Enhancing Traffic Intelligence in Smart Cities Using Sustainable Deep Radial Function
Smart cities have revolutionized urban living by incorporating sophisticated technologies to optimize various aspects of urban infrastructure, such as transportation systems. Effective traffic management is a crucial component of smart cities, as it has a direct impact on the quality of life of resi...
Ausführliche Beschreibung
Autor*in: |
Ayad Ghany Ismaeel [verfasserIn] Jereesha Mary [verfasserIn] Anitha Chelliah [verfasserIn] Jaganathan Logeshwaran [verfasserIn] Sarmad Nozad Mahmood [verfasserIn] Sameer Alani [verfasserIn] Akram H. Shather [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Sustainability - MDPI AG, 2009, 15(2023), 14441, p 14441 |
---|---|
Übergeordnetes Werk: |
volume:15 ; year:2023 ; number:14441, p 14441 |
Links: |
---|
DOI / URN: |
10.3390/su151914441 |
---|
Katalog-ID: |
DOAJ093196180 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ093196180 | ||
003 | DE-627 | ||
005 | 20240413100618.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/su151914441 |2 doi | |
035 | |a (DE-627)DOAJ093196180 | ||
035 | |a (DE-599)DOAJ537aefc0db574b609716937239009513 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TD194-195 | |
050 | 0 | |a TJ807-830 | |
050 | 0 | |a GE1-350 | |
100 | 0 | |a Ayad Ghany Ismaeel |e verfasserin |4 aut | |
245 | 1 | 0 | |a Enhancing Traffic Intelligence in Smart Cities Using Sustainable Deep Radial Function |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Smart cities have revolutionized urban living by incorporating sophisticated technologies to optimize various aspects of urban infrastructure, such as transportation systems. Effective traffic management is a crucial component of smart cities, as it has a direct impact on the quality of life of residents and tourists. Utilizing deep radial basis function (RBF) networks, this paper describes a novel strategy for enhancing traffic intelligence in smart cities. Traditional methods of traffic analysis frequently rely on simplistic models that are incapable of capturing the intricate patterns and dynamics of urban traffic systems. Deep learning techniques, such as deep RBF networks, have the potential to extract valuable insights from traffic data and enable more precise predictions and decisions. In this paper, we propose an RBF-based method for enhancing smart city traffic intelligence. Deep RBF networks combine the adaptability and generalization capabilities of deep learning with the discriminative capability of radial basis functions. The proposed method can effectively learn intricate relationships and nonlinear patterns in traffic data by leveraging the hierarchical structure of deep neural networks. The deep RBF model can learn to predict traffic conditions, identify congestion patterns, and make informed recommendations for optimizing traffic management strategies by incorporating these rich and diverse data. To evaluate the efficacy of our proposed method, extensive experiments and comparisons with real-world traffic datasets from a smart city environment were conducted. In terms of prediction accuracy and efficiency, the results demonstrate that the deep RBF-based approach outperforms conventional traffic analysis methods. Smart city traffic intelligence is enhanced by the model capacity to capture nonlinear relationships and manage large-scale data sets. | ||
650 | 4 | |a traffic intelligence | |
650 | 4 | |a radial basis function | |
650 | 4 | |a traffic prediction | |
650 | 4 | |a urban mobility | |
650 | 4 | |a deep learning | |
653 | 0 | |a Environmental effects of industries and plants | |
653 | 0 | |a Renewable energy sources | |
653 | 0 | |a Environmental sciences | |
700 | 0 | |a Jereesha Mary |e verfasserin |4 aut | |
700 | 0 | |a Anitha Chelliah |e verfasserin |4 aut | |
700 | 0 | |a Jaganathan Logeshwaran |e verfasserin |4 aut | |
700 | 0 | |a Sarmad Nozad Mahmood |e verfasserin |4 aut | |
700 | 0 | |a Sameer Alani |e verfasserin |4 aut | |
700 | 0 | |a Akram H. Shather |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Sustainability |d MDPI AG, 2009 |g 15(2023), 14441, p 14441 |w (DE-627)610604120 |w (DE-600)2518383-7 |x 20711050 |7 nnns |
773 | 1 | 8 | |g volume:15 |g year:2023 |g number:14441, p 14441 |
856 | 4 | 0 | |u https://doi.org/10.3390/su151914441 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/537aefc0db574b609716937239009513 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2071-1050/15/19/14441 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2071-1050 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 15 |j 2023 |e 14441, p 14441 |
author_variant |
a g i agi j m jm a c ac j l jl s n m snm s a sa a h s ahs |
---|---|
matchkey_str |
article:20711050:2023----::nacntafcnelgnenmrcteuigutia |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
TD |
publishDate |
2023 |
allfields |
10.3390/su151914441 doi (DE-627)DOAJ093196180 (DE-599)DOAJ537aefc0db574b609716937239009513 DE-627 ger DE-627 rakwb eng TD194-195 TJ807-830 GE1-350 Ayad Ghany Ismaeel verfasserin aut Enhancing Traffic Intelligence in Smart Cities Using Sustainable Deep Radial Function 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Smart cities have revolutionized urban living by incorporating sophisticated technologies to optimize various aspects of urban infrastructure, such as transportation systems. Effective traffic management is a crucial component of smart cities, as it has a direct impact on the quality of life of residents and tourists. Utilizing deep radial basis function (RBF) networks, this paper describes a novel strategy for enhancing traffic intelligence in smart cities. Traditional methods of traffic analysis frequently rely on simplistic models that are incapable of capturing the intricate patterns and dynamics of urban traffic systems. Deep learning techniques, such as deep RBF networks, have the potential to extract valuable insights from traffic data and enable more precise predictions and decisions. In this paper, we propose an RBF-based method for enhancing smart city traffic intelligence. Deep RBF networks combine the adaptability and generalization capabilities of deep learning with the discriminative capability of radial basis functions. The proposed method can effectively learn intricate relationships and nonlinear patterns in traffic data by leveraging the hierarchical structure of deep neural networks. The deep RBF model can learn to predict traffic conditions, identify congestion patterns, and make informed recommendations for optimizing traffic management strategies by incorporating these rich and diverse data. To evaluate the efficacy of our proposed method, extensive experiments and comparisons with real-world traffic datasets from a smart city environment were conducted. In terms of prediction accuracy and efficiency, the results demonstrate that the deep RBF-based approach outperforms conventional traffic analysis methods. Smart city traffic intelligence is enhanced by the model capacity to capture nonlinear relationships and manage large-scale data sets. traffic intelligence radial basis function traffic prediction urban mobility deep learning Environmental effects of industries and plants Renewable energy sources Environmental sciences Jereesha Mary verfasserin aut Anitha Chelliah verfasserin aut Jaganathan Logeshwaran verfasserin aut Sarmad Nozad Mahmood verfasserin aut Sameer Alani verfasserin aut Akram H. Shather verfasserin aut In Sustainability MDPI AG, 2009 15(2023), 14441, p 14441 (DE-627)610604120 (DE-600)2518383-7 20711050 nnns volume:15 year:2023 number:14441, p 14441 https://doi.org/10.3390/su151914441 kostenfrei https://doaj.org/article/537aefc0db574b609716937239009513 kostenfrei https://www.mdpi.com/2071-1050/15/19/14441 kostenfrei https://doaj.org/toc/2071-1050 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 15 2023 14441, p 14441 |
spelling |
10.3390/su151914441 doi (DE-627)DOAJ093196180 (DE-599)DOAJ537aefc0db574b609716937239009513 DE-627 ger DE-627 rakwb eng TD194-195 TJ807-830 GE1-350 Ayad Ghany Ismaeel verfasserin aut Enhancing Traffic Intelligence in Smart Cities Using Sustainable Deep Radial Function 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Smart cities have revolutionized urban living by incorporating sophisticated technologies to optimize various aspects of urban infrastructure, such as transportation systems. Effective traffic management is a crucial component of smart cities, as it has a direct impact on the quality of life of residents and tourists. Utilizing deep radial basis function (RBF) networks, this paper describes a novel strategy for enhancing traffic intelligence in smart cities. Traditional methods of traffic analysis frequently rely on simplistic models that are incapable of capturing the intricate patterns and dynamics of urban traffic systems. Deep learning techniques, such as deep RBF networks, have the potential to extract valuable insights from traffic data and enable more precise predictions and decisions. In this paper, we propose an RBF-based method for enhancing smart city traffic intelligence. Deep RBF networks combine the adaptability and generalization capabilities of deep learning with the discriminative capability of radial basis functions. The proposed method can effectively learn intricate relationships and nonlinear patterns in traffic data by leveraging the hierarchical structure of deep neural networks. The deep RBF model can learn to predict traffic conditions, identify congestion patterns, and make informed recommendations for optimizing traffic management strategies by incorporating these rich and diverse data. To evaluate the efficacy of our proposed method, extensive experiments and comparisons with real-world traffic datasets from a smart city environment were conducted. In terms of prediction accuracy and efficiency, the results demonstrate that the deep RBF-based approach outperforms conventional traffic analysis methods. Smart city traffic intelligence is enhanced by the model capacity to capture nonlinear relationships and manage large-scale data sets. traffic intelligence radial basis function traffic prediction urban mobility deep learning Environmental effects of industries and plants Renewable energy sources Environmental sciences Jereesha Mary verfasserin aut Anitha Chelliah verfasserin aut Jaganathan Logeshwaran verfasserin aut Sarmad Nozad Mahmood verfasserin aut Sameer Alani verfasserin aut Akram H. Shather verfasserin aut In Sustainability MDPI AG, 2009 15(2023), 14441, p 14441 (DE-627)610604120 (DE-600)2518383-7 20711050 nnns volume:15 year:2023 number:14441, p 14441 https://doi.org/10.3390/su151914441 kostenfrei https://doaj.org/article/537aefc0db574b609716937239009513 kostenfrei https://www.mdpi.com/2071-1050/15/19/14441 kostenfrei https://doaj.org/toc/2071-1050 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 15 2023 14441, p 14441 |
allfields_unstemmed |
10.3390/su151914441 doi (DE-627)DOAJ093196180 (DE-599)DOAJ537aefc0db574b609716937239009513 DE-627 ger DE-627 rakwb eng TD194-195 TJ807-830 GE1-350 Ayad Ghany Ismaeel verfasserin aut Enhancing Traffic Intelligence in Smart Cities Using Sustainable Deep Radial Function 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Smart cities have revolutionized urban living by incorporating sophisticated technologies to optimize various aspects of urban infrastructure, such as transportation systems. Effective traffic management is a crucial component of smart cities, as it has a direct impact on the quality of life of residents and tourists. Utilizing deep radial basis function (RBF) networks, this paper describes a novel strategy for enhancing traffic intelligence in smart cities. Traditional methods of traffic analysis frequently rely on simplistic models that are incapable of capturing the intricate patterns and dynamics of urban traffic systems. Deep learning techniques, such as deep RBF networks, have the potential to extract valuable insights from traffic data and enable more precise predictions and decisions. In this paper, we propose an RBF-based method for enhancing smart city traffic intelligence. Deep RBF networks combine the adaptability and generalization capabilities of deep learning with the discriminative capability of radial basis functions. The proposed method can effectively learn intricate relationships and nonlinear patterns in traffic data by leveraging the hierarchical structure of deep neural networks. The deep RBF model can learn to predict traffic conditions, identify congestion patterns, and make informed recommendations for optimizing traffic management strategies by incorporating these rich and diverse data. To evaluate the efficacy of our proposed method, extensive experiments and comparisons with real-world traffic datasets from a smart city environment were conducted. In terms of prediction accuracy and efficiency, the results demonstrate that the deep RBF-based approach outperforms conventional traffic analysis methods. Smart city traffic intelligence is enhanced by the model capacity to capture nonlinear relationships and manage large-scale data sets. traffic intelligence radial basis function traffic prediction urban mobility deep learning Environmental effects of industries and plants Renewable energy sources Environmental sciences Jereesha Mary verfasserin aut Anitha Chelliah verfasserin aut Jaganathan Logeshwaran verfasserin aut Sarmad Nozad Mahmood verfasserin aut Sameer Alani verfasserin aut Akram H. Shather verfasserin aut In Sustainability MDPI AG, 2009 15(2023), 14441, p 14441 (DE-627)610604120 (DE-600)2518383-7 20711050 nnns volume:15 year:2023 number:14441, p 14441 https://doi.org/10.3390/su151914441 kostenfrei https://doaj.org/article/537aefc0db574b609716937239009513 kostenfrei https://www.mdpi.com/2071-1050/15/19/14441 kostenfrei https://doaj.org/toc/2071-1050 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 15 2023 14441, p 14441 |
allfieldsGer |
10.3390/su151914441 doi (DE-627)DOAJ093196180 (DE-599)DOAJ537aefc0db574b609716937239009513 DE-627 ger DE-627 rakwb eng TD194-195 TJ807-830 GE1-350 Ayad Ghany Ismaeel verfasserin aut Enhancing Traffic Intelligence in Smart Cities Using Sustainable Deep Radial Function 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Smart cities have revolutionized urban living by incorporating sophisticated technologies to optimize various aspects of urban infrastructure, such as transportation systems. Effective traffic management is a crucial component of smart cities, as it has a direct impact on the quality of life of residents and tourists. Utilizing deep radial basis function (RBF) networks, this paper describes a novel strategy for enhancing traffic intelligence in smart cities. Traditional methods of traffic analysis frequently rely on simplistic models that are incapable of capturing the intricate patterns and dynamics of urban traffic systems. Deep learning techniques, such as deep RBF networks, have the potential to extract valuable insights from traffic data and enable more precise predictions and decisions. In this paper, we propose an RBF-based method for enhancing smart city traffic intelligence. Deep RBF networks combine the adaptability and generalization capabilities of deep learning with the discriminative capability of radial basis functions. The proposed method can effectively learn intricate relationships and nonlinear patterns in traffic data by leveraging the hierarchical structure of deep neural networks. The deep RBF model can learn to predict traffic conditions, identify congestion patterns, and make informed recommendations for optimizing traffic management strategies by incorporating these rich and diverse data. To evaluate the efficacy of our proposed method, extensive experiments and comparisons with real-world traffic datasets from a smart city environment were conducted. In terms of prediction accuracy and efficiency, the results demonstrate that the deep RBF-based approach outperforms conventional traffic analysis methods. Smart city traffic intelligence is enhanced by the model capacity to capture nonlinear relationships and manage large-scale data sets. traffic intelligence radial basis function traffic prediction urban mobility deep learning Environmental effects of industries and plants Renewable energy sources Environmental sciences Jereesha Mary verfasserin aut Anitha Chelliah verfasserin aut Jaganathan Logeshwaran verfasserin aut Sarmad Nozad Mahmood verfasserin aut Sameer Alani verfasserin aut Akram H. Shather verfasserin aut In Sustainability MDPI AG, 2009 15(2023), 14441, p 14441 (DE-627)610604120 (DE-600)2518383-7 20711050 nnns volume:15 year:2023 number:14441, p 14441 https://doi.org/10.3390/su151914441 kostenfrei https://doaj.org/article/537aefc0db574b609716937239009513 kostenfrei https://www.mdpi.com/2071-1050/15/19/14441 kostenfrei https://doaj.org/toc/2071-1050 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 15 2023 14441, p 14441 |
allfieldsSound |
10.3390/su151914441 doi (DE-627)DOAJ093196180 (DE-599)DOAJ537aefc0db574b609716937239009513 DE-627 ger DE-627 rakwb eng TD194-195 TJ807-830 GE1-350 Ayad Ghany Ismaeel verfasserin aut Enhancing Traffic Intelligence in Smart Cities Using Sustainable Deep Radial Function 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Smart cities have revolutionized urban living by incorporating sophisticated technologies to optimize various aspects of urban infrastructure, such as transportation systems. Effective traffic management is a crucial component of smart cities, as it has a direct impact on the quality of life of residents and tourists. Utilizing deep radial basis function (RBF) networks, this paper describes a novel strategy for enhancing traffic intelligence in smart cities. Traditional methods of traffic analysis frequently rely on simplistic models that are incapable of capturing the intricate patterns and dynamics of urban traffic systems. Deep learning techniques, such as deep RBF networks, have the potential to extract valuable insights from traffic data and enable more precise predictions and decisions. In this paper, we propose an RBF-based method for enhancing smart city traffic intelligence. Deep RBF networks combine the adaptability and generalization capabilities of deep learning with the discriminative capability of radial basis functions. The proposed method can effectively learn intricate relationships and nonlinear patterns in traffic data by leveraging the hierarchical structure of deep neural networks. The deep RBF model can learn to predict traffic conditions, identify congestion patterns, and make informed recommendations for optimizing traffic management strategies by incorporating these rich and diverse data. To evaluate the efficacy of our proposed method, extensive experiments and comparisons with real-world traffic datasets from a smart city environment were conducted. In terms of prediction accuracy and efficiency, the results demonstrate that the deep RBF-based approach outperforms conventional traffic analysis methods. Smart city traffic intelligence is enhanced by the model capacity to capture nonlinear relationships and manage large-scale data sets. traffic intelligence radial basis function traffic prediction urban mobility deep learning Environmental effects of industries and plants Renewable energy sources Environmental sciences Jereesha Mary verfasserin aut Anitha Chelliah verfasserin aut Jaganathan Logeshwaran verfasserin aut Sarmad Nozad Mahmood verfasserin aut Sameer Alani verfasserin aut Akram H. Shather verfasserin aut In Sustainability MDPI AG, 2009 15(2023), 14441, p 14441 (DE-627)610604120 (DE-600)2518383-7 20711050 nnns volume:15 year:2023 number:14441, p 14441 https://doi.org/10.3390/su151914441 kostenfrei https://doaj.org/article/537aefc0db574b609716937239009513 kostenfrei https://www.mdpi.com/2071-1050/15/19/14441 kostenfrei https://doaj.org/toc/2071-1050 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 15 2023 14441, p 14441 |
language |
English |
source |
In Sustainability 15(2023), 14441, p 14441 volume:15 year:2023 number:14441, p 14441 |
sourceStr |
In Sustainability 15(2023), 14441, p 14441 volume:15 year:2023 number:14441, p 14441 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
traffic intelligence radial basis function traffic prediction urban mobility deep learning Environmental effects of industries and plants Renewable energy sources Environmental sciences |
isfreeaccess_bool |
true |
container_title |
Sustainability |
authorswithroles_txt_mv |
Ayad Ghany Ismaeel @@aut@@ Jereesha Mary @@aut@@ Anitha Chelliah @@aut@@ Jaganathan Logeshwaran @@aut@@ Sarmad Nozad Mahmood @@aut@@ Sameer Alani @@aut@@ Akram H. Shather @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
610604120 |
id |
DOAJ093196180 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ093196180</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413100618.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/su151914441</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ093196180</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ537aefc0db574b609716937239009513</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TD194-195</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TJ807-830</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GE1-350</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Ayad Ghany Ismaeel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Enhancing Traffic Intelligence in Smart Cities Using Sustainable Deep Radial Function</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Smart cities have revolutionized urban living by incorporating sophisticated technologies to optimize various aspects of urban infrastructure, such as transportation systems. Effective traffic management is a crucial component of smart cities, as it has a direct impact on the quality of life of residents and tourists. Utilizing deep radial basis function (RBF) networks, this paper describes a novel strategy for enhancing traffic intelligence in smart cities. Traditional methods of traffic analysis frequently rely on simplistic models that are incapable of capturing the intricate patterns and dynamics of urban traffic systems. Deep learning techniques, such as deep RBF networks, have the potential to extract valuable insights from traffic data and enable more precise predictions and decisions. In this paper, we propose an RBF-based method for enhancing smart city traffic intelligence. Deep RBF networks combine the adaptability and generalization capabilities of deep learning with the discriminative capability of radial basis functions. The proposed method can effectively learn intricate relationships and nonlinear patterns in traffic data by leveraging the hierarchical structure of deep neural networks. The deep RBF model can learn to predict traffic conditions, identify congestion patterns, and make informed recommendations for optimizing traffic management strategies by incorporating these rich and diverse data. To evaluate the efficacy of our proposed method, extensive experiments and comparisons with real-world traffic datasets from a smart city environment were conducted. In terms of prediction accuracy and efficiency, the results demonstrate that the deep RBF-based approach outperforms conventional traffic analysis methods. Smart city traffic intelligence is enhanced by the model capacity to capture nonlinear relationships and manage large-scale data sets.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">traffic intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">radial basis function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">traffic prediction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">urban mobility</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">deep learning</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental effects of industries and plants</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Renewable energy sources</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental sciences</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jereesha Mary</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Anitha Chelliah</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jaganathan Logeshwaran</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sarmad Nozad Mahmood</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sameer Alani</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Akram H. Shather</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Sustainability</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">15(2023), 14441, p 14441</subfield><subfield code="w">(DE-627)610604120</subfield><subfield code="w">(DE-600)2518383-7</subfield><subfield code="x">20711050</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:14441, p 14441</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/su151914441</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/537aefc0db574b609716937239009513</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2071-1050/15/19/14441</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2071-1050</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2023</subfield><subfield code="e">14441, p 14441</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Ayad Ghany Ismaeel |
spellingShingle |
Ayad Ghany Ismaeel misc TD194-195 misc TJ807-830 misc GE1-350 misc traffic intelligence misc radial basis function misc traffic prediction misc urban mobility misc deep learning misc Environmental effects of industries and plants misc Renewable energy sources misc Environmental sciences Enhancing Traffic Intelligence in Smart Cities Using Sustainable Deep Radial Function |
authorStr |
Ayad Ghany Ismaeel |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)610604120 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TD194-195 |
illustrated |
Not Illustrated |
issn |
20711050 |
topic_title |
TD194-195 TJ807-830 GE1-350 Enhancing Traffic Intelligence in Smart Cities Using Sustainable Deep Radial Function traffic intelligence radial basis function traffic prediction urban mobility deep learning |
topic |
misc TD194-195 misc TJ807-830 misc GE1-350 misc traffic intelligence misc radial basis function misc traffic prediction misc urban mobility misc deep learning misc Environmental effects of industries and plants misc Renewable energy sources misc Environmental sciences |
topic_unstemmed |
misc TD194-195 misc TJ807-830 misc GE1-350 misc traffic intelligence misc radial basis function misc traffic prediction misc urban mobility misc deep learning misc Environmental effects of industries and plants misc Renewable energy sources misc Environmental sciences |
topic_browse |
misc TD194-195 misc TJ807-830 misc GE1-350 misc traffic intelligence misc radial basis function misc traffic prediction misc urban mobility misc deep learning misc Environmental effects of industries and plants misc Renewable energy sources misc Environmental sciences |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Sustainability |
hierarchy_parent_id |
610604120 |
hierarchy_top_title |
Sustainability |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)610604120 (DE-600)2518383-7 |
title |
Enhancing Traffic Intelligence in Smart Cities Using Sustainable Deep Radial Function |
ctrlnum |
(DE-627)DOAJ093196180 (DE-599)DOAJ537aefc0db574b609716937239009513 |
title_full |
Enhancing Traffic Intelligence in Smart Cities Using Sustainable Deep Radial Function |
author_sort |
Ayad Ghany Ismaeel |
journal |
Sustainability |
journalStr |
Sustainability |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Ayad Ghany Ismaeel Jereesha Mary Anitha Chelliah Jaganathan Logeshwaran Sarmad Nozad Mahmood Sameer Alani Akram H. Shather |
container_volume |
15 |
class |
TD194-195 TJ807-830 GE1-350 |
format_se |
Elektronische Aufsätze |
author-letter |
Ayad Ghany Ismaeel |
doi_str_mv |
10.3390/su151914441 |
author2-role |
verfasserin |
title_sort |
enhancing traffic intelligence in smart cities using sustainable deep radial function |
callnumber |
TD194-195 |
title_auth |
Enhancing Traffic Intelligence in Smart Cities Using Sustainable Deep Radial Function |
abstract |
Smart cities have revolutionized urban living by incorporating sophisticated technologies to optimize various aspects of urban infrastructure, such as transportation systems. Effective traffic management is a crucial component of smart cities, as it has a direct impact on the quality of life of residents and tourists. Utilizing deep radial basis function (RBF) networks, this paper describes a novel strategy for enhancing traffic intelligence in smart cities. Traditional methods of traffic analysis frequently rely on simplistic models that are incapable of capturing the intricate patterns and dynamics of urban traffic systems. Deep learning techniques, such as deep RBF networks, have the potential to extract valuable insights from traffic data and enable more precise predictions and decisions. In this paper, we propose an RBF-based method for enhancing smart city traffic intelligence. Deep RBF networks combine the adaptability and generalization capabilities of deep learning with the discriminative capability of radial basis functions. The proposed method can effectively learn intricate relationships and nonlinear patterns in traffic data by leveraging the hierarchical structure of deep neural networks. The deep RBF model can learn to predict traffic conditions, identify congestion patterns, and make informed recommendations for optimizing traffic management strategies by incorporating these rich and diverse data. To evaluate the efficacy of our proposed method, extensive experiments and comparisons with real-world traffic datasets from a smart city environment were conducted. In terms of prediction accuracy and efficiency, the results demonstrate that the deep RBF-based approach outperforms conventional traffic analysis methods. Smart city traffic intelligence is enhanced by the model capacity to capture nonlinear relationships and manage large-scale data sets. |
abstractGer |
Smart cities have revolutionized urban living by incorporating sophisticated technologies to optimize various aspects of urban infrastructure, such as transportation systems. Effective traffic management is a crucial component of smart cities, as it has a direct impact on the quality of life of residents and tourists. Utilizing deep radial basis function (RBF) networks, this paper describes a novel strategy for enhancing traffic intelligence in smart cities. Traditional methods of traffic analysis frequently rely on simplistic models that are incapable of capturing the intricate patterns and dynamics of urban traffic systems. Deep learning techniques, such as deep RBF networks, have the potential to extract valuable insights from traffic data and enable more precise predictions and decisions. In this paper, we propose an RBF-based method for enhancing smart city traffic intelligence. Deep RBF networks combine the adaptability and generalization capabilities of deep learning with the discriminative capability of radial basis functions. The proposed method can effectively learn intricate relationships and nonlinear patterns in traffic data by leveraging the hierarchical structure of deep neural networks. The deep RBF model can learn to predict traffic conditions, identify congestion patterns, and make informed recommendations for optimizing traffic management strategies by incorporating these rich and diverse data. To evaluate the efficacy of our proposed method, extensive experiments and comparisons with real-world traffic datasets from a smart city environment were conducted. In terms of prediction accuracy and efficiency, the results demonstrate that the deep RBF-based approach outperforms conventional traffic analysis methods. Smart city traffic intelligence is enhanced by the model capacity to capture nonlinear relationships and manage large-scale data sets. |
abstract_unstemmed |
Smart cities have revolutionized urban living by incorporating sophisticated technologies to optimize various aspects of urban infrastructure, such as transportation systems. Effective traffic management is a crucial component of smart cities, as it has a direct impact on the quality of life of residents and tourists. Utilizing deep radial basis function (RBF) networks, this paper describes a novel strategy for enhancing traffic intelligence in smart cities. Traditional methods of traffic analysis frequently rely on simplistic models that are incapable of capturing the intricate patterns and dynamics of urban traffic systems. Deep learning techniques, such as deep RBF networks, have the potential to extract valuable insights from traffic data and enable more precise predictions and decisions. In this paper, we propose an RBF-based method for enhancing smart city traffic intelligence. Deep RBF networks combine the adaptability and generalization capabilities of deep learning with the discriminative capability of radial basis functions. The proposed method can effectively learn intricate relationships and nonlinear patterns in traffic data by leveraging the hierarchical structure of deep neural networks. The deep RBF model can learn to predict traffic conditions, identify congestion patterns, and make informed recommendations for optimizing traffic management strategies by incorporating these rich and diverse data. To evaluate the efficacy of our proposed method, extensive experiments and comparisons with real-world traffic datasets from a smart city environment were conducted. In terms of prediction accuracy and efficiency, the results demonstrate that the deep RBF-based approach outperforms conventional traffic analysis methods. Smart city traffic intelligence is enhanced by the model capacity to capture nonlinear relationships and manage large-scale data sets. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
14441, p 14441 |
title_short |
Enhancing Traffic Intelligence in Smart Cities Using Sustainable Deep Radial Function |
url |
https://doi.org/10.3390/su151914441 https://doaj.org/article/537aefc0db574b609716937239009513 https://www.mdpi.com/2071-1050/15/19/14441 https://doaj.org/toc/2071-1050 |
remote_bool |
true |
author2 |
Jereesha Mary Anitha Chelliah Jaganathan Logeshwaran Sarmad Nozad Mahmood Sameer Alani Akram H. Shather |
author2Str |
Jereesha Mary Anitha Chelliah Jaganathan Logeshwaran Sarmad Nozad Mahmood Sameer Alani Akram H. Shather |
ppnlink |
610604120 |
callnumber-subject |
TD - Environmental Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/su151914441 |
callnumber-a |
TD194-195 |
up_date |
2024-07-03T15:51:20.179Z |
_version_ |
1803573663031623680 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ093196180</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413100618.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/su151914441</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ093196180</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ537aefc0db574b609716937239009513</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TD194-195</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TJ807-830</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GE1-350</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Ayad Ghany Ismaeel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Enhancing Traffic Intelligence in Smart Cities Using Sustainable Deep Radial Function</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Smart cities have revolutionized urban living by incorporating sophisticated technologies to optimize various aspects of urban infrastructure, such as transportation systems. Effective traffic management is a crucial component of smart cities, as it has a direct impact on the quality of life of residents and tourists. Utilizing deep radial basis function (RBF) networks, this paper describes a novel strategy for enhancing traffic intelligence in smart cities. Traditional methods of traffic analysis frequently rely on simplistic models that are incapable of capturing the intricate patterns and dynamics of urban traffic systems. Deep learning techniques, such as deep RBF networks, have the potential to extract valuable insights from traffic data and enable more precise predictions and decisions. In this paper, we propose an RBF-based method for enhancing smart city traffic intelligence. Deep RBF networks combine the adaptability and generalization capabilities of deep learning with the discriminative capability of radial basis functions. The proposed method can effectively learn intricate relationships and nonlinear patterns in traffic data by leveraging the hierarchical structure of deep neural networks. The deep RBF model can learn to predict traffic conditions, identify congestion patterns, and make informed recommendations for optimizing traffic management strategies by incorporating these rich and diverse data. To evaluate the efficacy of our proposed method, extensive experiments and comparisons with real-world traffic datasets from a smart city environment were conducted. In terms of prediction accuracy and efficiency, the results demonstrate that the deep RBF-based approach outperforms conventional traffic analysis methods. Smart city traffic intelligence is enhanced by the model capacity to capture nonlinear relationships and manage large-scale data sets.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">traffic intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">radial basis function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">traffic prediction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">urban mobility</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">deep learning</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental effects of industries and plants</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Renewable energy sources</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental sciences</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jereesha Mary</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Anitha Chelliah</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jaganathan Logeshwaran</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sarmad Nozad Mahmood</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sameer Alani</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Akram H. Shather</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Sustainability</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">15(2023), 14441, p 14441</subfield><subfield code="w">(DE-627)610604120</subfield><subfield code="w">(DE-600)2518383-7</subfield><subfield code="x">20711050</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:14441, p 14441</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/su151914441</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/537aefc0db574b609716937239009513</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2071-1050/15/19/14441</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2071-1050</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2023</subfield><subfield code="e">14441, p 14441</subfield></datafield></record></collection>
|
score |
7.401394 |