Compliance Prediction for Structural Topology Optimization on the Basis of Moment Invariants and a Generalized Regression Neural Network
Topology optimization techniques are essential for manufacturing industries, such as designing fiber-reinforced polymer composites (FRPCs) and structures with outstanding strength-to-weight ratios and light weights. In the SIMP approach, artificial intelligence algorithms are commonly utilized to en...
Ausführliche Beschreibung
Autor*in: |
Yunmei Zhao [verfasserIn] Zhenyue Chen [verfasserIn] Yiqun Dong [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Entropy - MDPI AG, 2003, 25(2023), 1396, p 1396 |
---|---|
Übergeordnetes Werk: |
volume:25 ; year:2023 ; number:1396, p 1396 |
Links: |
---|
DOI / URN: |
10.3390/e25101396 |
---|
Katalog-ID: |
DOAJ09314590X |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ09314590X | ||
003 | DE-627 | ||
005 | 20240413220058.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/e25101396 |2 doi | |
035 | |a (DE-627)DOAJ09314590X | ||
035 | |a (DE-599)DOAJ9fbcdcc991264f0aa8b6dd07934d5100 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QB460-466 | |
050 | 0 | |a QC1-999 | |
100 | 0 | |a Yunmei Zhao |e verfasserin |4 aut | |
245 | 1 | 0 | |a Compliance Prediction for Structural Topology Optimization on the Basis of Moment Invariants and a Generalized Regression Neural Network |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Topology optimization techniques are essential for manufacturing industries, such as designing fiber-reinforced polymer composites (FRPCs) and structures with outstanding strength-to-weight ratios and light weights. In the SIMP approach, artificial intelligence algorithms are commonly utilized to enhance traditional FEM-based compliance minimization procedures. Based on an effective generalized regression neural network (GRNN), a new deep learning algorithm of compliance prediction for structural topology optimization is proposed. The algorithm learns the structural information using a fourth-order moment invariant analysis of the structural topology obtained from FEA at different iterations of classical topology optimization. A cantilever and a simply supported beam problem are used as ground-truth datasets, and the moment invariants are used as independent variables for input features. By comparing it with the well-known convolutional neural network (CNN) and deep neural network (DNN) models, the proposed GRNN model achieves a high prediction accuracy (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msup<<mi<R</mi<<mn<2</mn<</msup<</semantics<</math<</inline-formula< < 0.97) and drastically shortens the training and prediction cost. Furthermore, the GRNN algorithm exhibits excellent generalization ability on the prediction performance of the optimized topology with rotations and varied material volume fractions. This algorithm is promising for the replacement of the FEA calculation in the SIMP method, and can be applied to real-time optimization for advanced FRPC structure design. | ||
650 | 4 | |a composite design | |
650 | 4 | |a topology image recognition | |
650 | 4 | |a moment invariants | |
650 | 4 | |a GRNN | |
650 | 4 | |a compliance | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
653 | 0 | |a Astrophysics | |
653 | 0 | |a Physics | |
700 | 0 | |a Zhenyue Chen |e verfasserin |4 aut | |
700 | 0 | |a Yiqun Dong |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Entropy |d MDPI AG, 2003 |g 25(2023), 1396, p 1396 |w (DE-627)316340359 |w (DE-600)2014734-X |x 10994300 |7 nnns |
773 | 1 | 8 | |g volume:25 |g year:2023 |g number:1396, p 1396 |
856 | 4 | 0 | |u https://doi.org/10.3390/e25101396 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/9fbcdcc991264f0aa8b6dd07934d5100 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/1099-4300/25/10/1396 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1099-4300 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 25 |j 2023 |e 1396, p 1396 |
author_variant |
y z yz z c zc y d yd |
---|---|
matchkey_str |
article:10994300:2023----::opinerdcinosrcuatplgotmztooteaiommnivratadg |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
QB |
publishDate |
2023 |
allfields |
10.3390/e25101396 doi (DE-627)DOAJ09314590X (DE-599)DOAJ9fbcdcc991264f0aa8b6dd07934d5100 DE-627 ger DE-627 rakwb eng QB460-466 QC1-999 Yunmei Zhao verfasserin aut Compliance Prediction for Structural Topology Optimization on the Basis of Moment Invariants and a Generalized Regression Neural Network 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Topology optimization techniques are essential for manufacturing industries, such as designing fiber-reinforced polymer composites (FRPCs) and structures with outstanding strength-to-weight ratios and light weights. In the SIMP approach, artificial intelligence algorithms are commonly utilized to enhance traditional FEM-based compliance minimization procedures. Based on an effective generalized regression neural network (GRNN), a new deep learning algorithm of compliance prediction for structural topology optimization is proposed. The algorithm learns the structural information using a fourth-order moment invariant analysis of the structural topology obtained from FEA at different iterations of classical topology optimization. A cantilever and a simply supported beam problem are used as ground-truth datasets, and the moment invariants are used as independent variables for input features. By comparing it with the well-known convolutional neural network (CNN) and deep neural network (DNN) models, the proposed GRNN model achieves a high prediction accuracy (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msup<<mi<R</mi<<mn<2</mn<</msup<</semantics<</math<</inline-formula< < 0.97) and drastically shortens the training and prediction cost. Furthermore, the GRNN algorithm exhibits excellent generalization ability on the prediction performance of the optimized topology with rotations and varied material volume fractions. This algorithm is promising for the replacement of the FEA calculation in the SIMP method, and can be applied to real-time optimization for advanced FRPC structure design. composite design topology image recognition moment invariants GRNN compliance Science Q Astrophysics Physics Zhenyue Chen verfasserin aut Yiqun Dong verfasserin aut In Entropy MDPI AG, 2003 25(2023), 1396, p 1396 (DE-627)316340359 (DE-600)2014734-X 10994300 nnns volume:25 year:2023 number:1396, p 1396 https://doi.org/10.3390/e25101396 kostenfrei https://doaj.org/article/9fbcdcc991264f0aa8b6dd07934d5100 kostenfrei https://www.mdpi.com/1099-4300/25/10/1396 kostenfrei https://doaj.org/toc/1099-4300 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 25 2023 1396, p 1396 |
spelling |
10.3390/e25101396 doi (DE-627)DOAJ09314590X (DE-599)DOAJ9fbcdcc991264f0aa8b6dd07934d5100 DE-627 ger DE-627 rakwb eng QB460-466 QC1-999 Yunmei Zhao verfasserin aut Compliance Prediction for Structural Topology Optimization on the Basis of Moment Invariants and a Generalized Regression Neural Network 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Topology optimization techniques are essential for manufacturing industries, such as designing fiber-reinforced polymer composites (FRPCs) and structures with outstanding strength-to-weight ratios and light weights. In the SIMP approach, artificial intelligence algorithms are commonly utilized to enhance traditional FEM-based compliance minimization procedures. Based on an effective generalized regression neural network (GRNN), a new deep learning algorithm of compliance prediction for structural topology optimization is proposed. The algorithm learns the structural information using a fourth-order moment invariant analysis of the structural topology obtained from FEA at different iterations of classical topology optimization. A cantilever and a simply supported beam problem are used as ground-truth datasets, and the moment invariants are used as independent variables for input features. By comparing it with the well-known convolutional neural network (CNN) and deep neural network (DNN) models, the proposed GRNN model achieves a high prediction accuracy (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msup<<mi<R</mi<<mn<2</mn<</msup<</semantics<</math<</inline-formula< < 0.97) and drastically shortens the training and prediction cost. Furthermore, the GRNN algorithm exhibits excellent generalization ability on the prediction performance of the optimized topology with rotations and varied material volume fractions. This algorithm is promising for the replacement of the FEA calculation in the SIMP method, and can be applied to real-time optimization for advanced FRPC structure design. composite design topology image recognition moment invariants GRNN compliance Science Q Astrophysics Physics Zhenyue Chen verfasserin aut Yiqun Dong verfasserin aut In Entropy MDPI AG, 2003 25(2023), 1396, p 1396 (DE-627)316340359 (DE-600)2014734-X 10994300 nnns volume:25 year:2023 number:1396, p 1396 https://doi.org/10.3390/e25101396 kostenfrei https://doaj.org/article/9fbcdcc991264f0aa8b6dd07934d5100 kostenfrei https://www.mdpi.com/1099-4300/25/10/1396 kostenfrei https://doaj.org/toc/1099-4300 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 25 2023 1396, p 1396 |
allfields_unstemmed |
10.3390/e25101396 doi (DE-627)DOAJ09314590X (DE-599)DOAJ9fbcdcc991264f0aa8b6dd07934d5100 DE-627 ger DE-627 rakwb eng QB460-466 QC1-999 Yunmei Zhao verfasserin aut Compliance Prediction for Structural Topology Optimization on the Basis of Moment Invariants and a Generalized Regression Neural Network 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Topology optimization techniques are essential for manufacturing industries, such as designing fiber-reinforced polymer composites (FRPCs) and structures with outstanding strength-to-weight ratios and light weights. In the SIMP approach, artificial intelligence algorithms are commonly utilized to enhance traditional FEM-based compliance minimization procedures. Based on an effective generalized regression neural network (GRNN), a new deep learning algorithm of compliance prediction for structural topology optimization is proposed. The algorithm learns the structural information using a fourth-order moment invariant analysis of the structural topology obtained from FEA at different iterations of classical topology optimization. A cantilever and a simply supported beam problem are used as ground-truth datasets, and the moment invariants are used as independent variables for input features. By comparing it with the well-known convolutional neural network (CNN) and deep neural network (DNN) models, the proposed GRNN model achieves a high prediction accuracy (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msup<<mi<R</mi<<mn<2</mn<</msup<</semantics<</math<</inline-formula< < 0.97) and drastically shortens the training and prediction cost. Furthermore, the GRNN algorithm exhibits excellent generalization ability on the prediction performance of the optimized topology with rotations and varied material volume fractions. This algorithm is promising for the replacement of the FEA calculation in the SIMP method, and can be applied to real-time optimization for advanced FRPC structure design. composite design topology image recognition moment invariants GRNN compliance Science Q Astrophysics Physics Zhenyue Chen verfasserin aut Yiqun Dong verfasserin aut In Entropy MDPI AG, 2003 25(2023), 1396, p 1396 (DE-627)316340359 (DE-600)2014734-X 10994300 nnns volume:25 year:2023 number:1396, p 1396 https://doi.org/10.3390/e25101396 kostenfrei https://doaj.org/article/9fbcdcc991264f0aa8b6dd07934d5100 kostenfrei https://www.mdpi.com/1099-4300/25/10/1396 kostenfrei https://doaj.org/toc/1099-4300 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 25 2023 1396, p 1396 |
allfieldsGer |
10.3390/e25101396 doi (DE-627)DOAJ09314590X (DE-599)DOAJ9fbcdcc991264f0aa8b6dd07934d5100 DE-627 ger DE-627 rakwb eng QB460-466 QC1-999 Yunmei Zhao verfasserin aut Compliance Prediction for Structural Topology Optimization on the Basis of Moment Invariants and a Generalized Regression Neural Network 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Topology optimization techniques are essential for manufacturing industries, such as designing fiber-reinforced polymer composites (FRPCs) and structures with outstanding strength-to-weight ratios and light weights. In the SIMP approach, artificial intelligence algorithms are commonly utilized to enhance traditional FEM-based compliance minimization procedures. Based on an effective generalized regression neural network (GRNN), a new deep learning algorithm of compliance prediction for structural topology optimization is proposed. The algorithm learns the structural information using a fourth-order moment invariant analysis of the structural topology obtained from FEA at different iterations of classical topology optimization. A cantilever and a simply supported beam problem are used as ground-truth datasets, and the moment invariants are used as independent variables for input features. By comparing it with the well-known convolutional neural network (CNN) and deep neural network (DNN) models, the proposed GRNN model achieves a high prediction accuracy (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msup<<mi<R</mi<<mn<2</mn<</msup<</semantics<</math<</inline-formula< < 0.97) and drastically shortens the training and prediction cost. Furthermore, the GRNN algorithm exhibits excellent generalization ability on the prediction performance of the optimized topology with rotations and varied material volume fractions. This algorithm is promising for the replacement of the FEA calculation in the SIMP method, and can be applied to real-time optimization for advanced FRPC structure design. composite design topology image recognition moment invariants GRNN compliance Science Q Astrophysics Physics Zhenyue Chen verfasserin aut Yiqun Dong verfasserin aut In Entropy MDPI AG, 2003 25(2023), 1396, p 1396 (DE-627)316340359 (DE-600)2014734-X 10994300 nnns volume:25 year:2023 number:1396, p 1396 https://doi.org/10.3390/e25101396 kostenfrei https://doaj.org/article/9fbcdcc991264f0aa8b6dd07934d5100 kostenfrei https://www.mdpi.com/1099-4300/25/10/1396 kostenfrei https://doaj.org/toc/1099-4300 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 25 2023 1396, p 1396 |
allfieldsSound |
10.3390/e25101396 doi (DE-627)DOAJ09314590X (DE-599)DOAJ9fbcdcc991264f0aa8b6dd07934d5100 DE-627 ger DE-627 rakwb eng QB460-466 QC1-999 Yunmei Zhao verfasserin aut Compliance Prediction for Structural Topology Optimization on the Basis of Moment Invariants and a Generalized Regression Neural Network 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Topology optimization techniques are essential for manufacturing industries, such as designing fiber-reinforced polymer composites (FRPCs) and structures with outstanding strength-to-weight ratios and light weights. In the SIMP approach, artificial intelligence algorithms are commonly utilized to enhance traditional FEM-based compliance minimization procedures. Based on an effective generalized regression neural network (GRNN), a new deep learning algorithm of compliance prediction for structural topology optimization is proposed. The algorithm learns the structural information using a fourth-order moment invariant analysis of the structural topology obtained from FEA at different iterations of classical topology optimization. A cantilever and a simply supported beam problem are used as ground-truth datasets, and the moment invariants are used as independent variables for input features. By comparing it with the well-known convolutional neural network (CNN) and deep neural network (DNN) models, the proposed GRNN model achieves a high prediction accuracy (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msup<<mi<R</mi<<mn<2</mn<</msup<</semantics<</math<</inline-formula< < 0.97) and drastically shortens the training and prediction cost. Furthermore, the GRNN algorithm exhibits excellent generalization ability on the prediction performance of the optimized topology with rotations and varied material volume fractions. This algorithm is promising for the replacement of the FEA calculation in the SIMP method, and can be applied to real-time optimization for advanced FRPC structure design. composite design topology image recognition moment invariants GRNN compliance Science Q Astrophysics Physics Zhenyue Chen verfasserin aut Yiqun Dong verfasserin aut In Entropy MDPI AG, 2003 25(2023), 1396, p 1396 (DE-627)316340359 (DE-600)2014734-X 10994300 nnns volume:25 year:2023 number:1396, p 1396 https://doi.org/10.3390/e25101396 kostenfrei https://doaj.org/article/9fbcdcc991264f0aa8b6dd07934d5100 kostenfrei https://www.mdpi.com/1099-4300/25/10/1396 kostenfrei https://doaj.org/toc/1099-4300 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 25 2023 1396, p 1396 |
language |
English |
source |
In Entropy 25(2023), 1396, p 1396 volume:25 year:2023 number:1396, p 1396 |
sourceStr |
In Entropy 25(2023), 1396, p 1396 volume:25 year:2023 number:1396, p 1396 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
composite design topology image recognition moment invariants GRNN compliance Science Q Astrophysics Physics |
isfreeaccess_bool |
true |
container_title |
Entropy |
authorswithroles_txt_mv |
Yunmei Zhao @@aut@@ Zhenyue Chen @@aut@@ Yiqun Dong @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
316340359 |
id |
DOAJ09314590X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ09314590X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413220058.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/e25101396</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ09314590X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ9fbcdcc991264f0aa8b6dd07934d5100</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QB460-466</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yunmei Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Compliance Prediction for Structural Topology Optimization on the Basis of Moment Invariants and a Generalized Regression Neural Network</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Topology optimization techniques are essential for manufacturing industries, such as designing fiber-reinforced polymer composites (FRPCs) and structures with outstanding strength-to-weight ratios and light weights. In the SIMP approach, artificial intelligence algorithms are commonly utilized to enhance traditional FEM-based compliance minimization procedures. Based on an effective generalized regression neural network (GRNN), a new deep learning algorithm of compliance prediction for structural topology optimization is proposed. The algorithm learns the structural information using a fourth-order moment invariant analysis of the structural topology obtained from FEA at different iterations of classical topology optimization. A cantilever and a simply supported beam problem are used as ground-truth datasets, and the moment invariants are used as independent variables for input features. By comparing it with the well-known convolutional neural network (CNN) and deep neural network (DNN) models, the proposed GRNN model achieves a high prediction accuracy (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msup<<mi<R</mi<<mn<2</mn<</msup<</semantics<</math<</inline-formula< < 0.97) and drastically shortens the training and prediction cost. Furthermore, the GRNN algorithm exhibits excellent generalization ability on the prediction performance of the optimized topology with rotations and varied material volume fractions. This algorithm is promising for the replacement of the FEA calculation in the SIMP method, and can be applied to real-time optimization for advanced FRPC structure design.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">composite design</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">topology image recognition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">moment invariants</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">GRNN</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">compliance</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Astrophysics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhenyue Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yiqun Dong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Entropy</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">25(2023), 1396, p 1396</subfield><subfield code="w">(DE-627)316340359</subfield><subfield code="w">(DE-600)2014734-X</subfield><subfield code="x">10994300</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:25</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1396, p 1396</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/e25101396</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/9fbcdcc991264f0aa8b6dd07934d5100</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1099-4300/25/10/1396</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1099-4300</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">25</subfield><subfield code="j">2023</subfield><subfield code="e">1396, p 1396</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Yunmei Zhao |
spellingShingle |
Yunmei Zhao misc QB460-466 misc QC1-999 misc composite design misc topology image recognition misc moment invariants misc GRNN misc compliance misc Science misc Q misc Astrophysics misc Physics Compliance Prediction for Structural Topology Optimization on the Basis of Moment Invariants and a Generalized Regression Neural Network |
authorStr |
Yunmei Zhao |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)316340359 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QB460-466 |
illustrated |
Not Illustrated |
issn |
10994300 |
topic_title |
QB460-466 QC1-999 Compliance Prediction for Structural Topology Optimization on the Basis of Moment Invariants and a Generalized Regression Neural Network composite design topology image recognition moment invariants GRNN compliance |
topic |
misc QB460-466 misc QC1-999 misc composite design misc topology image recognition misc moment invariants misc GRNN misc compliance misc Science misc Q misc Astrophysics misc Physics |
topic_unstemmed |
misc QB460-466 misc QC1-999 misc composite design misc topology image recognition misc moment invariants misc GRNN misc compliance misc Science misc Q misc Astrophysics misc Physics |
topic_browse |
misc QB460-466 misc QC1-999 misc composite design misc topology image recognition misc moment invariants misc GRNN misc compliance misc Science misc Q misc Astrophysics misc Physics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Entropy |
hierarchy_parent_id |
316340359 |
hierarchy_top_title |
Entropy |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)316340359 (DE-600)2014734-X |
title |
Compliance Prediction for Structural Topology Optimization on the Basis of Moment Invariants and a Generalized Regression Neural Network |
ctrlnum |
(DE-627)DOAJ09314590X (DE-599)DOAJ9fbcdcc991264f0aa8b6dd07934d5100 |
title_full |
Compliance Prediction for Structural Topology Optimization on the Basis of Moment Invariants and a Generalized Regression Neural Network |
author_sort |
Yunmei Zhao |
journal |
Entropy |
journalStr |
Entropy |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Yunmei Zhao Zhenyue Chen Yiqun Dong |
container_volume |
25 |
class |
QB460-466 QC1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Yunmei Zhao |
doi_str_mv |
10.3390/e25101396 |
author2-role |
verfasserin |
title_sort |
compliance prediction for structural topology optimization on the basis of moment invariants and a generalized regression neural network |
callnumber |
QB460-466 |
title_auth |
Compliance Prediction for Structural Topology Optimization on the Basis of Moment Invariants and a Generalized Regression Neural Network |
abstract |
Topology optimization techniques are essential for manufacturing industries, such as designing fiber-reinforced polymer composites (FRPCs) and structures with outstanding strength-to-weight ratios and light weights. In the SIMP approach, artificial intelligence algorithms are commonly utilized to enhance traditional FEM-based compliance minimization procedures. Based on an effective generalized regression neural network (GRNN), a new deep learning algorithm of compliance prediction for structural topology optimization is proposed. The algorithm learns the structural information using a fourth-order moment invariant analysis of the structural topology obtained from FEA at different iterations of classical topology optimization. A cantilever and a simply supported beam problem are used as ground-truth datasets, and the moment invariants are used as independent variables for input features. By comparing it with the well-known convolutional neural network (CNN) and deep neural network (DNN) models, the proposed GRNN model achieves a high prediction accuracy (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msup<<mi<R</mi<<mn<2</mn<</msup<</semantics<</math<</inline-formula< < 0.97) and drastically shortens the training and prediction cost. Furthermore, the GRNN algorithm exhibits excellent generalization ability on the prediction performance of the optimized topology with rotations and varied material volume fractions. This algorithm is promising for the replacement of the FEA calculation in the SIMP method, and can be applied to real-time optimization for advanced FRPC structure design. |
abstractGer |
Topology optimization techniques are essential for manufacturing industries, such as designing fiber-reinforced polymer composites (FRPCs) and structures with outstanding strength-to-weight ratios and light weights. In the SIMP approach, artificial intelligence algorithms are commonly utilized to enhance traditional FEM-based compliance minimization procedures. Based on an effective generalized regression neural network (GRNN), a new deep learning algorithm of compliance prediction for structural topology optimization is proposed. The algorithm learns the structural information using a fourth-order moment invariant analysis of the structural topology obtained from FEA at different iterations of classical topology optimization. A cantilever and a simply supported beam problem are used as ground-truth datasets, and the moment invariants are used as independent variables for input features. By comparing it with the well-known convolutional neural network (CNN) and deep neural network (DNN) models, the proposed GRNN model achieves a high prediction accuracy (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msup<<mi<R</mi<<mn<2</mn<</msup<</semantics<</math<</inline-formula< < 0.97) and drastically shortens the training and prediction cost. Furthermore, the GRNN algorithm exhibits excellent generalization ability on the prediction performance of the optimized topology with rotations and varied material volume fractions. This algorithm is promising for the replacement of the FEA calculation in the SIMP method, and can be applied to real-time optimization for advanced FRPC structure design. |
abstract_unstemmed |
Topology optimization techniques are essential for manufacturing industries, such as designing fiber-reinforced polymer composites (FRPCs) and structures with outstanding strength-to-weight ratios and light weights. In the SIMP approach, artificial intelligence algorithms are commonly utilized to enhance traditional FEM-based compliance minimization procedures. Based on an effective generalized regression neural network (GRNN), a new deep learning algorithm of compliance prediction for structural topology optimization is proposed. The algorithm learns the structural information using a fourth-order moment invariant analysis of the structural topology obtained from FEA at different iterations of classical topology optimization. A cantilever and a simply supported beam problem are used as ground-truth datasets, and the moment invariants are used as independent variables for input features. By comparing it with the well-known convolutional neural network (CNN) and deep neural network (DNN) models, the proposed GRNN model achieves a high prediction accuracy (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msup<<mi<R</mi<<mn<2</mn<</msup<</semantics<</math<</inline-formula< < 0.97) and drastically shortens the training and prediction cost. Furthermore, the GRNN algorithm exhibits excellent generalization ability on the prediction performance of the optimized topology with rotations and varied material volume fractions. This algorithm is promising for the replacement of the FEA calculation in the SIMP method, and can be applied to real-time optimization for advanced FRPC structure design. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1396, p 1396 |
title_short |
Compliance Prediction for Structural Topology Optimization on the Basis of Moment Invariants and a Generalized Regression Neural Network |
url |
https://doi.org/10.3390/e25101396 https://doaj.org/article/9fbcdcc991264f0aa8b6dd07934d5100 https://www.mdpi.com/1099-4300/25/10/1396 https://doaj.org/toc/1099-4300 |
remote_bool |
true |
author2 |
Zhenyue Chen Yiqun Dong |
author2Str |
Zhenyue Chen Yiqun Dong |
ppnlink |
316340359 |
callnumber-subject |
QB - Astronomy |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/e25101396 |
callnumber-a |
QB460-466 |
up_date |
2024-07-03T15:33:00.259Z |
_version_ |
1803572509677715456 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ09314590X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413220058.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/e25101396</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ09314590X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ9fbcdcc991264f0aa8b6dd07934d5100</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QB460-466</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yunmei Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Compliance Prediction for Structural Topology Optimization on the Basis of Moment Invariants and a Generalized Regression Neural Network</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Topology optimization techniques are essential for manufacturing industries, such as designing fiber-reinforced polymer composites (FRPCs) and structures with outstanding strength-to-weight ratios and light weights. In the SIMP approach, artificial intelligence algorithms are commonly utilized to enhance traditional FEM-based compliance minimization procedures. Based on an effective generalized regression neural network (GRNN), a new deep learning algorithm of compliance prediction for structural topology optimization is proposed. The algorithm learns the structural information using a fourth-order moment invariant analysis of the structural topology obtained from FEA at different iterations of classical topology optimization. A cantilever and a simply supported beam problem are used as ground-truth datasets, and the moment invariants are used as independent variables for input features. By comparing it with the well-known convolutional neural network (CNN) and deep neural network (DNN) models, the proposed GRNN model achieves a high prediction accuracy (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msup<<mi<R</mi<<mn<2</mn<</msup<</semantics<</math<</inline-formula< < 0.97) and drastically shortens the training and prediction cost. Furthermore, the GRNN algorithm exhibits excellent generalization ability on the prediction performance of the optimized topology with rotations and varied material volume fractions. This algorithm is promising for the replacement of the FEA calculation in the SIMP method, and can be applied to real-time optimization for advanced FRPC structure design.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">composite design</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">topology image recognition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">moment invariants</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">GRNN</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">compliance</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Astrophysics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhenyue Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yiqun Dong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Entropy</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">25(2023), 1396, p 1396</subfield><subfield code="w">(DE-627)316340359</subfield><subfield code="w">(DE-600)2014734-X</subfield><subfield code="x">10994300</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:25</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1396, p 1396</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/e25101396</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/9fbcdcc991264f0aa8b6dd07934d5100</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1099-4300/25/10/1396</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1099-4300</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">25</subfield><subfield code="j">2023</subfield><subfield code="e">1396, p 1396</subfield></datafield></record></collection>
|
score |
7.402011 |