A Lightweight Network Based on Improved YOLOv5s for Insulator Defect Detection
Insulators on transmission lines can be damaged to different degrees due to extreme weather conditions, which threaten the safe operation of the power system. In order to detect damaged insulators in time and meet the needs of real-time detection, this paper proposes a multi-defect and lightweight d...
Ausführliche Beschreibung
Autor*in: |
Cong Liu [verfasserIn] Wentao Yi [verfasserIn] Min Liu [verfasserIn] Yifeng Wang [verfasserIn] Sheng Hu [verfasserIn] Minghu Wu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Electronics - MDPI AG, 2013, 12(2023), 4292, p 4292 |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2023 ; number:4292, p 4292 |
Links: |
---|
DOI / URN: |
10.3390/electronics12204292 |
---|
Katalog-ID: |
DOAJ093149131 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ093149131 | ||
003 | DE-627 | ||
005 | 20240413220122.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/electronics12204292 |2 doi | |
035 | |a (DE-627)DOAJ093149131 | ||
035 | |a (DE-599)DOAJf1dac8167b944a07bc20c32540587398 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK7800-8360 | |
100 | 0 | |a Cong Liu |e verfasserin |4 aut | |
245 | 1 | 2 | |a A Lightweight Network Based on Improved YOLOv5s for Insulator Defect Detection |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Insulators on transmission lines can be damaged to different degrees due to extreme weather conditions, which threaten the safe operation of the power system. In order to detect damaged insulators in time and meet the needs of real-time detection, this paper proposes a multi-defect and lightweight detection algorithm for insulators based on the improved YOLOv5s. To reduce the network parameters, we have integrated the Ghost module and introduced C3Ghost as a replacement for the backbone network. This enhancement enables a more efficient detection model. Moreover, we have added a new detection layer specifically designed for small objects, and embedded an attention mechanism into the network, significantly improving its detection capability for smaller insulators. Furthermore, we use the K-means++ algorithm to recluster the prior boxes and replace Efficient IoU Loss as the new loss function, which has better matching and convergence on the insulator defect dataset we constructed. The experimental results demonstrate the effectiveness of our proposed algorithm. Compared to the original algorithm, our model reduces the number of parameters by 41.1%, while achieving an mAP0.5 of 94.8%. It also achieves a processing speed of 32.52 frames per second. These improvements make the algorithm well-suited for practical insulator detection and enable its deployment in edge devices. | ||
650 | 4 | |a image recognition | |
650 | 4 | |a YOLOv5s | |
650 | 4 | |a detection of insulator defects | |
650 | 4 | |a lightweight | |
650 | 4 | |a ghost | |
653 | 0 | |a Electronics | |
700 | 0 | |a Wentao Yi |e verfasserin |4 aut | |
700 | 0 | |a Min Liu |e verfasserin |4 aut | |
700 | 0 | |a Yifeng Wang |e verfasserin |4 aut | |
700 | 0 | |a Sheng Hu |e verfasserin |4 aut | |
700 | 0 | |a Minghu Wu |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Electronics |d MDPI AG, 2013 |g 12(2023), 4292, p 4292 |w (DE-627)718626478 |w (DE-600)2662127-7 |x 20799292 |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2023 |g number:4292, p 4292 |
856 | 4 | 0 | |u https://doi.org/10.3390/electronics12204292 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/f1dac8167b944a07bc20c32540587398 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2079-9292/12/20/4292 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2079-9292 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 12 |j 2023 |e 4292, p 4292 |
author_variant |
c l cl w y wy m l ml y w yw s h sh m w mw |
---|---|
matchkey_str |
article:20799292:2023----::lgtegtewrbsdnmrvdoo5frnua |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
TK |
publishDate |
2023 |
allfields |
10.3390/electronics12204292 doi (DE-627)DOAJ093149131 (DE-599)DOAJf1dac8167b944a07bc20c32540587398 DE-627 ger DE-627 rakwb eng TK7800-8360 Cong Liu verfasserin aut A Lightweight Network Based on Improved YOLOv5s for Insulator Defect Detection 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Insulators on transmission lines can be damaged to different degrees due to extreme weather conditions, which threaten the safe operation of the power system. In order to detect damaged insulators in time and meet the needs of real-time detection, this paper proposes a multi-defect and lightweight detection algorithm for insulators based on the improved YOLOv5s. To reduce the network parameters, we have integrated the Ghost module and introduced C3Ghost as a replacement for the backbone network. This enhancement enables a more efficient detection model. Moreover, we have added a new detection layer specifically designed for small objects, and embedded an attention mechanism into the network, significantly improving its detection capability for smaller insulators. Furthermore, we use the K-means++ algorithm to recluster the prior boxes and replace Efficient IoU Loss as the new loss function, which has better matching and convergence on the insulator defect dataset we constructed. The experimental results demonstrate the effectiveness of our proposed algorithm. Compared to the original algorithm, our model reduces the number of parameters by 41.1%, while achieving an mAP0.5 of 94.8%. It also achieves a processing speed of 32.52 frames per second. These improvements make the algorithm well-suited for practical insulator detection and enable its deployment in edge devices. image recognition YOLOv5s detection of insulator defects lightweight ghost Electronics Wentao Yi verfasserin aut Min Liu verfasserin aut Yifeng Wang verfasserin aut Sheng Hu verfasserin aut Minghu Wu verfasserin aut In Electronics MDPI AG, 2013 12(2023), 4292, p 4292 (DE-627)718626478 (DE-600)2662127-7 20799292 nnns volume:12 year:2023 number:4292, p 4292 https://doi.org/10.3390/electronics12204292 kostenfrei https://doaj.org/article/f1dac8167b944a07bc20c32540587398 kostenfrei https://www.mdpi.com/2079-9292/12/20/4292 kostenfrei https://doaj.org/toc/2079-9292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2023 4292, p 4292 |
spelling |
10.3390/electronics12204292 doi (DE-627)DOAJ093149131 (DE-599)DOAJf1dac8167b944a07bc20c32540587398 DE-627 ger DE-627 rakwb eng TK7800-8360 Cong Liu verfasserin aut A Lightweight Network Based on Improved YOLOv5s for Insulator Defect Detection 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Insulators on transmission lines can be damaged to different degrees due to extreme weather conditions, which threaten the safe operation of the power system. In order to detect damaged insulators in time and meet the needs of real-time detection, this paper proposes a multi-defect and lightweight detection algorithm for insulators based on the improved YOLOv5s. To reduce the network parameters, we have integrated the Ghost module and introduced C3Ghost as a replacement for the backbone network. This enhancement enables a more efficient detection model. Moreover, we have added a new detection layer specifically designed for small objects, and embedded an attention mechanism into the network, significantly improving its detection capability for smaller insulators. Furthermore, we use the K-means++ algorithm to recluster the prior boxes and replace Efficient IoU Loss as the new loss function, which has better matching and convergence on the insulator defect dataset we constructed. The experimental results demonstrate the effectiveness of our proposed algorithm. Compared to the original algorithm, our model reduces the number of parameters by 41.1%, while achieving an mAP0.5 of 94.8%. It also achieves a processing speed of 32.52 frames per second. These improvements make the algorithm well-suited for practical insulator detection and enable its deployment in edge devices. image recognition YOLOv5s detection of insulator defects lightweight ghost Electronics Wentao Yi verfasserin aut Min Liu verfasserin aut Yifeng Wang verfasserin aut Sheng Hu verfasserin aut Minghu Wu verfasserin aut In Electronics MDPI AG, 2013 12(2023), 4292, p 4292 (DE-627)718626478 (DE-600)2662127-7 20799292 nnns volume:12 year:2023 number:4292, p 4292 https://doi.org/10.3390/electronics12204292 kostenfrei https://doaj.org/article/f1dac8167b944a07bc20c32540587398 kostenfrei https://www.mdpi.com/2079-9292/12/20/4292 kostenfrei https://doaj.org/toc/2079-9292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2023 4292, p 4292 |
allfields_unstemmed |
10.3390/electronics12204292 doi (DE-627)DOAJ093149131 (DE-599)DOAJf1dac8167b944a07bc20c32540587398 DE-627 ger DE-627 rakwb eng TK7800-8360 Cong Liu verfasserin aut A Lightweight Network Based on Improved YOLOv5s for Insulator Defect Detection 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Insulators on transmission lines can be damaged to different degrees due to extreme weather conditions, which threaten the safe operation of the power system. In order to detect damaged insulators in time and meet the needs of real-time detection, this paper proposes a multi-defect and lightweight detection algorithm for insulators based on the improved YOLOv5s. To reduce the network parameters, we have integrated the Ghost module and introduced C3Ghost as a replacement for the backbone network. This enhancement enables a more efficient detection model. Moreover, we have added a new detection layer specifically designed for small objects, and embedded an attention mechanism into the network, significantly improving its detection capability for smaller insulators. Furthermore, we use the K-means++ algorithm to recluster the prior boxes and replace Efficient IoU Loss as the new loss function, which has better matching and convergence on the insulator defect dataset we constructed. The experimental results demonstrate the effectiveness of our proposed algorithm. Compared to the original algorithm, our model reduces the number of parameters by 41.1%, while achieving an mAP0.5 of 94.8%. It also achieves a processing speed of 32.52 frames per second. These improvements make the algorithm well-suited for practical insulator detection and enable its deployment in edge devices. image recognition YOLOv5s detection of insulator defects lightweight ghost Electronics Wentao Yi verfasserin aut Min Liu verfasserin aut Yifeng Wang verfasserin aut Sheng Hu verfasserin aut Minghu Wu verfasserin aut In Electronics MDPI AG, 2013 12(2023), 4292, p 4292 (DE-627)718626478 (DE-600)2662127-7 20799292 nnns volume:12 year:2023 number:4292, p 4292 https://doi.org/10.3390/electronics12204292 kostenfrei https://doaj.org/article/f1dac8167b944a07bc20c32540587398 kostenfrei https://www.mdpi.com/2079-9292/12/20/4292 kostenfrei https://doaj.org/toc/2079-9292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2023 4292, p 4292 |
allfieldsGer |
10.3390/electronics12204292 doi (DE-627)DOAJ093149131 (DE-599)DOAJf1dac8167b944a07bc20c32540587398 DE-627 ger DE-627 rakwb eng TK7800-8360 Cong Liu verfasserin aut A Lightweight Network Based on Improved YOLOv5s for Insulator Defect Detection 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Insulators on transmission lines can be damaged to different degrees due to extreme weather conditions, which threaten the safe operation of the power system. In order to detect damaged insulators in time and meet the needs of real-time detection, this paper proposes a multi-defect and lightweight detection algorithm for insulators based on the improved YOLOv5s. To reduce the network parameters, we have integrated the Ghost module and introduced C3Ghost as a replacement for the backbone network. This enhancement enables a more efficient detection model. Moreover, we have added a new detection layer specifically designed for small objects, and embedded an attention mechanism into the network, significantly improving its detection capability for smaller insulators. Furthermore, we use the K-means++ algorithm to recluster the prior boxes and replace Efficient IoU Loss as the new loss function, which has better matching and convergence on the insulator defect dataset we constructed. The experimental results demonstrate the effectiveness of our proposed algorithm. Compared to the original algorithm, our model reduces the number of parameters by 41.1%, while achieving an mAP0.5 of 94.8%. It also achieves a processing speed of 32.52 frames per second. These improvements make the algorithm well-suited for practical insulator detection and enable its deployment in edge devices. image recognition YOLOv5s detection of insulator defects lightweight ghost Electronics Wentao Yi verfasserin aut Min Liu verfasserin aut Yifeng Wang verfasserin aut Sheng Hu verfasserin aut Minghu Wu verfasserin aut In Electronics MDPI AG, 2013 12(2023), 4292, p 4292 (DE-627)718626478 (DE-600)2662127-7 20799292 nnns volume:12 year:2023 number:4292, p 4292 https://doi.org/10.3390/electronics12204292 kostenfrei https://doaj.org/article/f1dac8167b944a07bc20c32540587398 kostenfrei https://www.mdpi.com/2079-9292/12/20/4292 kostenfrei https://doaj.org/toc/2079-9292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2023 4292, p 4292 |
allfieldsSound |
10.3390/electronics12204292 doi (DE-627)DOAJ093149131 (DE-599)DOAJf1dac8167b944a07bc20c32540587398 DE-627 ger DE-627 rakwb eng TK7800-8360 Cong Liu verfasserin aut A Lightweight Network Based on Improved YOLOv5s for Insulator Defect Detection 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Insulators on transmission lines can be damaged to different degrees due to extreme weather conditions, which threaten the safe operation of the power system. In order to detect damaged insulators in time and meet the needs of real-time detection, this paper proposes a multi-defect and lightweight detection algorithm for insulators based on the improved YOLOv5s. To reduce the network parameters, we have integrated the Ghost module and introduced C3Ghost as a replacement for the backbone network. This enhancement enables a more efficient detection model. Moreover, we have added a new detection layer specifically designed for small objects, and embedded an attention mechanism into the network, significantly improving its detection capability for smaller insulators. Furthermore, we use the K-means++ algorithm to recluster the prior boxes and replace Efficient IoU Loss as the new loss function, which has better matching and convergence on the insulator defect dataset we constructed. The experimental results demonstrate the effectiveness of our proposed algorithm. Compared to the original algorithm, our model reduces the number of parameters by 41.1%, while achieving an mAP0.5 of 94.8%. It also achieves a processing speed of 32.52 frames per second. These improvements make the algorithm well-suited for practical insulator detection and enable its deployment in edge devices. image recognition YOLOv5s detection of insulator defects lightweight ghost Electronics Wentao Yi verfasserin aut Min Liu verfasserin aut Yifeng Wang verfasserin aut Sheng Hu verfasserin aut Minghu Wu verfasserin aut In Electronics MDPI AG, 2013 12(2023), 4292, p 4292 (DE-627)718626478 (DE-600)2662127-7 20799292 nnns volume:12 year:2023 number:4292, p 4292 https://doi.org/10.3390/electronics12204292 kostenfrei https://doaj.org/article/f1dac8167b944a07bc20c32540587398 kostenfrei https://www.mdpi.com/2079-9292/12/20/4292 kostenfrei https://doaj.org/toc/2079-9292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2023 4292, p 4292 |
language |
English |
source |
In Electronics 12(2023), 4292, p 4292 volume:12 year:2023 number:4292, p 4292 |
sourceStr |
In Electronics 12(2023), 4292, p 4292 volume:12 year:2023 number:4292, p 4292 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
image recognition YOLOv5s detection of insulator defects lightweight ghost Electronics |
isfreeaccess_bool |
true |
container_title |
Electronics |
authorswithroles_txt_mv |
Cong Liu @@aut@@ Wentao Yi @@aut@@ Min Liu @@aut@@ Yifeng Wang @@aut@@ Sheng Hu @@aut@@ Minghu Wu @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
718626478 |
id |
DOAJ093149131 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ093149131</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413220122.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/electronics12204292</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ093149131</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJf1dac8167b944a07bc20c32540587398</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK7800-8360</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Cong Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Lightweight Network Based on Improved YOLOv5s for Insulator Defect Detection</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Insulators on transmission lines can be damaged to different degrees due to extreme weather conditions, which threaten the safe operation of the power system. In order to detect damaged insulators in time and meet the needs of real-time detection, this paper proposes a multi-defect and lightweight detection algorithm for insulators based on the improved YOLOv5s. To reduce the network parameters, we have integrated the Ghost module and introduced C3Ghost as a replacement for the backbone network. This enhancement enables a more efficient detection model. Moreover, we have added a new detection layer specifically designed for small objects, and embedded an attention mechanism into the network, significantly improving its detection capability for smaller insulators. Furthermore, we use the K-means++ algorithm to recluster the prior boxes and replace Efficient IoU Loss as the new loss function, which has better matching and convergence on the insulator defect dataset we constructed. The experimental results demonstrate the effectiveness of our proposed algorithm. Compared to the original algorithm, our model reduces the number of parameters by 41.1%, while achieving an mAP0.5 of 94.8%. It also achieves a processing speed of 32.52 frames per second. These improvements make the algorithm well-suited for practical insulator detection and enable its deployment in edge devices.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">image recognition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">YOLOv5s</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">detection of insulator defects</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">lightweight</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ghost</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wentao Yi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Min Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yifeng Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sheng Hu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Minghu Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Electronics</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">12(2023), 4292, p 4292</subfield><subfield code="w">(DE-627)718626478</subfield><subfield code="w">(DE-600)2662127-7</subfield><subfield code="x">20799292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:4292, p 4292</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/electronics12204292</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/f1dac8167b944a07bc20c32540587398</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2079-9292/12/20/4292</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2079-9292</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2023</subfield><subfield code="e">4292, p 4292</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Cong Liu |
spellingShingle |
Cong Liu misc TK7800-8360 misc image recognition misc YOLOv5s misc detection of insulator defects misc lightweight misc ghost misc Electronics A Lightweight Network Based on Improved YOLOv5s for Insulator Defect Detection |
authorStr |
Cong Liu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)718626478 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK7800-8360 |
illustrated |
Not Illustrated |
issn |
20799292 |
topic_title |
TK7800-8360 A Lightweight Network Based on Improved YOLOv5s for Insulator Defect Detection image recognition YOLOv5s detection of insulator defects lightweight ghost |
topic |
misc TK7800-8360 misc image recognition misc YOLOv5s misc detection of insulator defects misc lightweight misc ghost misc Electronics |
topic_unstemmed |
misc TK7800-8360 misc image recognition misc YOLOv5s misc detection of insulator defects misc lightweight misc ghost misc Electronics |
topic_browse |
misc TK7800-8360 misc image recognition misc YOLOv5s misc detection of insulator defects misc lightweight misc ghost misc Electronics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Electronics |
hierarchy_parent_id |
718626478 |
hierarchy_top_title |
Electronics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)718626478 (DE-600)2662127-7 |
title |
A Lightweight Network Based on Improved YOLOv5s for Insulator Defect Detection |
ctrlnum |
(DE-627)DOAJ093149131 (DE-599)DOAJf1dac8167b944a07bc20c32540587398 |
title_full |
A Lightweight Network Based on Improved YOLOv5s for Insulator Defect Detection |
author_sort |
Cong Liu |
journal |
Electronics |
journalStr |
Electronics |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Cong Liu Wentao Yi Min Liu Yifeng Wang Sheng Hu Minghu Wu |
container_volume |
12 |
class |
TK7800-8360 |
format_se |
Elektronische Aufsätze |
author-letter |
Cong Liu |
doi_str_mv |
10.3390/electronics12204292 |
author2-role |
verfasserin |
title_sort |
lightweight network based on improved yolov5s for insulator defect detection |
callnumber |
TK7800-8360 |
title_auth |
A Lightweight Network Based on Improved YOLOv5s for Insulator Defect Detection |
abstract |
Insulators on transmission lines can be damaged to different degrees due to extreme weather conditions, which threaten the safe operation of the power system. In order to detect damaged insulators in time and meet the needs of real-time detection, this paper proposes a multi-defect and lightweight detection algorithm for insulators based on the improved YOLOv5s. To reduce the network parameters, we have integrated the Ghost module and introduced C3Ghost as a replacement for the backbone network. This enhancement enables a more efficient detection model. Moreover, we have added a new detection layer specifically designed for small objects, and embedded an attention mechanism into the network, significantly improving its detection capability for smaller insulators. Furthermore, we use the K-means++ algorithm to recluster the prior boxes and replace Efficient IoU Loss as the new loss function, which has better matching and convergence on the insulator defect dataset we constructed. The experimental results demonstrate the effectiveness of our proposed algorithm. Compared to the original algorithm, our model reduces the number of parameters by 41.1%, while achieving an mAP0.5 of 94.8%. It also achieves a processing speed of 32.52 frames per second. These improvements make the algorithm well-suited for practical insulator detection and enable its deployment in edge devices. |
abstractGer |
Insulators on transmission lines can be damaged to different degrees due to extreme weather conditions, which threaten the safe operation of the power system. In order to detect damaged insulators in time and meet the needs of real-time detection, this paper proposes a multi-defect and lightweight detection algorithm for insulators based on the improved YOLOv5s. To reduce the network parameters, we have integrated the Ghost module and introduced C3Ghost as a replacement for the backbone network. This enhancement enables a more efficient detection model. Moreover, we have added a new detection layer specifically designed for small objects, and embedded an attention mechanism into the network, significantly improving its detection capability for smaller insulators. Furthermore, we use the K-means++ algorithm to recluster the prior boxes and replace Efficient IoU Loss as the new loss function, which has better matching and convergence on the insulator defect dataset we constructed. The experimental results demonstrate the effectiveness of our proposed algorithm. Compared to the original algorithm, our model reduces the number of parameters by 41.1%, while achieving an mAP0.5 of 94.8%. It also achieves a processing speed of 32.52 frames per second. These improvements make the algorithm well-suited for practical insulator detection and enable its deployment in edge devices. |
abstract_unstemmed |
Insulators on transmission lines can be damaged to different degrees due to extreme weather conditions, which threaten the safe operation of the power system. In order to detect damaged insulators in time and meet the needs of real-time detection, this paper proposes a multi-defect and lightweight detection algorithm for insulators based on the improved YOLOv5s. To reduce the network parameters, we have integrated the Ghost module and introduced C3Ghost as a replacement for the backbone network. This enhancement enables a more efficient detection model. Moreover, we have added a new detection layer specifically designed for small objects, and embedded an attention mechanism into the network, significantly improving its detection capability for smaller insulators. Furthermore, we use the K-means++ algorithm to recluster the prior boxes and replace Efficient IoU Loss as the new loss function, which has better matching and convergence on the insulator defect dataset we constructed. The experimental results demonstrate the effectiveness of our proposed algorithm. Compared to the original algorithm, our model reduces the number of parameters by 41.1%, while achieving an mAP0.5 of 94.8%. It also achieves a processing speed of 32.52 frames per second. These improvements make the algorithm well-suited for practical insulator detection and enable its deployment in edge devices. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
4292, p 4292 |
title_short |
A Lightweight Network Based on Improved YOLOv5s for Insulator Defect Detection |
url |
https://doi.org/10.3390/electronics12204292 https://doaj.org/article/f1dac8167b944a07bc20c32540587398 https://www.mdpi.com/2079-9292/12/20/4292 https://doaj.org/toc/2079-9292 |
remote_bool |
true |
author2 |
Wentao Yi Min Liu Yifeng Wang Sheng Hu Minghu Wu |
author2Str |
Wentao Yi Min Liu Yifeng Wang Sheng Hu Minghu Wu |
ppnlink |
718626478 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/electronics12204292 |
callnumber-a |
TK7800-8360 |
up_date |
2024-07-03T15:34:08.770Z |
_version_ |
1803572581518802944 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ093149131</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413220122.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/electronics12204292</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ093149131</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJf1dac8167b944a07bc20c32540587398</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK7800-8360</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Cong Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Lightweight Network Based on Improved YOLOv5s for Insulator Defect Detection</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Insulators on transmission lines can be damaged to different degrees due to extreme weather conditions, which threaten the safe operation of the power system. In order to detect damaged insulators in time and meet the needs of real-time detection, this paper proposes a multi-defect and lightweight detection algorithm for insulators based on the improved YOLOv5s. To reduce the network parameters, we have integrated the Ghost module and introduced C3Ghost as a replacement for the backbone network. This enhancement enables a more efficient detection model. Moreover, we have added a new detection layer specifically designed for small objects, and embedded an attention mechanism into the network, significantly improving its detection capability for smaller insulators. Furthermore, we use the K-means++ algorithm to recluster the prior boxes and replace Efficient IoU Loss as the new loss function, which has better matching and convergence on the insulator defect dataset we constructed. The experimental results demonstrate the effectiveness of our proposed algorithm. Compared to the original algorithm, our model reduces the number of parameters by 41.1%, while achieving an mAP0.5 of 94.8%. It also achieves a processing speed of 32.52 frames per second. These improvements make the algorithm well-suited for practical insulator detection and enable its deployment in edge devices.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">image recognition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">YOLOv5s</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">detection of insulator defects</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">lightweight</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ghost</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wentao Yi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Min Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yifeng Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sheng Hu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Minghu Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Electronics</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">12(2023), 4292, p 4292</subfield><subfield code="w">(DE-627)718626478</subfield><subfield code="w">(DE-600)2662127-7</subfield><subfield code="x">20799292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:4292, p 4292</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/electronics12204292</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/f1dac8167b944a07bc20c32540587398</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2079-9292/12/20/4292</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2079-9292</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2023</subfield><subfield code="e">4292, p 4292</subfield></datafield></record></collection>
|
score |
7.401412 |