CPDOS: A Web-Based AI Platform to Optimize Crop Planting Density
Increasing crop yield is a significant objective in modern agriculture, with adjusted planting density and rational fertilization strategies standing out as the foremost approaches for attaining such a goal. Through the use of modern artificial intelligence techniques such as genetic algorithms and...
Ausführliche Beschreibung
Autor*in: |
Rongsheng Zhu [verfasserIn] Zhixin Zhang [verfasserIn] Yangyang Cao [verfasserIn] Zhenbang Hu [verfasserIn] Yang Li [verfasserIn] Haifeng Cao [verfasserIn] Zhenqing Zhao [verfasserIn] Dawei Xin [verfasserIn] Qingshan Chen [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Agronomy - MDPI AG, 2012, 13(2023), 2465, p 2465 |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2023 ; number:2465, p 2465 |
Links: |
---|
DOI / URN: |
10.3390/agronomy13102465 |
---|
Katalog-ID: |
DOAJ093190212 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ093190212 | ||
003 | DE-627 | ||
005 | 20240414040909.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/agronomy13102465 |2 doi | |
035 | |a (DE-627)DOAJ093190212 | ||
035 | |a (DE-599)DOAJ925c4e00642c44e2ac47e3939e786f9f | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Rongsheng Zhu |e verfasserin |4 aut | |
245 | 1 | 0 | |a CPDOS: A Web-Based AI Platform to Optimize Crop Planting Density |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Increasing crop yield is a significant objective in modern agriculture, with adjusted planting density and rational fertilization strategies standing out as the foremost approaches for attaining such a goal. Through the use of modern artificial intelligence techniques such as genetic algorithms and neural networks, the CPDOS (Crop Planting Density Optimization System), an online intelligent system that can automate the modeling, optimization, and analysis of the two models, was developed in the present study. The goal of the system is to optimize the planting density model and fertilizer application in combination with other computer system development techniques. The CPDOS comprises three main modules: yield density optimization module, optimal planting density range module, and fertilization and planting density optimization module. The three modules are complemented by two modules for data input and result visualization, culminating in the comprehensive process of optimizing planting density and fertilizer allocation through the CPDOS. The CPDOS was tested using potato, corn, and soybean data, and the results show that the optimization effects of planting density and fertilizer application were satisfactory. The CPDOS is an automated crop planting optimization system that integrates algorithms and models and is driven by artificial intelligence technology. The introduction of the CPDOS reduces the barriers to utilizing these algorithms and models, facilitating wider adoption of intelligently optimized planting technology. The platform’s launch will accelerate the swift advancement of this field. | ||
650 | 4 | |a online intelligent system | |
650 | 4 | |a genetic algorithm | |
650 | 4 | |a yield–density module | |
650 | 4 | |a planting density range module | |
650 | 4 | |a fertilization and planting density module | |
650 | 4 | |a artificial intelligence technology | |
653 | 0 | |a Agriculture | |
653 | 0 | |a S | |
700 | 0 | |a Zhixin Zhang |e verfasserin |4 aut | |
700 | 0 | |a Yangyang Cao |e verfasserin |4 aut | |
700 | 0 | |a Zhenbang Hu |e verfasserin |4 aut | |
700 | 0 | |a Yang Li |e verfasserin |4 aut | |
700 | 0 | |a Haifeng Cao |e verfasserin |4 aut | |
700 | 0 | |a Zhenqing Zhao |e verfasserin |4 aut | |
700 | 0 | |a Dawei Xin |e verfasserin |4 aut | |
700 | 0 | |a Qingshan Chen |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Agronomy |d MDPI AG, 2012 |g 13(2023), 2465, p 2465 |w (DE-627)658000543 |w (DE-600)2607043-1 |x 20734395 |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2023 |g number:2465, p 2465 |
856 | 4 | 0 | |u https://doi.org/10.3390/agronomy13102465 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/925c4e00642c44e2ac47e3939e786f9f |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2073-4395/13/10/2465 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2073-4395 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 13 |j 2023 |e 2465, p 2465 |
author_variant |
r z rz z z zz y c yc z h zh y l yl h c hc z z zz d x dx q c qc |
---|---|
matchkey_str |
article:20734395:2023----::poaebsdiltomopiierp |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.3390/agronomy13102465 doi (DE-627)DOAJ093190212 (DE-599)DOAJ925c4e00642c44e2ac47e3939e786f9f DE-627 ger DE-627 rakwb eng Rongsheng Zhu verfasserin aut CPDOS: A Web-Based AI Platform to Optimize Crop Planting Density 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Increasing crop yield is a significant objective in modern agriculture, with adjusted planting density and rational fertilization strategies standing out as the foremost approaches for attaining such a goal. Through the use of modern artificial intelligence techniques such as genetic algorithms and neural networks, the CPDOS (Crop Planting Density Optimization System), an online intelligent system that can automate the modeling, optimization, and analysis of the two models, was developed in the present study. The goal of the system is to optimize the planting density model and fertilizer application in combination with other computer system development techniques. The CPDOS comprises three main modules: yield density optimization module, optimal planting density range module, and fertilization and planting density optimization module. The three modules are complemented by two modules for data input and result visualization, culminating in the comprehensive process of optimizing planting density and fertilizer allocation through the CPDOS. The CPDOS was tested using potato, corn, and soybean data, and the results show that the optimization effects of planting density and fertilizer application were satisfactory. The CPDOS is an automated crop planting optimization system that integrates algorithms and models and is driven by artificial intelligence technology. The introduction of the CPDOS reduces the barriers to utilizing these algorithms and models, facilitating wider adoption of intelligently optimized planting technology. The platform’s launch will accelerate the swift advancement of this field. online intelligent system genetic algorithm yield–density module planting density range module fertilization and planting density module artificial intelligence technology Agriculture S Zhixin Zhang verfasserin aut Yangyang Cao verfasserin aut Zhenbang Hu verfasserin aut Yang Li verfasserin aut Haifeng Cao verfasserin aut Zhenqing Zhao verfasserin aut Dawei Xin verfasserin aut Qingshan Chen verfasserin aut In Agronomy MDPI AG, 2012 13(2023), 2465, p 2465 (DE-627)658000543 (DE-600)2607043-1 20734395 nnns volume:13 year:2023 number:2465, p 2465 https://doi.org/10.3390/agronomy13102465 kostenfrei https://doaj.org/article/925c4e00642c44e2ac47e3939e786f9f kostenfrei https://www.mdpi.com/2073-4395/13/10/2465 kostenfrei https://doaj.org/toc/2073-4395 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 2465, p 2465 |
spelling |
10.3390/agronomy13102465 doi (DE-627)DOAJ093190212 (DE-599)DOAJ925c4e00642c44e2ac47e3939e786f9f DE-627 ger DE-627 rakwb eng Rongsheng Zhu verfasserin aut CPDOS: A Web-Based AI Platform to Optimize Crop Planting Density 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Increasing crop yield is a significant objective in modern agriculture, with adjusted planting density and rational fertilization strategies standing out as the foremost approaches for attaining such a goal. Through the use of modern artificial intelligence techniques such as genetic algorithms and neural networks, the CPDOS (Crop Planting Density Optimization System), an online intelligent system that can automate the modeling, optimization, and analysis of the two models, was developed in the present study. The goal of the system is to optimize the planting density model and fertilizer application in combination with other computer system development techniques. The CPDOS comprises three main modules: yield density optimization module, optimal planting density range module, and fertilization and planting density optimization module. The three modules are complemented by two modules for data input and result visualization, culminating in the comprehensive process of optimizing planting density and fertilizer allocation through the CPDOS. The CPDOS was tested using potato, corn, and soybean data, and the results show that the optimization effects of planting density and fertilizer application were satisfactory. The CPDOS is an automated crop planting optimization system that integrates algorithms and models and is driven by artificial intelligence technology. The introduction of the CPDOS reduces the barriers to utilizing these algorithms and models, facilitating wider adoption of intelligently optimized planting technology. The platform’s launch will accelerate the swift advancement of this field. online intelligent system genetic algorithm yield–density module planting density range module fertilization and planting density module artificial intelligence technology Agriculture S Zhixin Zhang verfasserin aut Yangyang Cao verfasserin aut Zhenbang Hu verfasserin aut Yang Li verfasserin aut Haifeng Cao verfasserin aut Zhenqing Zhao verfasserin aut Dawei Xin verfasserin aut Qingshan Chen verfasserin aut In Agronomy MDPI AG, 2012 13(2023), 2465, p 2465 (DE-627)658000543 (DE-600)2607043-1 20734395 nnns volume:13 year:2023 number:2465, p 2465 https://doi.org/10.3390/agronomy13102465 kostenfrei https://doaj.org/article/925c4e00642c44e2ac47e3939e786f9f kostenfrei https://www.mdpi.com/2073-4395/13/10/2465 kostenfrei https://doaj.org/toc/2073-4395 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 2465, p 2465 |
allfields_unstemmed |
10.3390/agronomy13102465 doi (DE-627)DOAJ093190212 (DE-599)DOAJ925c4e00642c44e2ac47e3939e786f9f DE-627 ger DE-627 rakwb eng Rongsheng Zhu verfasserin aut CPDOS: A Web-Based AI Platform to Optimize Crop Planting Density 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Increasing crop yield is a significant objective in modern agriculture, with adjusted planting density and rational fertilization strategies standing out as the foremost approaches for attaining such a goal. Through the use of modern artificial intelligence techniques such as genetic algorithms and neural networks, the CPDOS (Crop Planting Density Optimization System), an online intelligent system that can automate the modeling, optimization, and analysis of the two models, was developed in the present study. The goal of the system is to optimize the planting density model and fertilizer application in combination with other computer system development techniques. The CPDOS comprises three main modules: yield density optimization module, optimal planting density range module, and fertilization and planting density optimization module. The three modules are complemented by two modules for data input and result visualization, culminating in the comprehensive process of optimizing planting density and fertilizer allocation through the CPDOS. The CPDOS was tested using potato, corn, and soybean data, and the results show that the optimization effects of planting density and fertilizer application were satisfactory. The CPDOS is an automated crop planting optimization system that integrates algorithms and models and is driven by artificial intelligence technology. The introduction of the CPDOS reduces the barriers to utilizing these algorithms and models, facilitating wider adoption of intelligently optimized planting technology. The platform’s launch will accelerate the swift advancement of this field. online intelligent system genetic algorithm yield–density module planting density range module fertilization and planting density module artificial intelligence technology Agriculture S Zhixin Zhang verfasserin aut Yangyang Cao verfasserin aut Zhenbang Hu verfasserin aut Yang Li verfasserin aut Haifeng Cao verfasserin aut Zhenqing Zhao verfasserin aut Dawei Xin verfasserin aut Qingshan Chen verfasserin aut In Agronomy MDPI AG, 2012 13(2023), 2465, p 2465 (DE-627)658000543 (DE-600)2607043-1 20734395 nnns volume:13 year:2023 number:2465, p 2465 https://doi.org/10.3390/agronomy13102465 kostenfrei https://doaj.org/article/925c4e00642c44e2ac47e3939e786f9f kostenfrei https://www.mdpi.com/2073-4395/13/10/2465 kostenfrei https://doaj.org/toc/2073-4395 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 2465, p 2465 |
allfieldsGer |
10.3390/agronomy13102465 doi (DE-627)DOAJ093190212 (DE-599)DOAJ925c4e00642c44e2ac47e3939e786f9f DE-627 ger DE-627 rakwb eng Rongsheng Zhu verfasserin aut CPDOS: A Web-Based AI Platform to Optimize Crop Planting Density 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Increasing crop yield is a significant objective in modern agriculture, with adjusted planting density and rational fertilization strategies standing out as the foremost approaches for attaining such a goal. Through the use of modern artificial intelligence techniques such as genetic algorithms and neural networks, the CPDOS (Crop Planting Density Optimization System), an online intelligent system that can automate the modeling, optimization, and analysis of the two models, was developed in the present study. The goal of the system is to optimize the planting density model and fertilizer application in combination with other computer system development techniques. The CPDOS comprises three main modules: yield density optimization module, optimal planting density range module, and fertilization and planting density optimization module. The three modules are complemented by two modules for data input and result visualization, culminating in the comprehensive process of optimizing planting density and fertilizer allocation through the CPDOS. The CPDOS was tested using potato, corn, and soybean data, and the results show that the optimization effects of planting density and fertilizer application were satisfactory. The CPDOS is an automated crop planting optimization system that integrates algorithms and models and is driven by artificial intelligence technology. The introduction of the CPDOS reduces the barriers to utilizing these algorithms and models, facilitating wider adoption of intelligently optimized planting technology. The platform’s launch will accelerate the swift advancement of this field. online intelligent system genetic algorithm yield–density module planting density range module fertilization and planting density module artificial intelligence technology Agriculture S Zhixin Zhang verfasserin aut Yangyang Cao verfasserin aut Zhenbang Hu verfasserin aut Yang Li verfasserin aut Haifeng Cao verfasserin aut Zhenqing Zhao verfasserin aut Dawei Xin verfasserin aut Qingshan Chen verfasserin aut In Agronomy MDPI AG, 2012 13(2023), 2465, p 2465 (DE-627)658000543 (DE-600)2607043-1 20734395 nnns volume:13 year:2023 number:2465, p 2465 https://doi.org/10.3390/agronomy13102465 kostenfrei https://doaj.org/article/925c4e00642c44e2ac47e3939e786f9f kostenfrei https://www.mdpi.com/2073-4395/13/10/2465 kostenfrei https://doaj.org/toc/2073-4395 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 2465, p 2465 |
allfieldsSound |
10.3390/agronomy13102465 doi (DE-627)DOAJ093190212 (DE-599)DOAJ925c4e00642c44e2ac47e3939e786f9f DE-627 ger DE-627 rakwb eng Rongsheng Zhu verfasserin aut CPDOS: A Web-Based AI Platform to Optimize Crop Planting Density 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Increasing crop yield is a significant objective in modern agriculture, with adjusted planting density and rational fertilization strategies standing out as the foremost approaches for attaining such a goal. Through the use of modern artificial intelligence techniques such as genetic algorithms and neural networks, the CPDOS (Crop Planting Density Optimization System), an online intelligent system that can automate the modeling, optimization, and analysis of the two models, was developed in the present study. The goal of the system is to optimize the planting density model and fertilizer application in combination with other computer system development techniques. The CPDOS comprises three main modules: yield density optimization module, optimal planting density range module, and fertilization and planting density optimization module. The three modules are complemented by two modules for data input and result visualization, culminating in the comprehensive process of optimizing planting density and fertilizer allocation through the CPDOS. The CPDOS was tested using potato, corn, and soybean data, and the results show that the optimization effects of planting density and fertilizer application were satisfactory. The CPDOS is an automated crop planting optimization system that integrates algorithms and models and is driven by artificial intelligence technology. The introduction of the CPDOS reduces the barriers to utilizing these algorithms and models, facilitating wider adoption of intelligently optimized planting technology. The platform’s launch will accelerate the swift advancement of this field. online intelligent system genetic algorithm yield–density module planting density range module fertilization and planting density module artificial intelligence technology Agriculture S Zhixin Zhang verfasserin aut Yangyang Cao verfasserin aut Zhenbang Hu verfasserin aut Yang Li verfasserin aut Haifeng Cao verfasserin aut Zhenqing Zhao verfasserin aut Dawei Xin verfasserin aut Qingshan Chen verfasserin aut In Agronomy MDPI AG, 2012 13(2023), 2465, p 2465 (DE-627)658000543 (DE-600)2607043-1 20734395 nnns volume:13 year:2023 number:2465, p 2465 https://doi.org/10.3390/agronomy13102465 kostenfrei https://doaj.org/article/925c4e00642c44e2ac47e3939e786f9f kostenfrei https://www.mdpi.com/2073-4395/13/10/2465 kostenfrei https://doaj.org/toc/2073-4395 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 2465, p 2465 |
language |
English |
source |
In Agronomy 13(2023), 2465, p 2465 volume:13 year:2023 number:2465, p 2465 |
sourceStr |
In Agronomy 13(2023), 2465, p 2465 volume:13 year:2023 number:2465, p 2465 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
online intelligent system genetic algorithm yield–density module planting density range module fertilization and planting density module artificial intelligence technology Agriculture S |
isfreeaccess_bool |
true |
container_title |
Agronomy |
authorswithroles_txt_mv |
Rongsheng Zhu @@aut@@ Zhixin Zhang @@aut@@ Yangyang Cao @@aut@@ Zhenbang Hu @@aut@@ Yang Li @@aut@@ Haifeng Cao @@aut@@ Zhenqing Zhao @@aut@@ Dawei Xin @@aut@@ Qingshan Chen @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
658000543 |
id |
DOAJ093190212 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ093190212</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414040909.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/agronomy13102465</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ093190212</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ925c4e00642c44e2ac47e3939e786f9f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Rongsheng Zhu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">CPDOS: A Web-Based AI Platform to Optimize Crop Planting Density</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Increasing crop yield is a significant objective in modern agriculture, with adjusted planting density and rational fertilization strategies standing out as the foremost approaches for attaining such a goal. Through the use of modern artificial intelligence techniques such as genetic algorithms and neural networks, the CPDOS (Crop Planting Density Optimization System), an online intelligent system that can automate the modeling, optimization, and analysis of the two models, was developed in the present study. The goal of the system is to optimize the planting density model and fertilizer application in combination with other computer system development techniques. The CPDOS comprises three main modules: yield density optimization module, optimal planting density range module, and fertilization and planting density optimization module. The three modules are complemented by two modules for data input and result visualization, culminating in the comprehensive process of optimizing planting density and fertilizer allocation through the CPDOS. The CPDOS was tested using potato, corn, and soybean data, and the results show that the optimization effects of planting density and fertilizer application were satisfactory. The CPDOS is an automated crop planting optimization system that integrates algorithms and models and is driven by artificial intelligence technology. The introduction of the CPDOS reduces the barriers to utilizing these algorithms and models, facilitating wider adoption of intelligently optimized planting technology. The platform’s launch will accelerate the swift advancement of this field.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">online intelligent system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">genetic algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">yield–density module</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">planting density range module</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fertilization and planting density module</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">artificial intelligence technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Agriculture</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">S</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhixin Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yangyang Cao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhenbang Hu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yang Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haifeng Cao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhenqing Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dawei Xin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qingshan Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Agronomy</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">13(2023), 2465, p 2465</subfield><subfield code="w">(DE-627)658000543</subfield><subfield code="w">(DE-600)2607043-1</subfield><subfield code="x">20734395</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:2465, p 2465</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/agronomy13102465</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/925c4e00642c44e2ac47e3939e786f9f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2073-4395/13/10/2465</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2073-4395</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2023</subfield><subfield code="e">2465, p 2465</subfield></datafield></record></collection>
|
author |
Rongsheng Zhu |
spellingShingle |
Rongsheng Zhu misc online intelligent system misc genetic algorithm misc yield–density module misc planting density range module misc fertilization and planting density module misc artificial intelligence technology misc Agriculture misc S CPDOS: A Web-Based AI Platform to Optimize Crop Planting Density |
authorStr |
Rongsheng Zhu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)658000543 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
20734395 |
topic_title |
CPDOS: A Web-Based AI Platform to Optimize Crop Planting Density online intelligent system genetic algorithm yield–density module planting density range module fertilization and planting density module artificial intelligence technology |
topic |
misc online intelligent system misc genetic algorithm misc yield–density module misc planting density range module misc fertilization and planting density module misc artificial intelligence technology misc Agriculture misc S |
topic_unstemmed |
misc online intelligent system misc genetic algorithm misc yield–density module misc planting density range module misc fertilization and planting density module misc artificial intelligence technology misc Agriculture misc S |
topic_browse |
misc online intelligent system misc genetic algorithm misc yield–density module misc planting density range module misc fertilization and planting density module misc artificial intelligence technology misc Agriculture misc S |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Agronomy |
hierarchy_parent_id |
658000543 |
hierarchy_top_title |
Agronomy |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)658000543 (DE-600)2607043-1 |
title |
CPDOS: A Web-Based AI Platform to Optimize Crop Planting Density |
ctrlnum |
(DE-627)DOAJ093190212 (DE-599)DOAJ925c4e00642c44e2ac47e3939e786f9f |
title_full |
CPDOS: A Web-Based AI Platform to Optimize Crop Planting Density |
author_sort |
Rongsheng Zhu |
journal |
Agronomy |
journalStr |
Agronomy |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Rongsheng Zhu Zhixin Zhang Yangyang Cao Zhenbang Hu Yang Li Haifeng Cao Zhenqing Zhao Dawei Xin Qingshan Chen |
container_volume |
13 |
format_se |
Elektronische Aufsätze |
author-letter |
Rongsheng Zhu |
doi_str_mv |
10.3390/agronomy13102465 |
author2-role |
verfasserin |
title_sort |
cpdos: a web-based ai platform to optimize crop planting density |
title_auth |
CPDOS: A Web-Based AI Platform to Optimize Crop Planting Density |
abstract |
Increasing crop yield is a significant objective in modern agriculture, with adjusted planting density and rational fertilization strategies standing out as the foremost approaches for attaining such a goal. Through the use of modern artificial intelligence techniques such as genetic algorithms and neural networks, the CPDOS (Crop Planting Density Optimization System), an online intelligent system that can automate the modeling, optimization, and analysis of the two models, was developed in the present study. The goal of the system is to optimize the planting density model and fertilizer application in combination with other computer system development techniques. The CPDOS comprises three main modules: yield density optimization module, optimal planting density range module, and fertilization and planting density optimization module. The three modules are complemented by two modules for data input and result visualization, culminating in the comprehensive process of optimizing planting density and fertilizer allocation through the CPDOS. The CPDOS was tested using potato, corn, and soybean data, and the results show that the optimization effects of planting density and fertilizer application were satisfactory. The CPDOS is an automated crop planting optimization system that integrates algorithms and models and is driven by artificial intelligence technology. The introduction of the CPDOS reduces the barriers to utilizing these algorithms and models, facilitating wider adoption of intelligently optimized planting technology. The platform’s launch will accelerate the swift advancement of this field. |
abstractGer |
Increasing crop yield is a significant objective in modern agriculture, with adjusted planting density and rational fertilization strategies standing out as the foremost approaches for attaining such a goal. Through the use of modern artificial intelligence techniques such as genetic algorithms and neural networks, the CPDOS (Crop Planting Density Optimization System), an online intelligent system that can automate the modeling, optimization, and analysis of the two models, was developed in the present study. The goal of the system is to optimize the planting density model and fertilizer application in combination with other computer system development techniques. The CPDOS comprises three main modules: yield density optimization module, optimal planting density range module, and fertilization and planting density optimization module. The three modules are complemented by two modules for data input and result visualization, culminating in the comprehensive process of optimizing planting density and fertilizer allocation through the CPDOS. The CPDOS was tested using potato, corn, and soybean data, and the results show that the optimization effects of planting density and fertilizer application were satisfactory. The CPDOS is an automated crop planting optimization system that integrates algorithms and models and is driven by artificial intelligence technology. The introduction of the CPDOS reduces the barriers to utilizing these algorithms and models, facilitating wider adoption of intelligently optimized planting technology. The platform’s launch will accelerate the swift advancement of this field. |
abstract_unstemmed |
Increasing crop yield is a significant objective in modern agriculture, with adjusted planting density and rational fertilization strategies standing out as the foremost approaches for attaining such a goal. Through the use of modern artificial intelligence techniques such as genetic algorithms and neural networks, the CPDOS (Crop Planting Density Optimization System), an online intelligent system that can automate the modeling, optimization, and analysis of the two models, was developed in the present study. The goal of the system is to optimize the planting density model and fertilizer application in combination with other computer system development techniques. The CPDOS comprises three main modules: yield density optimization module, optimal planting density range module, and fertilization and planting density optimization module. The three modules are complemented by two modules for data input and result visualization, culminating in the comprehensive process of optimizing planting density and fertilizer allocation through the CPDOS. The CPDOS was tested using potato, corn, and soybean data, and the results show that the optimization effects of planting density and fertilizer application were satisfactory. The CPDOS is an automated crop planting optimization system that integrates algorithms and models and is driven by artificial intelligence technology. The introduction of the CPDOS reduces the barriers to utilizing these algorithms and models, facilitating wider adoption of intelligently optimized planting technology. The platform’s launch will accelerate the swift advancement of this field. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
2465, p 2465 |
title_short |
CPDOS: A Web-Based AI Platform to Optimize Crop Planting Density |
url |
https://doi.org/10.3390/agronomy13102465 https://doaj.org/article/925c4e00642c44e2ac47e3939e786f9f https://www.mdpi.com/2073-4395/13/10/2465 https://doaj.org/toc/2073-4395 |
remote_bool |
true |
author2 |
Zhixin Zhang Yangyang Cao Zhenbang Hu Yang Li Haifeng Cao Zhenqing Zhao Dawei Xin Qingshan Chen |
author2Str |
Zhixin Zhang Yangyang Cao Zhenbang Hu Yang Li Haifeng Cao Zhenqing Zhao Dawei Xin Qingshan Chen |
ppnlink |
658000543 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/agronomy13102465 |
up_date |
2024-07-03T15:49:11.935Z |
_version_ |
1803573528564334592 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ093190212</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414040909.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/agronomy13102465</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ093190212</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ925c4e00642c44e2ac47e3939e786f9f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Rongsheng Zhu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">CPDOS: A Web-Based AI Platform to Optimize Crop Planting Density</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Increasing crop yield is a significant objective in modern agriculture, with adjusted planting density and rational fertilization strategies standing out as the foremost approaches for attaining such a goal. Through the use of modern artificial intelligence techniques such as genetic algorithms and neural networks, the CPDOS (Crop Planting Density Optimization System), an online intelligent system that can automate the modeling, optimization, and analysis of the two models, was developed in the present study. The goal of the system is to optimize the planting density model and fertilizer application in combination with other computer system development techniques. The CPDOS comprises three main modules: yield density optimization module, optimal planting density range module, and fertilization and planting density optimization module. The three modules are complemented by two modules for data input and result visualization, culminating in the comprehensive process of optimizing planting density and fertilizer allocation through the CPDOS. The CPDOS was tested using potato, corn, and soybean data, and the results show that the optimization effects of planting density and fertilizer application were satisfactory. The CPDOS is an automated crop planting optimization system that integrates algorithms and models and is driven by artificial intelligence technology. The introduction of the CPDOS reduces the barriers to utilizing these algorithms and models, facilitating wider adoption of intelligently optimized planting technology. The platform’s launch will accelerate the swift advancement of this field.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">online intelligent system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">genetic algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">yield–density module</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">planting density range module</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fertilization and planting density module</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">artificial intelligence technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Agriculture</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">S</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhixin Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yangyang Cao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhenbang Hu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yang Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haifeng Cao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhenqing Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dawei Xin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qingshan Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Agronomy</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">13(2023), 2465, p 2465</subfield><subfield code="w">(DE-627)658000543</subfield><subfield code="w">(DE-600)2607043-1</subfield><subfield code="x">20734395</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:2465, p 2465</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/agronomy13102465</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/925c4e00642c44e2ac47e3939e786f9f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2073-4395/13/10/2465</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2073-4395</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2023</subfield><subfield code="e">2465, p 2465</subfield></datafield></record></collection>
|
score |
7.4010763 |