoglycaemic-related events in the various aetiologies of adrenal insufficiency. Finally, we sum up strategies from published literature for improved recognition and early prevention of hypoglycaemia in adrenal insufficiency, such as the use of continuous glucose monitoring or modifying glucocorticoid replacement. | ||
650 | 4 | |a hypoglycaemia | |
650 | 4 | |a adrenal insufficiency | |
650 | 4 | |a hypoadrenalism | |
650 | 4 | |a cortisol | |
650 | 4 | |a glucocorticoid | |
653 | 0 | |a Diseases of the endocrine glands. Clinical endocrinology | |
700 | 0 | |a Elizabeth S. Baranowski |e verfasserin |4 aut | |
700 | 0 | |a Rajesh Sakremath |e verfasserin |4 aut | |
700 | 0 | |a Vrinda Saraff |e verfasserin |4 aut | |
700 | 0 | |a Vrinda Saraff |e verfasserin |4 aut | |
700 | 0 | |a Zainaba Mohamed |e verfasserin |4 aut | |
700 | 0 | |a Zainaba Mohamed |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Frontiers in Endocrinology |d Frontiers Media S.A., 2011 |g 14(2023) |w (DE-627)645090948 |w (DE-600)2592084-4 |x 16642392 |7 nnns |
773 | 1 | 8 | |g volume:14 |g year:2023 |
856 | 4 | 0 | |u https://doi.org/10.3389/fendo.2023.1198519 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/99e591fbe498437aa4ef5679726a3553 |z kostenfrei |
856 | 4 | 0 | |u https://www.frontiersin.org/articles/10.3389/fendo.2023.1198519/full |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1664-2392 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 14 |j 2023 |
author_variant |
s c l scl e s b esb r s rs v s vs v s vs z m zm z m zm |
---|---|
matchkey_str |
article:16642392:2023----::yolceiiarnln |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
RC |
publishDate |
2023 |
allfields |
10.3389/fendo.2023.1198519 doi (DE-627)DOAJ092942482 (DE-599)DOAJ99e591fbe498437aa4ef5679726a3553 DE-627 ger DE-627 rakwb eng RC648-665 Shien Chen Lee verfasserin aut Hypoglycaemia in adrenal insufficiency 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Adrenal insufficiency encompasses a group of congenital and acquired disorders that lead to inadequate steroid production by the adrenal glands, mainly glucocorticoids, mineralocorticoids and androgens. These may be associated with other hormone deficiencies. Adrenal insufficiency may be primary, affecting the adrenal gland’s ability to produce cortisol directly; secondary, affecting the pituitary gland’s ability to produce adrenocorticotrophic hormone (ACTH); or tertiary, affecting corticotrophin-releasing hormone (CRH) production at the level of the hypothalamus. Congenital causes of adrenal insufficiency include the subtypes of Congenital Adrenal Hyperplasia, Adrenal Hypoplasia, genetic causes of Isolated ACTH deficiency or Combined Pituitary Hormone Deficiencies, usually caused by mutations in essential transcription factors. The most commonly inherited primary cause of adrenal insufficiency is Congenital Adrenal Hyperplasia due to 21-hydroxylase deficiency; with the classical form affecting 1 in 10,000 to 15,000 cases per year. Acquired causes of adrenal insufficiency can be subtyped into autoimmune (Addison’s Disease), traumatic (including haemorrhage or infarction), infective (e.g. Tuberculosis), infiltrative (e.g. neuroblastoma) and iatrogenic. Iatrogenic acquired causes include the use of prolonged exogenous steroids and post-surgical causes, such as the excision of a hypothalamic-pituitary tumour or adrenalectomy. Clinical features of adrenal insufficiency vary with age and with aetiology. They are often non-specific and may sometimes become apparent only in times of illness. Features range from those related to hypoglycaemia such as drowsiness, collapse, jitteriness, hypothermia and seizures. Features may also include signs of hypotension such as significant electrolyte imbalances and shock. Recognition of hypoglycaemia as a symptom of adrenal insufficiency is important to prevent treatable causes of sudden deaths. Cortisol has a key role in glucose homeostasis, particularly in the counter-regulatory mechanisms to prevent hypoglycaemia in times of biological stress. Affected neonates particularly appear susceptible to the compromise of these counter-regulatory mechanisms but it is recognised that affected older children and adults remain at risk of hypoglycaemia. In this review, we summarise the pathogenesis of hypoglycaemia in the context of adrenal insufficiency. We further explore the clinical features of hypoglycaemia based on different age groups and the burden of the disease, focusing on hypoglycaemic-related events in the various aetiologies of adrenal insufficiency. Finally, we sum up strategies from published literature for improved recognition and early prevention of hypoglycaemia in adrenal insufficiency, such as the use of continuous glucose monitoring or modifying glucocorticoid replacement. hypoglycaemia adrenal insufficiency hypoadrenalism cortisol glucocorticoid Diseases of the endocrine glands. Clinical endocrinology Elizabeth S. Baranowski verfasserin aut Rajesh Sakremath verfasserin aut Vrinda Saraff verfasserin aut Vrinda Saraff verfasserin aut Zainaba Mohamed verfasserin aut Zainaba Mohamed verfasserin aut In Frontiers in Endocrinology Frontiers Media S.A., 2011 14(2023) (DE-627)645090948 (DE-600)2592084-4 16642392 nnns volume:14 year:2023 https://doi.org/10.3389/fendo.2023.1198519 kostenfrei https://doaj.org/article/99e591fbe498437aa4ef5679726a3553 kostenfrei https://www.frontiersin.org/articles/10.3389/fendo.2023.1198519/full kostenfrei https://doaj.org/toc/1664-2392 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2023 |
spelling |
10.3389/fendo.2023.1198519 doi (DE-627)DOAJ092942482 (DE-599)DOAJ99e591fbe498437aa4ef5679726a3553 DE-627 ger DE-627 rakwb eng RC648-665 Shien Chen Lee verfasserin aut Hypoglycaemia in adrenal insufficiency 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Adrenal insufficiency encompasses a group of congenital and acquired disorders that lead to inadequate steroid production by the adrenal glands, mainly glucocorticoids, mineralocorticoids and androgens. These may be associated with other hormone deficiencies. Adrenal insufficiency may be primary, affecting the adrenal gland’s ability to produce cortisol directly; secondary, affecting the pituitary gland’s ability to produce adrenocorticotrophic hormone (ACTH); or tertiary, affecting corticotrophin-releasing hormone (CRH) production at the level of the hypothalamus. Congenital causes of adrenal insufficiency include the subtypes of Congenital Adrenal Hyperplasia, Adrenal Hypoplasia, genetic causes of Isolated ACTH deficiency or Combined Pituitary Hormone Deficiencies, usually caused by mutations in essential transcription factors. The most commonly inherited primary cause of adrenal insufficiency is Congenital Adrenal Hyperplasia due to 21-hydroxylase deficiency; with the classical form affecting 1 in 10,000 to 15,000 cases per year. Acquired causes of adrenal insufficiency can be subtyped into autoimmune (Addison’s Disease), traumatic (including haemorrhage or infarction), infective (e.g. Tuberculosis), infiltrative (e.g. neuroblastoma) and iatrogenic. Iatrogenic acquired causes include the use of prolonged exogenous steroids and post-surgical causes, such as the excision of a hypothalamic-pituitary tumour or adrenalectomy. Clinical features of adrenal insufficiency vary with age and with aetiology. They are often non-specific and may sometimes become apparent only in times of illness. Features range from those related to hypoglycaemia such as drowsiness, collapse, jitteriness, hypothermia and seizures. Features may also include signs of hypotension such as significant electrolyte imbalances and shock. Recognition of hypoglycaemia as a symptom of adrenal insufficiency is important to prevent treatable causes of sudden deaths. Cortisol has a key role in glucose homeostasis, particularly in the counter-regulatory mechanisms to prevent hypoglycaemia in times of biological stress. Affected neonates particularly appear susceptible to the compromise of these counter-regulatory mechanisms but it is recognised that affected older children and adults remain at risk of hypoglycaemia. In this review, we summarise the pathogenesis of hypoglycaemia in the context of adrenal insufficiency. We further explore the clinical features of hypoglycaemia based on different age groups and the burden of the disease, focusing on hypoglycaemic-related events in the various aetiologies of adrenal insufficiency. Finally, we sum up strategies from published literature for improved recognition and early prevention of hypoglycaemia in adrenal insufficiency, such as the use of continuous glucose monitoring or modifying glucocorticoid replacement. hypoglycaemia adrenal insufficiency hypoadrenalism cortisol glucocorticoid Diseases of the endocrine glands. Clinical endocrinology Elizabeth S. Baranowski verfasserin aut Rajesh Sakremath verfasserin aut Vrinda Saraff verfasserin aut Vrinda Saraff verfasserin aut Zainaba Mohamed verfasserin aut Zainaba Mohamed verfasserin aut In Frontiers in Endocrinology Frontiers Media S.A., 2011 14(2023) (DE-627)645090948 (DE-600)2592084-4 16642392 nnns volume:14 year:2023 https://doi.org/10.3389/fendo.2023.1198519 kostenfrei https://doaj.org/article/99e591fbe498437aa4ef5679726a3553 kostenfrei https://www.frontiersin.org/articles/10.3389/fendo.2023.1198519/full kostenfrei https://doaj.org/toc/1664-2392 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2023 |
allfields_unstemmed |
10.3389/fendo.2023.1198519 doi (DE-627)DOAJ092942482 (DE-599)DOAJ99e591fbe498437aa4ef5679726a3553 DE-627 ger DE-627 rakwb eng RC648-665 Shien Chen Lee verfasserin aut Hypoglycaemia in adrenal insufficiency 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Adrenal insufficiency encompasses a group of congenital and acquired disorders that lead to inadequate steroid production by the adrenal glands, mainly glucocorticoids, mineralocorticoids and androgens. These may be associated with other hormone deficiencies. Adrenal insufficiency may be primary, affecting the adrenal gland’s ability to produce cortisol directly; secondary, affecting the pituitary gland’s ability to produce adrenocorticotrophic hormone (ACTH); or tertiary, affecting corticotrophin-releasing hormone (CRH) production at the level of the hypothalamus. Congenital causes of adrenal insufficiency include the subtypes of Congenital Adrenal Hyperplasia, Adrenal Hypoplasia, genetic causes of Isolated ACTH deficiency or Combined Pituitary Hormone Deficiencies, usually caused by mutations in essential transcription factors. The most commonly inherited primary cause of adrenal insufficiency is Congenital Adrenal Hyperplasia due to 21-hydroxylase deficiency; with the classical form affecting 1 in 10,000 to 15,000 cases per year. Acquired causes of adrenal insufficiency can be subtyped into autoimmune (Addison’s Disease), traumatic (including haemorrhage or infarction), infective (e.g. Tuberculosis), infiltrative (e.g. neuroblastoma) and iatrogenic. Iatrogenic acquired causes include the use of prolonged exogenous steroids and post-surgical causes, such as the excision of a hypothalamic-pituitary tumour or adrenalectomy. Clinical features of adrenal insufficiency vary with age and with aetiology. They are often non-specific and may sometimes become apparent only in times of illness. Features range from those related to hypoglycaemia such as drowsiness, collapse, jitteriness, hypothermia and seizures. Features may also include signs of hypotension such as significant electrolyte imbalances and shock. Recognition of hypoglycaemia as a symptom of adrenal insufficiency is important to prevent treatable causes of sudden deaths. Cortisol has a key role in glucose homeostasis, particularly in the counter-regulatory mechanisms to prevent hypoglycaemia in times of biological stress. Affected neonates particularly appear susceptible to the compromise of these counter-regulatory mechanisms but it is recognised that affected older children and adults remain at risk of hypoglycaemia. In this review, we summarise the pathogenesis of hypoglycaemia in the context of adrenal insufficiency. We further explore the clinical features of hypoglycaemia based on different age groups and the burden of the disease, focusing on hypoglycaemic-related events in the various aetiologies of adrenal insufficiency. Finally, we sum up strategies from published literature for improved recognition and early prevention of hypoglycaemia in adrenal insufficiency, such as the use of continuous glucose monitoring or modifying glucocorticoid replacement. hypoglycaemia adrenal insufficiency hypoadrenalism cortisol glucocorticoid Diseases of the endocrine glands. Clinical endocrinology Elizabeth S. Baranowski verfasserin aut Rajesh Sakremath verfasserin aut Vrinda Saraff verfasserin aut Vrinda Saraff verfasserin aut Zainaba Mohamed verfasserin aut Zainaba Mohamed verfasserin aut In Frontiers in Endocrinology Frontiers Media S.A., 2011 14(2023) (DE-627)645090948 (DE-600)2592084-4 16642392 nnns volume:14 year:2023 https://doi.org/10.3389/fendo.2023.1198519 kostenfrei https://doaj.org/article/99e591fbe498437aa4ef5679726a3553 kostenfrei https://www.frontiersin.org/articles/10.3389/fendo.2023.1198519/full kostenfrei https://doaj.org/toc/1664-2392 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2023 |
allfieldsGer |
10.3389/fendo.2023.1198519 doi (DE-627)DOAJ092942482 (DE-599)DOAJ99e591fbe498437aa4ef5679726a3553 DE-627 ger DE-627 rakwb eng RC648-665 Shien Chen Lee verfasserin aut Hypoglycaemia in adrenal insufficiency 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Adrenal insufficiency encompasses a group of congenital and acquired disorders that lead to inadequate steroid production by the adrenal glands, mainly glucocorticoids, mineralocorticoids and androgens. These may be associated with other hormone deficiencies. Adrenal insufficiency may be primary, affecting the adrenal gland’s ability to produce cortisol directly; secondary, affecting the pituitary gland’s ability to produce adrenocorticotrophic hormone (ACTH); or tertiary, affecting corticotrophin-releasing hormone (CRH) production at the level of the hypothalamus. Congenital causes of adrenal insufficiency include the subtypes of Congenital Adrenal Hyperplasia, Adrenal Hypoplasia, genetic causes of Isolated ACTH deficiency or Combined Pituitary Hormone Deficiencies, usually caused by mutations in essential transcription factors. The most commonly inherited primary cause of adrenal insufficiency is Congenital Adrenal Hyperplasia due to 21-hydroxylase deficiency; with the classical form affecting 1 in 10,000 to 15,000 cases per year. Acquired causes of adrenal insufficiency can be subtyped into autoimmune (Addison’s Disease), traumatic (including haemorrhage or infarction), infective (e.g. Tuberculosis), infiltrative (e.g. neuroblastoma) and iatrogenic. Iatrogenic acquired causes include the use of prolonged exogenous steroids and post-surgical causes, such as the excision of a hypothalamic-pituitary tumour or adrenalectomy. Clinical features of adrenal insufficiency vary with age and with aetiology. They are often non-specific and may sometimes become apparent only in times of illness. Features range from those related to hypoglycaemia such as drowsiness, collapse, jitteriness, hypothermia and seizures. Features may also include signs of hypotension such as significant electrolyte imbalances and shock. Recognition of hypoglycaemia as a symptom of adrenal insufficiency is important to prevent treatable causes of sudden deaths. Cortisol has a key role in glucose homeostasis, particularly in the counter-regulatory mechanisms to prevent hypoglycaemia in times of biological stress. Affected neonates particularly appear susceptible to the compromise of these counter-regulatory mechanisms but it is recognised that affected older children and adults remain at risk of hypoglycaemia. In this review, we summarise the pathogenesis of hypoglycaemia in the context of adrenal insufficiency. We further explore the clinical features of hypoglycaemia based on different age groups and the burden of the disease, focusing on hypoglycaemic-related events in the various aetiologies of adrenal insufficiency. Finally, we sum up strategies from published literature for improved recognition and early prevention of hypoglycaemia in adrenal insufficiency, such as the use of continuous glucose monitoring or modifying glucocorticoid replacement. hypoglycaemia adrenal insufficiency hypoadrenalism cortisol glucocorticoid Diseases of the endocrine glands. Clinical endocrinology Elizabeth S. Baranowski verfasserin aut Rajesh Sakremath verfasserin aut Vrinda Saraff verfasserin aut Vrinda Saraff verfasserin aut Zainaba Mohamed verfasserin aut Zainaba Mohamed verfasserin aut In Frontiers in Endocrinology Frontiers Media S.A., 2011 14(2023) (DE-627)645090948 (DE-600)2592084-4 16642392 nnns volume:14 year:2023 https://doi.org/10.3389/fendo.2023.1198519 kostenfrei https://doaj.org/article/99e591fbe498437aa4ef5679726a3553 kostenfrei https://www.frontiersin.org/articles/10.3389/fendo.2023.1198519/full kostenfrei https://doaj.org/toc/1664-2392 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2023 |
allfieldsSound |
10.3389/fendo.2023.1198519 doi (DE-627)DOAJ092942482 (DE-599)DOAJ99e591fbe498437aa4ef5679726a3553 DE-627 ger DE-627 rakwb eng RC648-665 Shien Chen Lee verfasserin aut Hypoglycaemia in adrenal insufficiency 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Adrenal insufficiency encompasses a group of congenital and acquired disorders that lead to inadequate steroid production by the adrenal glands, mainly glucocorticoids, mineralocorticoids and androgens. These may be associated with other hormone deficiencies. Adrenal insufficiency may be primary, affecting the adrenal gland’s ability to produce cortisol directly; secondary, affecting the pituitary gland’s ability to produce adrenocorticotrophic hormone (ACTH); or tertiary, affecting corticotrophin-releasing hormone (CRH) production at the level of the hypothalamus. Congenital causes of adrenal insufficiency include the subtypes of Congenital Adrenal Hyperplasia, Adrenal Hypoplasia, genetic causes of Isolated ACTH deficiency or Combined Pituitary Hormone Deficiencies, usually caused by mutations in essential transcription factors. The most commonly inherited primary cause of adrenal insufficiency is Congenital Adrenal Hyperplasia due to 21-hydroxylase deficiency; with the classical form affecting 1 in 10,000 to 15,000 cases per year. Acquired causes of adrenal insufficiency can be subtyped into autoimmune (Addison’s Disease), traumatic (including haemorrhage or infarction), infective (e.g. Tuberculosis), infiltrative (e.g. neuroblastoma) and iatrogenic. Iatrogenic acquired causes include the use of prolonged exogenous steroids and post-surgical causes, such as the excision of a hypothalamic-pituitary tumour or adrenalectomy. Clinical features of adrenal insufficiency vary with age and with aetiology. They are often non-specific and may sometimes become apparent only in times of illness. Features range from those related to hypoglycaemia such as drowsiness, collapse, jitteriness, hypothermia and seizures. Features may also include signs of hypotension such as significant electrolyte imbalances and shock. Recognition of hypoglycaemia as a symptom of adrenal insufficiency is important to prevent treatable causes of sudden deaths. Cortisol has a key role in glucose homeostasis, particularly in the counter-regulatory mechanisms to prevent hypoglycaemia in times of biological stress. Affected neonates particularly appear susceptible to the compromise of these counter-regulatory mechanisms but it is recognised that affected older children and adults remain at risk of hypoglycaemia. In this review, we summarise the pathogenesis of hypoglycaemia in the context of adrenal insufficiency. We further explore the clinical features of hypoglycaemia based on different age groups and the burden of the disease, focusing on hypoglycaemic-related events in the various aetiologies of adrenal insufficiency. Finally, we sum up strategies from published literature for improved recognition and early prevention of hypoglycaemia in adrenal insufficiency, such as the use of continuous glucose monitoring or modifying glucocorticoid replacement. hypoglycaemia adrenal insufficiency hypoadrenalism cortisol glucocorticoid Diseases of the endocrine glands. Clinical endocrinology Elizabeth S. Baranowski verfasserin aut Rajesh Sakremath verfasserin aut Vrinda Saraff verfasserin aut Vrinda Saraff verfasserin aut Zainaba Mohamed verfasserin aut Zainaba Mohamed verfasserin aut In Frontiers in Endocrinology Frontiers Media S.A., 2011 14(2023) (DE-627)645090948 (DE-600)2592084-4 16642392 nnns volume:14 year:2023 https://doi.org/10.3389/fendo.2023.1198519 kostenfrei https://doaj.org/article/99e591fbe498437aa4ef5679726a3553 kostenfrei https://www.frontiersin.org/articles/10.3389/fendo.2023.1198519/full kostenfrei https://doaj.org/toc/1664-2392 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2023 |
language |
English |
source |
In Frontiers in Endocrinology 14(2023) volume:14 year:2023 |
sourceStr |
In Frontiers in Endocrinology 14(2023) volume:14 year:2023 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
hypoglycaemia adrenal insufficiency hypoadrenalism cortisol glucocorticoid Diseases of the endocrine glands. Clinical endocrinology |
isfreeaccess_bool |
true |
container_title |
Frontiers in Endocrinology |
authorswithroles_txt_mv |
Shien Chen Lee @@aut@@ Elizabeth S. Baranowski @@aut@@ Rajesh Sakremath @@aut@@ Vrinda Saraff @@aut@@ Zainaba Mohamed @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
645090948 |
id |
DOAJ092942482 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ092942482</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412225313.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240412s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3389/fendo.2023.1198519</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ092942482</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ99e591fbe498437aa4ef5679726a3553</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC648-665</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Shien Chen Lee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hypoglycaemia in adrenal insufficiency</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Adrenal insufficiency encompasses a group of congenital and acquired disorders that lead to inadequate steroid production by the adrenal glands, mainly glucocorticoids, mineralocorticoids and androgens. These may be associated with other hormone deficiencies. Adrenal insufficiency may be primary, affecting the adrenal gland’s ability to produce cortisol directly; secondary, affecting the pituitary gland’s ability to produce adrenocorticotrophic hormone (ACTH); or tertiary, affecting corticotrophin-releasing hormone (CRH) production at the level of the hypothalamus. Congenital causes of adrenal insufficiency include the subtypes of Congenital Adrenal Hyperplasia, Adrenal Hypoplasia, genetic causes of Isolated ACTH deficiency or Combined Pituitary Hormone Deficiencies, usually caused by mutations in essential transcription factors. The most commonly inherited primary cause of adrenal insufficiency is Congenital Adrenal Hyperplasia due to 21-hydroxylase deficiency; with the classical form affecting 1 in 10,000 to 15,000 cases per year. Acquired causes of adrenal insufficiency can be subtyped into autoimmune (Addison’s Disease), traumatic (including haemorrhage or infarction), infective (e.g. Tuberculosis), infiltrative (e.g. neuroblastoma) and iatrogenic. Iatrogenic acquired causes include the use of prolonged exogenous steroids and post-surgical causes, such as the excision of a hypothalamic-pituitary tumour or adrenalectomy. Clinical features of adrenal insufficiency vary with age and with aetiology. They are often non-specific and may sometimes become apparent only in times of illness. Features range from those related to hypoglycaemia such as drowsiness, collapse, jitteriness, hypothermia and seizures. Features may also include signs of hypotension such as significant electrolyte imbalances and shock. Recognition of hypoglycaemia as a symptom of adrenal insufficiency is important to prevent treatable causes of sudden deaths. Cortisol has a key role in glucose homeostasis, particularly in the counter-regulatory mechanisms to prevent hypoglycaemia in times of biological stress. Affected neonates particularly appear susceptible to the compromise of these counter-regulatory mechanisms but it is recognised that affected older children and adults remain at risk of hypoglycaemia. In this review, we summarise the pathogenesis of hypoglycaemia in the context of adrenal insufficiency. We further explore the clinical features of hypoglycaemia based on different age groups and the burden of the disease, focusing on hypoglycaemic-related events in the various aetiologies of adrenal insufficiency. Finally, we sum up strategies from published literature for improved recognition and early prevention of hypoglycaemia in adrenal insufficiency, such as the use of continuous glucose monitoring or modifying glucocorticoid replacement.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hypoglycaemia</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">adrenal insufficiency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hypoadrenalism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cortisol</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">glucocorticoid</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Diseases of the endocrine glands. Clinical endocrinology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Elizabeth S. Baranowski</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rajesh Sakremath</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Vrinda Saraff</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Vrinda Saraff</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zainaba Mohamed</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zainaba Mohamed</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Frontiers in Endocrinology</subfield><subfield code="d">Frontiers Media S.A., 2011</subfield><subfield code="g">14(2023)</subfield><subfield code="w">(DE-627)645090948</subfield><subfield code="w">(DE-600)2592084-4</subfield><subfield code="x">16642392</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2023</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3389/fendo.2023.1198519</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/99e591fbe498437aa4ef5679726a3553</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.frontiersin.org/articles/10.3389/fendo.2023.1198519/full</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1664-2392</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2023</subfield></datafield></record></collection>
|
callnumber-first |
R - Medicine |
author |
Shien Chen Lee |
spellingShingle |
Shien Chen Lee misc RC648-665 misc hypoglycaemia misc adrenal insufficiency misc hypoadrenalism misc cortisol misc glucocorticoid misc Diseases of the endocrine glands. Clinical endocrinology Hypoglycaemia in adrenal insufficiency |
authorStr |
Shien Chen Lee |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)645090948 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
RC648-665 |
illustrated |
Not Illustrated |
issn |
16642392 |
topic_title |
RC648-665 Hypoglycaemia in adrenal insufficiency hypoglycaemia adrenal insufficiency hypoadrenalism cortisol glucocorticoid |
topic |
misc RC648-665 misc hypoglycaemia misc adrenal insufficiency misc hypoadrenalism misc cortisol misc glucocorticoid misc Diseases of the endocrine glands. Clinical endocrinology |
topic_unstemmed |
misc RC648-665 misc hypoglycaemia misc adrenal insufficiency misc hypoadrenalism misc cortisol misc glucocorticoid misc Diseases of the endocrine glands. Clinical endocrinology |
topic_browse |
misc RC648-665 misc hypoglycaemia misc adrenal insufficiency misc hypoadrenalism misc cortisol misc glucocorticoid misc Diseases of the endocrine glands. Clinical endocrinology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Frontiers in Endocrinology |
hierarchy_parent_id |
645090948 |
hierarchy_top_title |
Frontiers in Endocrinology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)645090948 (DE-600)2592084-4 |
title |
Hypoglycaemia in adrenal insufficiency |
ctrlnum |
(DE-627)DOAJ092942482 (DE-599)DOAJ99e591fbe498437aa4ef5679726a3553 |
title_full |
Hypoglycaemia in adrenal insufficiency |
author_sort |
Shien Chen Lee |
journal |
Frontiers in Endocrinology |
journalStr |
Frontiers in Endocrinology |
callnumber-first-code |
R |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Shien Chen Lee Elizabeth S. Baranowski Rajesh Sakremath Vrinda Saraff Zainaba Mohamed |
container_volume |
14 |
class |
RC648-665 |
format_se |
Elektronische Aufsätze |
author-letter |
Shien Chen Lee |
doi_str_mv |
10.3389/fendo.2023.1198519 |
author2-role |
verfasserin |
title_sort |
hypoglycaemia in adrenal insufficiency |
callnumber |
RC648-665 |
title_auth |
Hypoglycaemia in adrenal insufficiency |
abstract |
Adrenal insufficiency encompasses a group of congenital and acquired disorders that lead to inadequate steroid production by the adrenal glands, mainly glucocorticoids, mineralocorticoids and androgens. These may be associated with other hormone deficiencies. Adrenal insufficiency may be primary, affecting the adrenal gland’s ability to produce cortisol directly; secondary, affecting the pituitary gland’s ability to produce adrenocorticotrophic hormone (ACTH); or tertiary, affecting corticotrophin-releasing hormone (CRH) production at the level of the hypothalamus. Congenital causes of adrenal insufficiency include the subtypes of Congenital Adrenal Hyperplasia, Adrenal Hypoplasia, genetic causes of Isolated ACTH deficiency or Combined Pituitary Hormone Deficiencies, usually caused by mutations in essential transcription factors. The most commonly inherited primary cause of adrenal insufficiency is Congenital Adrenal Hyperplasia due to 21-hydroxylase deficiency; with the classical form affecting 1 in 10,000 to 15,000 cases per year. Acquired causes of adrenal insufficiency can be subtyped into autoimmune (Addison’s Disease), traumatic (including haemorrhage or infarction), infective (e.g. Tuberculosis), infiltrative (e.g. neuroblastoma) and iatrogenic. Iatrogenic acquired causes include the use of prolonged exogenous steroids and post-surgical causes, such as the excision of a hypothalamic-pituitary tumour or adrenalectomy. Clinical features of adrenal insufficiency vary with age and with aetiology. They are often non-specific and may sometimes become apparent only in times of illness. Features range from those related to hypoglycaemia such as drowsiness, collapse, jitteriness, hypothermia and seizures. Features may also include signs of hypotension such as significant electrolyte imbalances and shock. Recognition of hypoglycaemia as a symptom of adrenal insufficiency is important to prevent treatable causes of sudden deaths. Cortisol has a key role in glucose homeostasis, particularly in the counter-regulatory mechanisms to prevent hypoglycaemia in times of biological stress. Affected neonates particularly appear susceptible to the compromise of these counter-regulatory mechanisms but it is recognised that affected older children and adults remain at risk of hypoglycaemia. In this review, we summarise the pathogenesis of hypoglycaemia in the context of adrenal insufficiency. We further explore the clinical features of hypoglycaemia based on different age groups and the burden of the disease, focusing on hypoglycaemic-related events in the various aetiologies of adrenal insufficiency. Finally, we sum up strategies from published literature for improved recognition and early prevention of hypoglycaemia in adrenal insufficiency, such as the use of continuous glucose monitoring or modifying glucocorticoid replacement. |
abstractGer |
Adrenal insufficiency encompasses a group of congenital and acquired disorders that lead to inadequate steroid production by the adrenal glands, mainly glucocorticoids, mineralocorticoids and androgens. These may be associated with other hormone deficiencies. Adrenal insufficiency may be primary, affecting the adrenal gland’s ability to produce cortisol directly; secondary, affecting the pituitary gland’s ability to produce adrenocorticotrophic hormone (ACTH); or tertiary, affecting corticotrophin-releasing hormone (CRH) production at the level of the hypothalamus. Congenital causes of adrenal insufficiency include the subtypes of Congenital Adrenal Hyperplasia, Adrenal Hypoplasia, genetic causes of Isolated ACTH deficiency or Combined Pituitary Hormone Deficiencies, usually caused by mutations in essential transcription factors. The most commonly inherited primary cause of adrenal insufficiency is Congenital Adrenal Hyperplasia due to 21-hydroxylase deficiency; with the classical form affecting 1 in 10,000 to 15,000 cases per year. Acquired causes of adrenal insufficiency can be subtyped into autoimmune (Addison’s Disease), traumatic (including haemorrhage or infarction), infective (e.g. Tuberculosis), infiltrative (e.g. neuroblastoma) and iatrogenic. Iatrogenic acquired causes include the use of prolonged exogenous steroids and post-surgical causes, such as the excision of a hypothalamic-pituitary tumour or adrenalectomy. Clinical features of adrenal insufficiency vary with age and with aetiology. They are often non-specific and may sometimes become apparent only in times of illness. Features range from those related to hypoglycaemia such as drowsiness, collapse, jitteriness, hypothermia and seizures. Features may also include signs of hypotension such as significant electrolyte imbalances and shock. Recognition of hypoglycaemia as a symptom of adrenal insufficiency is important to prevent treatable causes of sudden deaths. Cortisol has a key role in glucose homeostasis, particularly in the counter-regulatory mechanisms to prevent hypoglycaemia in times of biological stress. Affected neonates particularly appear susceptible to the compromise of these counter-regulatory mechanisms but it is recognised that affected older children and adults remain at risk of hypoglycaemia. In this review, we summarise the pathogenesis of hypoglycaemia in the context of adrenal insufficiency. We further explore the clinical features of hypoglycaemia based on different age groups and the burden of the disease, focusing on hypoglycaemic-related events in the various aetiologies of adrenal insufficiency. Finally, we sum up strategies from published literature for improved recognition and early prevention of hypoglycaemia in adrenal insufficiency, such as the use of continuous glucose monitoring or modifying glucocorticoid replacement. |
abstract_unstemmed |
Adrenal insufficiency encompasses a group of congenital and acquired disorders that lead to inadequate steroid production by the adrenal glands, mainly glucocorticoids, mineralocorticoids and androgens. These may be associated with other hormone deficiencies. Adrenal insufficiency may be primary, affecting the adrenal gland’s ability to produce cortisol directly; secondary, affecting the pituitary gland’s ability to produce adrenocorticotrophic hormone (ACTH); or tertiary, affecting corticotrophin-releasing hormone (CRH) production at the level of the hypothalamus. Congenital causes of adrenal insufficiency include the subtypes of Congenital Adrenal Hyperplasia, Adrenal Hypoplasia, genetic causes of Isolated ACTH deficiency or Combined Pituitary Hormone Deficiencies, usually caused by mutations in essential transcription factors. The most commonly inherited primary cause of adrenal insufficiency is Congenital Adrenal Hyperplasia due to 21-hydroxylase deficiency; with the classical form affecting 1 in 10,000 to 15,000 cases per year. Acquired causes of adrenal insufficiency can be subtyped into autoimmune (Addison’s Disease), traumatic (including haemorrhage or infarction), infective (e.g. Tuberculosis), infiltrative (e.g. neuroblastoma) and iatrogenic. Iatrogenic acquired causes include the use of prolonged exogenous steroids and post-surgical causes, such as the excision of a hypothalamic-pituitary tumour or adrenalectomy. Clinical features of adrenal insufficiency vary with age and with aetiology. They are often non-specific and may sometimes become apparent only in times of illness. Features range from those related to hypoglycaemia such as drowsiness, collapse, jitteriness, hypothermia and seizures. Features may also include signs of hypotension such as significant electrolyte imbalances and shock. Recognition of hypoglycaemia as a symptom of adrenal insufficiency is important to prevent treatable causes of sudden deaths. Cortisol has a key role in glucose homeostasis, particularly in the counter-regulatory mechanisms to prevent hypoglycaemia in times of biological stress. Affected neonates particularly appear susceptible to the compromise of these counter-regulatory mechanisms but it is recognised that affected older children and adults remain at risk of hypoglycaemia. In this review, we summarise the pathogenesis of hypoglycaemia in the context of adrenal insufficiency. We further explore the clinical features of hypoglycaemia based on different age groups and the burden of the disease, focusing on hypoglycaemic-related events in the various aetiologies of adrenal insufficiency. Finally, we sum up strategies from published literature for improved recognition and early prevention of hypoglycaemia in adrenal insufficiency, such as the use of continuous glucose monitoring or modifying glucocorticoid replacement. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Hypoglycaemia in adrenal insufficiency |
url |
https://doi.org/10.3389/fendo.2023.1198519 https://doaj.org/article/99e591fbe498437aa4ef5679726a3553 https://www.frontiersin.org/articles/10.3389/fendo.2023.1198519/full https://doaj.org/toc/1664-2392 |
remote_bool |
true |
author2 |
Elizabeth S. Baranowski Rajesh Sakremath Vrinda Saraff Zainaba Mohamed |
author2Str |
Elizabeth S. Baranowski Rajesh Sakremath Vrinda Saraff Zainaba Mohamed |
ppnlink |
645090948 |
callnumber-subject |
RC - Internal Medicine |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3389/fendo.2023.1198519 |
callnumber-a |
RC648-665 |
up_date |
2024-07-03T14:31:13.391Z |
_version_ |
1803568622751186944 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ092942482</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412225313.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240412s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3389/fendo.2023.1198519</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ092942482</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ99e591fbe498437aa4ef5679726a3553</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC648-665</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Shien Chen Lee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hypoglycaemia in adrenal insufficiency</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Adrenal insufficiency encompasses a group of congenital and acquired disorders that lead to inadequate steroid production by the adrenal glands, mainly glucocorticoids, mineralocorticoids and androgens. These may be associated with other hormone deficiencies. Adrenal insufficiency may be primary, affecting the adrenal gland’s ability to produce cortisol directly; secondary, affecting the pituitary gland’s ability to produce adrenocorticotrophic hormone (ACTH); or tertiary, affecting corticotrophin-releasing hormone (CRH) production at the level of the hypothalamus. Congenital causes of adrenal insufficiency include the subtypes of Congenital Adrenal Hyperplasia, Adrenal Hypoplasia, genetic causes of Isolated ACTH deficiency or Combined Pituitary Hormone Deficiencies, usually caused by mutations in essential transcription factors. The most commonly inherited primary cause of adrenal insufficiency is Congenital Adrenal Hyperplasia due to 21-hydroxylase deficiency; with the classical form affecting 1 in 10,000 to 15,000 cases per year. Acquired causes of adrenal insufficiency can be subtyped into autoimmune (Addison’s Disease), traumatic (including haemorrhage or infarction), infective (e.g. Tuberculosis), infiltrative (e.g. neuroblastoma) and iatrogenic. Iatrogenic acquired causes include the use of prolonged exogenous steroids and post-surgical causes, such as the excision of a hypothalamic-pituitary tumour or adrenalectomy. Clinical features of adrenal insufficiency vary with age and with aetiology. They are often non-specific and may sometimes become apparent only in times of illness. Features range from those related to hypoglycaemia such as drowsiness, collapse, jitteriness, hypothermia and seizures. Features may also include signs of hypotension such as significant electrolyte imbalances and shock. Recognition of hypoglycaemia as a symptom of adrenal insufficiency is important to prevent treatable causes of sudden deaths. Cortisol has a key role in glucose homeostasis, particularly in the counter-regulatory mechanisms to prevent hypoglycaemia in times of biological stress. Affected neonates particularly appear susceptible to the compromise of these counter-regulatory mechanisms but it is recognised that affected older children and adults remain at risk of hypoglycaemia. In this review, we summarise the pathogenesis of hypoglycaemia in the context of adrenal insufficiency. We further explore the clinical features of hypoglycaemia based on different age groups and the burden of the disease, focusing on hypoglycaemic-related events in the various aetiologies of adrenal insufficiency. Finally, we sum up strategies from published literature for improved recognition and early prevention of hypoglycaemia in adrenal insufficiency, such as the use of continuous glucose monitoring or modifying glucocorticoid replacement.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hypoglycaemia</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">adrenal insufficiency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hypoadrenalism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cortisol</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">glucocorticoid</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Diseases of the endocrine glands. Clinical endocrinology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Elizabeth S. Baranowski</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rajesh Sakremath</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Vrinda Saraff</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Vrinda Saraff</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zainaba Mohamed</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zainaba Mohamed</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Frontiers in Endocrinology</subfield><subfield code="d">Frontiers Media S.A., 2011</subfield><subfield code="g">14(2023)</subfield><subfield code="w">(DE-627)645090948</subfield><subfield code="w">(DE-600)2592084-4</subfield><subfield code="x">16642392</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2023</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3389/fendo.2023.1198519</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/99e591fbe498437aa4ef5679726a3553</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.frontiersin.org/articles/10.3389/fendo.2023.1198519/full</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1664-2392</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2023</subfield></datafield></record></collection>
|
score |
7.402669 |