Experimental Study on Calibration of Amplitude-Frequency Measurement Deviation for Microseismic Sensors in Coal Mines
Microseismic monitoring systems (MMS) have become increasingly crucial in detecting tremors in coal mining. Microseismic sensors (MS), integral components of MMS, profoundly influence positioning accuracy and energy calculations. Hence, calibrating these sensors holds immense importance. To bridge t...
Ausführliche Beschreibung
Autor*in: |
Zepeng Han [verfasserIn] Linming Dou [verfasserIn] Zonglong Mu [verfasserIn] Jinrong Cao [verfasserIn] Yanjiang Chai [verfasserIn] Shuai Chen [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
microseismic monitoring system |
---|
Übergeordnetes Werk: |
In: Sensors - MDPI AG, 2003, 23(2023), 8420, p 8420 |
---|---|
Übergeordnetes Werk: |
volume:23 ; year:2023 ; number:8420, p 8420 |
Links: |
---|
DOI / URN: |
10.3390/s23208420 |
---|
Katalog-ID: |
DOAJ093081022 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ093081022 | ||
003 | DE-627 | ||
005 | 20240413163234.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/s23208420 |2 doi | |
035 | |a (DE-627)DOAJ093081022 | ||
035 | |a (DE-599)DOAJa49bea53df8f4ee282d1fa8d0e15c120 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TP1-1185 | |
100 | 0 | |a Zepeng Han |e verfasserin |4 aut | |
245 | 1 | 0 | |a Experimental Study on Calibration of Amplitude-Frequency Measurement Deviation for Microseismic Sensors in Coal Mines |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Microseismic monitoring systems (MMS) have become increasingly crucial in detecting tremors in coal mining. Microseismic sensors (MS), integral components of MMS, profoundly influence positioning accuracy and energy calculations. Hence, calibrating these sensors holds immense importance. To bridge the research gap in MS calibration, this study conducted a systematic investigation. The main conclusions are as follows: based on calibration tests on 102 old MS using the CS18VLF vibration table, it became evident that certain long-used MS in coal mines exhibited significant deviations in frequency and amplitude measurements, indicating sensor failure. Three important calibration indexes, frequency deviation, amplitude deviation, and amplitude linearity are proposed to assess the performance of MS. By comparing the index of old and new MS, critical threshold values were established to evaluate sensor effectiveness. A well-functioning MS exhibits an absolute frequency deviation below 5%, an absolute amplitude deviation within 55%, and amplitude linearity surpassing 0.95. In normal operations, the frequency deviation of MS is significantly smaller than the amplitude deviation. Simplified waveform analysis has unveiled a linear connection between amplitude deviation and localization results. An analysis of the Gutenberg–Richter microseismic energy calculation formula found that the microseismic energy calculation is influenced by both the localization result and amplitude deviation, making it challenging to pinpoint the exact impact of amplitude deviation on microseismic energy. Reliable MS, as well as a robust MS, serve as the fundamental cornerstone for acquiring dependable microseismic data and are essential prerequisites for subsequent microseismic data mining. The insights and findings presented here provide valuable guidance for future MS calibration endeavors and ultimately can guarantee the dependability of microseismic data. | ||
650 | 4 | |a microseismic monitoring system | |
650 | 4 | |a microseismic sensor | |
650 | 4 | |a amplitude–frequency calibration | |
650 | 4 | |a positioning accuracy | |
650 | 4 | |a vibration table | |
653 | 0 | |a Chemical technology | |
700 | 0 | |a Linming Dou |e verfasserin |4 aut | |
700 | 0 | |a Zonglong Mu |e verfasserin |4 aut | |
700 | 0 | |a Jinrong Cao |e verfasserin |4 aut | |
700 | 0 | |a Yanjiang Chai |e verfasserin |4 aut | |
700 | 0 | |a Shuai Chen |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Sensors |d MDPI AG, 2003 |g 23(2023), 8420, p 8420 |w (DE-627)331640910 |w (DE-600)2052857-7 |x 14248220 |7 nnns |
773 | 1 | 8 | |g volume:23 |g year:2023 |g number:8420, p 8420 |
856 | 4 | 0 | |u https://doi.org/10.3390/s23208420 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/a49bea53df8f4ee282d1fa8d0e15c120 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/1424-8220/23/20/8420 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1424-8220 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 23 |j 2023 |e 8420, p 8420 |
author_variant |
z h zh l d ld z m zm j c jc y c yc s c sc |
---|---|
matchkey_str |
article:14248220:2023----::xeietltdoclbainfmltdfeunyesrmndvainom |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
TP |
publishDate |
2023 |
allfields |
10.3390/s23208420 doi (DE-627)DOAJ093081022 (DE-599)DOAJa49bea53df8f4ee282d1fa8d0e15c120 DE-627 ger DE-627 rakwb eng TP1-1185 Zepeng Han verfasserin aut Experimental Study on Calibration of Amplitude-Frequency Measurement Deviation for Microseismic Sensors in Coal Mines 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Microseismic monitoring systems (MMS) have become increasingly crucial in detecting tremors in coal mining. Microseismic sensors (MS), integral components of MMS, profoundly influence positioning accuracy and energy calculations. Hence, calibrating these sensors holds immense importance. To bridge the research gap in MS calibration, this study conducted a systematic investigation. The main conclusions are as follows: based on calibration tests on 102 old MS using the CS18VLF vibration table, it became evident that certain long-used MS in coal mines exhibited significant deviations in frequency and amplitude measurements, indicating sensor failure. Three important calibration indexes, frequency deviation, amplitude deviation, and amplitude linearity are proposed to assess the performance of MS. By comparing the index of old and new MS, critical threshold values were established to evaluate sensor effectiveness. A well-functioning MS exhibits an absolute frequency deviation below 5%, an absolute amplitude deviation within 55%, and amplitude linearity surpassing 0.95. In normal operations, the frequency deviation of MS is significantly smaller than the amplitude deviation. Simplified waveform analysis has unveiled a linear connection between amplitude deviation and localization results. An analysis of the Gutenberg–Richter microseismic energy calculation formula found that the microseismic energy calculation is influenced by both the localization result and amplitude deviation, making it challenging to pinpoint the exact impact of amplitude deviation on microseismic energy. Reliable MS, as well as a robust MS, serve as the fundamental cornerstone for acquiring dependable microseismic data and are essential prerequisites for subsequent microseismic data mining. The insights and findings presented here provide valuable guidance for future MS calibration endeavors and ultimately can guarantee the dependability of microseismic data. microseismic monitoring system microseismic sensor amplitude–frequency calibration positioning accuracy vibration table Chemical technology Linming Dou verfasserin aut Zonglong Mu verfasserin aut Jinrong Cao verfasserin aut Yanjiang Chai verfasserin aut Shuai Chen verfasserin aut In Sensors MDPI AG, 2003 23(2023), 8420, p 8420 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:23 year:2023 number:8420, p 8420 https://doi.org/10.3390/s23208420 kostenfrei https://doaj.org/article/a49bea53df8f4ee282d1fa8d0e15c120 kostenfrei https://www.mdpi.com/1424-8220/23/20/8420 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2023 8420, p 8420 |
spelling |
10.3390/s23208420 doi (DE-627)DOAJ093081022 (DE-599)DOAJa49bea53df8f4ee282d1fa8d0e15c120 DE-627 ger DE-627 rakwb eng TP1-1185 Zepeng Han verfasserin aut Experimental Study on Calibration of Amplitude-Frequency Measurement Deviation for Microseismic Sensors in Coal Mines 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Microseismic monitoring systems (MMS) have become increasingly crucial in detecting tremors in coal mining. Microseismic sensors (MS), integral components of MMS, profoundly influence positioning accuracy and energy calculations. Hence, calibrating these sensors holds immense importance. To bridge the research gap in MS calibration, this study conducted a systematic investigation. The main conclusions are as follows: based on calibration tests on 102 old MS using the CS18VLF vibration table, it became evident that certain long-used MS in coal mines exhibited significant deviations in frequency and amplitude measurements, indicating sensor failure. Three important calibration indexes, frequency deviation, amplitude deviation, and amplitude linearity are proposed to assess the performance of MS. By comparing the index of old and new MS, critical threshold values were established to evaluate sensor effectiveness. A well-functioning MS exhibits an absolute frequency deviation below 5%, an absolute amplitude deviation within 55%, and amplitude linearity surpassing 0.95. In normal operations, the frequency deviation of MS is significantly smaller than the amplitude deviation. Simplified waveform analysis has unveiled a linear connection between amplitude deviation and localization results. An analysis of the Gutenberg–Richter microseismic energy calculation formula found that the microseismic energy calculation is influenced by both the localization result and amplitude deviation, making it challenging to pinpoint the exact impact of amplitude deviation on microseismic energy. Reliable MS, as well as a robust MS, serve as the fundamental cornerstone for acquiring dependable microseismic data and are essential prerequisites for subsequent microseismic data mining. The insights and findings presented here provide valuable guidance for future MS calibration endeavors and ultimately can guarantee the dependability of microseismic data. microseismic monitoring system microseismic sensor amplitude–frequency calibration positioning accuracy vibration table Chemical technology Linming Dou verfasserin aut Zonglong Mu verfasserin aut Jinrong Cao verfasserin aut Yanjiang Chai verfasserin aut Shuai Chen verfasserin aut In Sensors MDPI AG, 2003 23(2023), 8420, p 8420 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:23 year:2023 number:8420, p 8420 https://doi.org/10.3390/s23208420 kostenfrei https://doaj.org/article/a49bea53df8f4ee282d1fa8d0e15c120 kostenfrei https://www.mdpi.com/1424-8220/23/20/8420 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2023 8420, p 8420 |
allfields_unstemmed |
10.3390/s23208420 doi (DE-627)DOAJ093081022 (DE-599)DOAJa49bea53df8f4ee282d1fa8d0e15c120 DE-627 ger DE-627 rakwb eng TP1-1185 Zepeng Han verfasserin aut Experimental Study on Calibration of Amplitude-Frequency Measurement Deviation for Microseismic Sensors in Coal Mines 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Microseismic monitoring systems (MMS) have become increasingly crucial in detecting tremors in coal mining. Microseismic sensors (MS), integral components of MMS, profoundly influence positioning accuracy and energy calculations. Hence, calibrating these sensors holds immense importance. To bridge the research gap in MS calibration, this study conducted a systematic investigation. The main conclusions are as follows: based on calibration tests on 102 old MS using the CS18VLF vibration table, it became evident that certain long-used MS in coal mines exhibited significant deviations in frequency and amplitude measurements, indicating sensor failure. Three important calibration indexes, frequency deviation, amplitude deviation, and amplitude linearity are proposed to assess the performance of MS. By comparing the index of old and new MS, critical threshold values were established to evaluate sensor effectiveness. A well-functioning MS exhibits an absolute frequency deviation below 5%, an absolute amplitude deviation within 55%, and amplitude linearity surpassing 0.95. In normal operations, the frequency deviation of MS is significantly smaller than the amplitude deviation. Simplified waveform analysis has unveiled a linear connection between amplitude deviation and localization results. An analysis of the Gutenberg–Richter microseismic energy calculation formula found that the microseismic energy calculation is influenced by both the localization result and amplitude deviation, making it challenging to pinpoint the exact impact of amplitude deviation on microseismic energy. Reliable MS, as well as a robust MS, serve as the fundamental cornerstone for acquiring dependable microseismic data and are essential prerequisites for subsequent microseismic data mining. The insights and findings presented here provide valuable guidance for future MS calibration endeavors and ultimately can guarantee the dependability of microseismic data. microseismic monitoring system microseismic sensor amplitude–frequency calibration positioning accuracy vibration table Chemical technology Linming Dou verfasserin aut Zonglong Mu verfasserin aut Jinrong Cao verfasserin aut Yanjiang Chai verfasserin aut Shuai Chen verfasserin aut In Sensors MDPI AG, 2003 23(2023), 8420, p 8420 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:23 year:2023 number:8420, p 8420 https://doi.org/10.3390/s23208420 kostenfrei https://doaj.org/article/a49bea53df8f4ee282d1fa8d0e15c120 kostenfrei https://www.mdpi.com/1424-8220/23/20/8420 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2023 8420, p 8420 |
allfieldsGer |
10.3390/s23208420 doi (DE-627)DOAJ093081022 (DE-599)DOAJa49bea53df8f4ee282d1fa8d0e15c120 DE-627 ger DE-627 rakwb eng TP1-1185 Zepeng Han verfasserin aut Experimental Study on Calibration of Amplitude-Frequency Measurement Deviation for Microseismic Sensors in Coal Mines 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Microseismic monitoring systems (MMS) have become increasingly crucial in detecting tremors in coal mining. Microseismic sensors (MS), integral components of MMS, profoundly influence positioning accuracy and energy calculations. Hence, calibrating these sensors holds immense importance. To bridge the research gap in MS calibration, this study conducted a systematic investigation. The main conclusions are as follows: based on calibration tests on 102 old MS using the CS18VLF vibration table, it became evident that certain long-used MS in coal mines exhibited significant deviations in frequency and amplitude measurements, indicating sensor failure. Three important calibration indexes, frequency deviation, amplitude deviation, and amplitude linearity are proposed to assess the performance of MS. By comparing the index of old and new MS, critical threshold values were established to evaluate sensor effectiveness. A well-functioning MS exhibits an absolute frequency deviation below 5%, an absolute amplitude deviation within 55%, and amplitude linearity surpassing 0.95. In normal operations, the frequency deviation of MS is significantly smaller than the amplitude deviation. Simplified waveform analysis has unveiled a linear connection between amplitude deviation and localization results. An analysis of the Gutenberg–Richter microseismic energy calculation formula found that the microseismic energy calculation is influenced by both the localization result and amplitude deviation, making it challenging to pinpoint the exact impact of amplitude deviation on microseismic energy. Reliable MS, as well as a robust MS, serve as the fundamental cornerstone for acquiring dependable microseismic data and are essential prerequisites for subsequent microseismic data mining. The insights and findings presented here provide valuable guidance for future MS calibration endeavors and ultimately can guarantee the dependability of microseismic data. microseismic monitoring system microseismic sensor amplitude–frequency calibration positioning accuracy vibration table Chemical technology Linming Dou verfasserin aut Zonglong Mu verfasserin aut Jinrong Cao verfasserin aut Yanjiang Chai verfasserin aut Shuai Chen verfasserin aut In Sensors MDPI AG, 2003 23(2023), 8420, p 8420 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:23 year:2023 number:8420, p 8420 https://doi.org/10.3390/s23208420 kostenfrei https://doaj.org/article/a49bea53df8f4ee282d1fa8d0e15c120 kostenfrei https://www.mdpi.com/1424-8220/23/20/8420 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2023 8420, p 8420 |
allfieldsSound |
10.3390/s23208420 doi (DE-627)DOAJ093081022 (DE-599)DOAJa49bea53df8f4ee282d1fa8d0e15c120 DE-627 ger DE-627 rakwb eng TP1-1185 Zepeng Han verfasserin aut Experimental Study on Calibration of Amplitude-Frequency Measurement Deviation for Microseismic Sensors in Coal Mines 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Microseismic monitoring systems (MMS) have become increasingly crucial in detecting tremors in coal mining. Microseismic sensors (MS), integral components of MMS, profoundly influence positioning accuracy and energy calculations. Hence, calibrating these sensors holds immense importance. To bridge the research gap in MS calibration, this study conducted a systematic investigation. The main conclusions are as follows: based on calibration tests on 102 old MS using the CS18VLF vibration table, it became evident that certain long-used MS in coal mines exhibited significant deviations in frequency and amplitude measurements, indicating sensor failure. Three important calibration indexes, frequency deviation, amplitude deviation, and amplitude linearity are proposed to assess the performance of MS. By comparing the index of old and new MS, critical threshold values were established to evaluate sensor effectiveness. A well-functioning MS exhibits an absolute frequency deviation below 5%, an absolute amplitude deviation within 55%, and amplitude linearity surpassing 0.95. In normal operations, the frequency deviation of MS is significantly smaller than the amplitude deviation. Simplified waveform analysis has unveiled a linear connection between amplitude deviation and localization results. An analysis of the Gutenberg–Richter microseismic energy calculation formula found that the microseismic energy calculation is influenced by both the localization result and amplitude deviation, making it challenging to pinpoint the exact impact of amplitude deviation on microseismic energy. Reliable MS, as well as a robust MS, serve as the fundamental cornerstone for acquiring dependable microseismic data and are essential prerequisites for subsequent microseismic data mining. The insights and findings presented here provide valuable guidance for future MS calibration endeavors and ultimately can guarantee the dependability of microseismic data. microseismic monitoring system microseismic sensor amplitude–frequency calibration positioning accuracy vibration table Chemical technology Linming Dou verfasserin aut Zonglong Mu verfasserin aut Jinrong Cao verfasserin aut Yanjiang Chai verfasserin aut Shuai Chen verfasserin aut In Sensors MDPI AG, 2003 23(2023), 8420, p 8420 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:23 year:2023 number:8420, p 8420 https://doi.org/10.3390/s23208420 kostenfrei https://doaj.org/article/a49bea53df8f4ee282d1fa8d0e15c120 kostenfrei https://www.mdpi.com/1424-8220/23/20/8420 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2023 8420, p 8420 |
language |
English |
source |
In Sensors 23(2023), 8420, p 8420 volume:23 year:2023 number:8420, p 8420 |
sourceStr |
In Sensors 23(2023), 8420, p 8420 volume:23 year:2023 number:8420, p 8420 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
microseismic monitoring system microseismic sensor amplitude–frequency calibration positioning accuracy vibration table Chemical technology |
isfreeaccess_bool |
true |
container_title |
Sensors |
authorswithroles_txt_mv |
Zepeng Han @@aut@@ Linming Dou @@aut@@ Zonglong Mu @@aut@@ Jinrong Cao @@aut@@ Yanjiang Chai @@aut@@ Shuai Chen @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
331640910 |
id |
DOAJ093081022 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ093081022</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413163234.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/s23208420</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ093081022</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJa49bea53df8f4ee282d1fa8d0e15c120</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Zepeng Han</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Experimental Study on Calibration of Amplitude-Frequency Measurement Deviation for Microseismic Sensors in Coal Mines</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Microseismic monitoring systems (MMS) have become increasingly crucial in detecting tremors in coal mining. Microseismic sensors (MS), integral components of MMS, profoundly influence positioning accuracy and energy calculations. Hence, calibrating these sensors holds immense importance. To bridge the research gap in MS calibration, this study conducted a systematic investigation. The main conclusions are as follows: based on calibration tests on 102 old MS using the CS18VLF vibration table, it became evident that certain long-used MS in coal mines exhibited significant deviations in frequency and amplitude measurements, indicating sensor failure. Three important calibration indexes, frequency deviation, amplitude deviation, and amplitude linearity are proposed to assess the performance of MS. By comparing the index of old and new MS, critical threshold values were established to evaluate sensor effectiveness. A well-functioning MS exhibits an absolute frequency deviation below 5%, an absolute amplitude deviation within 55%, and amplitude linearity surpassing 0.95. In normal operations, the frequency deviation of MS is significantly smaller than the amplitude deviation. Simplified waveform analysis has unveiled a linear connection between amplitude deviation and localization results. An analysis of the Gutenberg–Richter microseismic energy calculation formula found that the microseismic energy calculation is influenced by both the localization result and amplitude deviation, making it challenging to pinpoint the exact impact of amplitude deviation on microseismic energy. Reliable MS, as well as a robust MS, serve as the fundamental cornerstone for acquiring dependable microseismic data and are essential prerequisites for subsequent microseismic data mining. The insights and findings presented here provide valuable guidance for future MS calibration endeavors and ultimately can guarantee the dependability of microseismic data.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">microseismic monitoring system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">microseismic sensor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">amplitude–frequency calibration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">positioning accuracy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">vibration table</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Linming Dou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zonglong Mu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jinrong Cao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yanjiang Chai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shuai Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Sensors</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">23(2023), 8420, p 8420</subfield><subfield code="w">(DE-627)331640910</subfield><subfield code="w">(DE-600)2052857-7</subfield><subfield code="x">14248220</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:8420, p 8420</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/s23208420</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/a49bea53df8f4ee282d1fa8d0e15c120</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1424-8220/23/20/8420</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1424-8220</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2023</subfield><subfield code="e">8420, p 8420</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Zepeng Han |
spellingShingle |
Zepeng Han misc TP1-1185 misc microseismic monitoring system misc microseismic sensor misc amplitude–frequency calibration misc positioning accuracy misc vibration table misc Chemical technology Experimental Study on Calibration of Amplitude-Frequency Measurement Deviation for Microseismic Sensors in Coal Mines |
authorStr |
Zepeng Han |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)331640910 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TP1-1185 |
illustrated |
Not Illustrated |
issn |
14248220 |
topic_title |
TP1-1185 Experimental Study on Calibration of Amplitude-Frequency Measurement Deviation for Microseismic Sensors in Coal Mines microseismic monitoring system microseismic sensor amplitude–frequency calibration positioning accuracy vibration table |
topic |
misc TP1-1185 misc microseismic monitoring system misc microseismic sensor misc amplitude–frequency calibration misc positioning accuracy misc vibration table misc Chemical technology |
topic_unstemmed |
misc TP1-1185 misc microseismic monitoring system misc microseismic sensor misc amplitude–frequency calibration misc positioning accuracy misc vibration table misc Chemical technology |
topic_browse |
misc TP1-1185 misc microseismic monitoring system misc microseismic sensor misc amplitude–frequency calibration misc positioning accuracy misc vibration table misc Chemical technology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Sensors |
hierarchy_parent_id |
331640910 |
hierarchy_top_title |
Sensors |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)331640910 (DE-600)2052857-7 |
title |
Experimental Study on Calibration of Amplitude-Frequency Measurement Deviation for Microseismic Sensors in Coal Mines |
ctrlnum |
(DE-627)DOAJ093081022 (DE-599)DOAJa49bea53df8f4ee282d1fa8d0e15c120 |
title_full |
Experimental Study on Calibration of Amplitude-Frequency Measurement Deviation for Microseismic Sensors in Coal Mines |
author_sort |
Zepeng Han |
journal |
Sensors |
journalStr |
Sensors |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Zepeng Han Linming Dou Zonglong Mu Jinrong Cao Yanjiang Chai Shuai Chen |
container_volume |
23 |
class |
TP1-1185 |
format_se |
Elektronische Aufsätze |
author-letter |
Zepeng Han |
doi_str_mv |
10.3390/s23208420 |
author2-role |
verfasserin |
title_sort |
experimental study on calibration of amplitude-frequency measurement deviation for microseismic sensors in coal mines |
callnumber |
TP1-1185 |
title_auth |
Experimental Study on Calibration of Amplitude-Frequency Measurement Deviation for Microseismic Sensors in Coal Mines |
abstract |
Microseismic monitoring systems (MMS) have become increasingly crucial in detecting tremors in coal mining. Microseismic sensors (MS), integral components of MMS, profoundly influence positioning accuracy and energy calculations. Hence, calibrating these sensors holds immense importance. To bridge the research gap in MS calibration, this study conducted a systematic investigation. The main conclusions are as follows: based on calibration tests on 102 old MS using the CS18VLF vibration table, it became evident that certain long-used MS in coal mines exhibited significant deviations in frequency and amplitude measurements, indicating sensor failure. Three important calibration indexes, frequency deviation, amplitude deviation, and amplitude linearity are proposed to assess the performance of MS. By comparing the index of old and new MS, critical threshold values were established to evaluate sensor effectiveness. A well-functioning MS exhibits an absolute frequency deviation below 5%, an absolute amplitude deviation within 55%, and amplitude linearity surpassing 0.95. In normal operations, the frequency deviation of MS is significantly smaller than the amplitude deviation. Simplified waveform analysis has unveiled a linear connection between amplitude deviation and localization results. An analysis of the Gutenberg–Richter microseismic energy calculation formula found that the microseismic energy calculation is influenced by both the localization result and amplitude deviation, making it challenging to pinpoint the exact impact of amplitude deviation on microseismic energy. Reliable MS, as well as a robust MS, serve as the fundamental cornerstone for acquiring dependable microseismic data and are essential prerequisites for subsequent microseismic data mining. The insights and findings presented here provide valuable guidance for future MS calibration endeavors and ultimately can guarantee the dependability of microseismic data. |
abstractGer |
Microseismic monitoring systems (MMS) have become increasingly crucial in detecting tremors in coal mining. Microseismic sensors (MS), integral components of MMS, profoundly influence positioning accuracy and energy calculations. Hence, calibrating these sensors holds immense importance. To bridge the research gap in MS calibration, this study conducted a systematic investigation. The main conclusions are as follows: based on calibration tests on 102 old MS using the CS18VLF vibration table, it became evident that certain long-used MS in coal mines exhibited significant deviations in frequency and amplitude measurements, indicating sensor failure. Three important calibration indexes, frequency deviation, amplitude deviation, and amplitude linearity are proposed to assess the performance of MS. By comparing the index of old and new MS, critical threshold values were established to evaluate sensor effectiveness. A well-functioning MS exhibits an absolute frequency deviation below 5%, an absolute amplitude deviation within 55%, and amplitude linearity surpassing 0.95. In normal operations, the frequency deviation of MS is significantly smaller than the amplitude deviation. Simplified waveform analysis has unveiled a linear connection between amplitude deviation and localization results. An analysis of the Gutenberg–Richter microseismic energy calculation formula found that the microseismic energy calculation is influenced by both the localization result and amplitude deviation, making it challenging to pinpoint the exact impact of amplitude deviation on microseismic energy. Reliable MS, as well as a robust MS, serve as the fundamental cornerstone for acquiring dependable microseismic data and are essential prerequisites for subsequent microseismic data mining. The insights and findings presented here provide valuable guidance for future MS calibration endeavors and ultimately can guarantee the dependability of microseismic data. |
abstract_unstemmed |
Microseismic monitoring systems (MMS) have become increasingly crucial in detecting tremors in coal mining. Microseismic sensors (MS), integral components of MMS, profoundly influence positioning accuracy and energy calculations. Hence, calibrating these sensors holds immense importance. To bridge the research gap in MS calibration, this study conducted a systematic investigation. The main conclusions are as follows: based on calibration tests on 102 old MS using the CS18VLF vibration table, it became evident that certain long-used MS in coal mines exhibited significant deviations in frequency and amplitude measurements, indicating sensor failure. Three important calibration indexes, frequency deviation, amplitude deviation, and amplitude linearity are proposed to assess the performance of MS. By comparing the index of old and new MS, critical threshold values were established to evaluate sensor effectiveness. A well-functioning MS exhibits an absolute frequency deviation below 5%, an absolute amplitude deviation within 55%, and amplitude linearity surpassing 0.95. In normal operations, the frequency deviation of MS is significantly smaller than the amplitude deviation. Simplified waveform analysis has unveiled a linear connection between amplitude deviation and localization results. An analysis of the Gutenberg–Richter microseismic energy calculation formula found that the microseismic energy calculation is influenced by both the localization result and amplitude deviation, making it challenging to pinpoint the exact impact of amplitude deviation on microseismic energy. Reliable MS, as well as a robust MS, serve as the fundamental cornerstone for acquiring dependable microseismic data and are essential prerequisites for subsequent microseismic data mining. The insights and findings presented here provide valuable guidance for future MS calibration endeavors and ultimately can guarantee the dependability of microseismic data. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
8420, p 8420 |
title_short |
Experimental Study on Calibration of Amplitude-Frequency Measurement Deviation for Microseismic Sensors in Coal Mines |
url |
https://doi.org/10.3390/s23208420 https://doaj.org/article/a49bea53df8f4ee282d1fa8d0e15c120 https://www.mdpi.com/1424-8220/23/20/8420 https://doaj.org/toc/1424-8220 |
remote_bool |
true |
author2 |
Linming Dou Zonglong Mu Jinrong Cao Yanjiang Chai Shuai Chen |
author2Str |
Linming Dou Zonglong Mu Jinrong Cao Yanjiang Chai Shuai Chen |
ppnlink |
331640910 |
callnumber-subject |
TP - Chemical Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/s23208420 |
callnumber-a |
TP1-1185 |
up_date |
2024-07-03T15:09:15.314Z |
_version_ |
1803571015519830016 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ093081022</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413163234.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/s23208420</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ093081022</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJa49bea53df8f4ee282d1fa8d0e15c120</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Zepeng Han</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Experimental Study on Calibration of Amplitude-Frequency Measurement Deviation for Microseismic Sensors in Coal Mines</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Microseismic monitoring systems (MMS) have become increasingly crucial in detecting tremors in coal mining. Microseismic sensors (MS), integral components of MMS, profoundly influence positioning accuracy and energy calculations. Hence, calibrating these sensors holds immense importance. To bridge the research gap in MS calibration, this study conducted a systematic investigation. The main conclusions are as follows: based on calibration tests on 102 old MS using the CS18VLF vibration table, it became evident that certain long-used MS in coal mines exhibited significant deviations in frequency and amplitude measurements, indicating sensor failure. Three important calibration indexes, frequency deviation, amplitude deviation, and amplitude linearity are proposed to assess the performance of MS. By comparing the index of old and new MS, critical threshold values were established to evaluate sensor effectiveness. A well-functioning MS exhibits an absolute frequency deviation below 5%, an absolute amplitude deviation within 55%, and amplitude linearity surpassing 0.95. In normal operations, the frequency deviation of MS is significantly smaller than the amplitude deviation. Simplified waveform analysis has unveiled a linear connection between amplitude deviation and localization results. An analysis of the Gutenberg–Richter microseismic energy calculation formula found that the microseismic energy calculation is influenced by both the localization result and amplitude deviation, making it challenging to pinpoint the exact impact of amplitude deviation on microseismic energy. Reliable MS, as well as a robust MS, serve as the fundamental cornerstone for acquiring dependable microseismic data and are essential prerequisites for subsequent microseismic data mining. The insights and findings presented here provide valuable guidance for future MS calibration endeavors and ultimately can guarantee the dependability of microseismic data.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">microseismic monitoring system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">microseismic sensor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">amplitude–frequency calibration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">positioning accuracy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">vibration table</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Linming Dou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zonglong Mu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jinrong Cao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yanjiang Chai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shuai Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Sensors</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">23(2023), 8420, p 8420</subfield><subfield code="w">(DE-627)331640910</subfield><subfield code="w">(DE-600)2052857-7</subfield><subfield code="x">14248220</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:8420, p 8420</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/s23208420</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/a49bea53df8f4ee282d1fa8d0e15c120</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1424-8220/23/20/8420</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1424-8220</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2023</subfield><subfield code="e">8420, p 8420</subfield></datafield></record></collection>
|
score |
7.4010553 |