Boosted Photocatalytic Performance for Antibiotics Removal with Ag/PW<sub<12</sub</TiO<sub<2</sub< Composite: Degradation Pathways and Toxicity Assessment
Photocatalyst is the core of photocatalysis and directly determines photocatalytic performance. However, low quantum efficiency and low utilization of solar energy are important technical problems in the application of photocatalysis. In this work, a series of polyoxometalates (POMs) [H<sub<3&...
Ausführliche Beschreibung
Autor*in: |
Hongfei Shi [verfasserIn] Haoshen Wang [verfasserIn] Enji Zhang [verfasserIn] Xiaoshu Qu [verfasserIn] Jianping Li [verfasserIn] Sisi Zhao [verfasserIn] Huajing Gao [verfasserIn] Zhe Chen [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Molecules - MDPI AG, 2003, 28(2023), 6831, p 6831 |
---|---|
Übergeordnetes Werk: |
volume:28 ; year:2023 ; number:6831, p 6831 |
Links: |
---|
DOI / URN: |
10.3390/molecules28196831 |
---|
Katalog-ID: |
DOAJ09321474X |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ09321474X | ||
003 | DE-627 | ||
005 | 20240413100754.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/molecules28196831 |2 doi | |
035 | |a (DE-627)DOAJ09321474X | ||
035 | |a (DE-599)DOAJ69bb4be4b7a447829dbf53647c17da4a | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QD241-441 | |
100 | 0 | |a Hongfei Shi |e verfasserin |4 aut | |
245 | 1 | 0 | |a Boosted Photocatalytic Performance for Antibiotics Removal with Ag/PW<sub<12</sub</TiO<sub<2</sub< Composite: Degradation Pathways and Toxicity Assessment |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Photocatalyst is the core of photocatalysis and directly determines photocatalytic performance. However, low quantum efficiency and low utilization of solar energy are important technical problems in the application of photocatalysis. In this work, a series of polyoxometalates (POMs) [H<sub<3</sub<PW<sub<12</sub<O<sub<40</sub<] (PW<sub<12</sub<)-doped titanium dioxide (TiO<sub<2</sub<) nanofibers modified with various amount of silver (Ag) nanoparticles (NPs) were prepared by utilizing electrospinning/photoreduction strategy, and were labelled as <i<x</i< wt% Ag/PW<sub<12</sub</TiO<sub<2</sub< (<i<abbr. x</i<% Ag/PT, <i<x</i< = 5, 10, and 15, respectively). The as-prepared materials were characterized with a series of techniques and exhibited remarkable catalytic activities for visible-light degradation tetracycline (TC), enrofloxacin (ENR), and methyl orange (MO). Particularly, the 10% Ag/PT catalyst with a specific surface area of 155.09 m<sup<2</sup</g and an average aperture of 4.61 nm possessed the optimal photodegradation performance, with efficiencies reaching 78.19% for TC, 93.65% for ENR, and 99.29% for MO, which were significantly higher than those of PW<sub<12</sub<-free Ag/TiO<sub<2</sub< and PT nanofibers. Additionally, various parameters (the pH of the solution, catalyst usage, and TC concentration) influencing the degradation process were investigated in detail. The optimal conditions are as follows: catalyst usage: 20 mg; TC: 20 mL of 20 ppm; pH = 7. Furthermore, the photodegradation intermediates and pathways were demonstrated by HPLC-MS measurement. We also investigated the toxicity of products generated during TC removal by employing quantitative structure-activity relationship (QSAR) prediction through a toxicity estimation software tool (T.E.S.T. Version 5.1.2.). The mechanism study showed that the doping of PW<sub<12</sub< and the modification of Ag NPs on TiO<sub<2</sub< broadened the visible-light absorption, accelerating the effective separation of photogenerated carriers, therefore resulting in an enhanced photocatalytic performance. The research provided some new thoughts for exploiting efficient and durable photocatalysts for environmental remediation. | ||
650 | 4 | |a Ag nanoparticles | |
650 | 4 | |a PW<sub<12</sub</TiO<sub<2</sub< nanofibers | |
650 | 4 | |a degradation of antibiotics | |
650 | 4 | |a degradation pathways | |
650 | 4 | |a toxicity assessment | |
653 | 0 | |a Organic chemistry | |
700 | 0 | |a Haoshen Wang |e verfasserin |4 aut | |
700 | 0 | |a Enji Zhang |e verfasserin |4 aut | |
700 | 0 | |a Xiaoshu Qu |e verfasserin |4 aut | |
700 | 0 | |a Jianping Li |e verfasserin |4 aut | |
700 | 0 | |a Sisi Zhao |e verfasserin |4 aut | |
700 | 0 | |a Huajing Gao |e verfasserin |4 aut | |
700 | 0 | |a Zhe Chen |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Molecules |d MDPI AG, 2003 |g 28(2023), 6831, p 6831 |w (DE-627)311313132 |w (DE-600)2008644-1 |x 14203049 |7 nnns |
773 | 1 | 8 | |g volume:28 |g year:2023 |g number:6831, p 6831 |
856 | 4 | 0 | |u https://doi.org/10.3390/molecules28196831 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/69bb4be4b7a447829dbf53647c17da4a |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/1420-3049/28/19/6831 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1420-3049 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 28 |j 2023 |e 6831, p 6831 |
author_variant |
h s hs h w hw e z ez x q xq j l jl s z sz h g hg z c zc |
---|---|
matchkey_str |
article:14203049:2023----::osepooaayipromneoatboiseoawtapsb2utou2ucmoieerdt |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
QD |
publishDate |
2023 |
allfields |
10.3390/molecules28196831 doi (DE-627)DOAJ09321474X (DE-599)DOAJ69bb4be4b7a447829dbf53647c17da4a DE-627 ger DE-627 rakwb eng QD241-441 Hongfei Shi verfasserin aut Boosted Photocatalytic Performance for Antibiotics Removal with Ag/PW<sub<12</sub</TiO<sub<2</sub< Composite: Degradation Pathways and Toxicity Assessment 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Photocatalyst is the core of photocatalysis and directly determines photocatalytic performance. However, low quantum efficiency and low utilization of solar energy are important technical problems in the application of photocatalysis. In this work, a series of polyoxometalates (POMs) [H<sub<3</sub<PW<sub<12</sub<O<sub<40</sub<] (PW<sub<12</sub<)-doped titanium dioxide (TiO<sub<2</sub<) nanofibers modified with various amount of silver (Ag) nanoparticles (NPs) were prepared by utilizing electrospinning/photoreduction strategy, and were labelled as <i<x</i< wt% Ag/PW<sub<12</sub</TiO<sub<2</sub< (<i<abbr. x</i<% Ag/PT, <i<x</i< = 5, 10, and 15, respectively). The as-prepared materials were characterized with a series of techniques and exhibited remarkable catalytic activities for visible-light degradation tetracycline (TC), enrofloxacin (ENR), and methyl orange (MO). Particularly, the 10% Ag/PT catalyst with a specific surface area of 155.09 m<sup<2</sup</g and an average aperture of 4.61 nm possessed the optimal photodegradation performance, with efficiencies reaching 78.19% for TC, 93.65% for ENR, and 99.29% for MO, which were significantly higher than those of PW<sub<12</sub<-free Ag/TiO<sub<2</sub< and PT nanofibers. Additionally, various parameters (the pH of the solution, catalyst usage, and TC concentration) influencing the degradation process were investigated in detail. The optimal conditions are as follows: catalyst usage: 20 mg; TC: 20 mL of 20 ppm; pH = 7. Furthermore, the photodegradation intermediates and pathways were demonstrated by HPLC-MS measurement. We also investigated the toxicity of products generated during TC removal by employing quantitative structure-activity relationship (QSAR) prediction through a toxicity estimation software tool (T.E.S.T. Version 5.1.2.). The mechanism study showed that the doping of PW<sub<12</sub< and the modification of Ag NPs on TiO<sub<2</sub< broadened the visible-light absorption, accelerating the effective separation of photogenerated carriers, therefore resulting in an enhanced photocatalytic performance. The research provided some new thoughts for exploiting efficient and durable photocatalysts for environmental remediation. Ag nanoparticles PW<sub<12</sub</TiO<sub<2</sub< nanofibers degradation of antibiotics degradation pathways toxicity assessment Organic chemistry Haoshen Wang verfasserin aut Enji Zhang verfasserin aut Xiaoshu Qu verfasserin aut Jianping Li verfasserin aut Sisi Zhao verfasserin aut Huajing Gao verfasserin aut Zhe Chen verfasserin aut In Molecules MDPI AG, 2003 28(2023), 6831, p 6831 (DE-627)311313132 (DE-600)2008644-1 14203049 nnns volume:28 year:2023 number:6831, p 6831 https://doi.org/10.3390/molecules28196831 kostenfrei https://doaj.org/article/69bb4be4b7a447829dbf53647c17da4a kostenfrei https://www.mdpi.com/1420-3049/28/19/6831 kostenfrei https://doaj.org/toc/1420-3049 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 28 2023 6831, p 6831 |
spelling |
10.3390/molecules28196831 doi (DE-627)DOAJ09321474X (DE-599)DOAJ69bb4be4b7a447829dbf53647c17da4a DE-627 ger DE-627 rakwb eng QD241-441 Hongfei Shi verfasserin aut Boosted Photocatalytic Performance for Antibiotics Removal with Ag/PW<sub<12</sub</TiO<sub<2</sub< Composite: Degradation Pathways and Toxicity Assessment 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Photocatalyst is the core of photocatalysis and directly determines photocatalytic performance. However, low quantum efficiency and low utilization of solar energy are important technical problems in the application of photocatalysis. In this work, a series of polyoxometalates (POMs) [H<sub<3</sub<PW<sub<12</sub<O<sub<40</sub<] (PW<sub<12</sub<)-doped titanium dioxide (TiO<sub<2</sub<) nanofibers modified with various amount of silver (Ag) nanoparticles (NPs) were prepared by utilizing electrospinning/photoreduction strategy, and were labelled as <i<x</i< wt% Ag/PW<sub<12</sub</TiO<sub<2</sub< (<i<abbr. x</i<% Ag/PT, <i<x</i< = 5, 10, and 15, respectively). The as-prepared materials were characterized with a series of techniques and exhibited remarkable catalytic activities for visible-light degradation tetracycline (TC), enrofloxacin (ENR), and methyl orange (MO). Particularly, the 10% Ag/PT catalyst with a specific surface area of 155.09 m<sup<2</sup</g and an average aperture of 4.61 nm possessed the optimal photodegradation performance, with efficiencies reaching 78.19% for TC, 93.65% for ENR, and 99.29% for MO, which were significantly higher than those of PW<sub<12</sub<-free Ag/TiO<sub<2</sub< and PT nanofibers. Additionally, various parameters (the pH of the solution, catalyst usage, and TC concentration) influencing the degradation process were investigated in detail. The optimal conditions are as follows: catalyst usage: 20 mg; TC: 20 mL of 20 ppm; pH = 7. Furthermore, the photodegradation intermediates and pathways were demonstrated by HPLC-MS measurement. We also investigated the toxicity of products generated during TC removal by employing quantitative structure-activity relationship (QSAR) prediction through a toxicity estimation software tool (T.E.S.T. Version 5.1.2.). The mechanism study showed that the doping of PW<sub<12</sub< and the modification of Ag NPs on TiO<sub<2</sub< broadened the visible-light absorption, accelerating the effective separation of photogenerated carriers, therefore resulting in an enhanced photocatalytic performance. The research provided some new thoughts for exploiting efficient and durable photocatalysts for environmental remediation. Ag nanoparticles PW<sub<12</sub</TiO<sub<2</sub< nanofibers degradation of antibiotics degradation pathways toxicity assessment Organic chemistry Haoshen Wang verfasserin aut Enji Zhang verfasserin aut Xiaoshu Qu verfasserin aut Jianping Li verfasserin aut Sisi Zhao verfasserin aut Huajing Gao verfasserin aut Zhe Chen verfasserin aut In Molecules MDPI AG, 2003 28(2023), 6831, p 6831 (DE-627)311313132 (DE-600)2008644-1 14203049 nnns volume:28 year:2023 number:6831, p 6831 https://doi.org/10.3390/molecules28196831 kostenfrei https://doaj.org/article/69bb4be4b7a447829dbf53647c17da4a kostenfrei https://www.mdpi.com/1420-3049/28/19/6831 kostenfrei https://doaj.org/toc/1420-3049 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 28 2023 6831, p 6831 |
allfields_unstemmed |
10.3390/molecules28196831 doi (DE-627)DOAJ09321474X (DE-599)DOAJ69bb4be4b7a447829dbf53647c17da4a DE-627 ger DE-627 rakwb eng QD241-441 Hongfei Shi verfasserin aut Boosted Photocatalytic Performance for Antibiotics Removal with Ag/PW<sub<12</sub</TiO<sub<2</sub< Composite: Degradation Pathways and Toxicity Assessment 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Photocatalyst is the core of photocatalysis and directly determines photocatalytic performance. However, low quantum efficiency and low utilization of solar energy are important technical problems in the application of photocatalysis. In this work, a series of polyoxometalates (POMs) [H<sub<3</sub<PW<sub<12</sub<O<sub<40</sub<] (PW<sub<12</sub<)-doped titanium dioxide (TiO<sub<2</sub<) nanofibers modified with various amount of silver (Ag) nanoparticles (NPs) were prepared by utilizing electrospinning/photoreduction strategy, and were labelled as <i<x</i< wt% Ag/PW<sub<12</sub</TiO<sub<2</sub< (<i<abbr. x</i<% Ag/PT, <i<x</i< = 5, 10, and 15, respectively). The as-prepared materials were characterized with a series of techniques and exhibited remarkable catalytic activities for visible-light degradation tetracycline (TC), enrofloxacin (ENR), and methyl orange (MO). Particularly, the 10% Ag/PT catalyst with a specific surface area of 155.09 m<sup<2</sup</g and an average aperture of 4.61 nm possessed the optimal photodegradation performance, with efficiencies reaching 78.19% for TC, 93.65% for ENR, and 99.29% for MO, which were significantly higher than those of PW<sub<12</sub<-free Ag/TiO<sub<2</sub< and PT nanofibers. Additionally, various parameters (the pH of the solution, catalyst usage, and TC concentration) influencing the degradation process were investigated in detail. The optimal conditions are as follows: catalyst usage: 20 mg; TC: 20 mL of 20 ppm; pH = 7. Furthermore, the photodegradation intermediates and pathways were demonstrated by HPLC-MS measurement. We also investigated the toxicity of products generated during TC removal by employing quantitative structure-activity relationship (QSAR) prediction through a toxicity estimation software tool (T.E.S.T. Version 5.1.2.). The mechanism study showed that the doping of PW<sub<12</sub< and the modification of Ag NPs on TiO<sub<2</sub< broadened the visible-light absorption, accelerating the effective separation of photogenerated carriers, therefore resulting in an enhanced photocatalytic performance. The research provided some new thoughts for exploiting efficient and durable photocatalysts for environmental remediation. Ag nanoparticles PW<sub<12</sub</TiO<sub<2</sub< nanofibers degradation of antibiotics degradation pathways toxicity assessment Organic chemistry Haoshen Wang verfasserin aut Enji Zhang verfasserin aut Xiaoshu Qu verfasserin aut Jianping Li verfasserin aut Sisi Zhao verfasserin aut Huajing Gao verfasserin aut Zhe Chen verfasserin aut In Molecules MDPI AG, 2003 28(2023), 6831, p 6831 (DE-627)311313132 (DE-600)2008644-1 14203049 nnns volume:28 year:2023 number:6831, p 6831 https://doi.org/10.3390/molecules28196831 kostenfrei https://doaj.org/article/69bb4be4b7a447829dbf53647c17da4a kostenfrei https://www.mdpi.com/1420-3049/28/19/6831 kostenfrei https://doaj.org/toc/1420-3049 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 28 2023 6831, p 6831 |
allfieldsGer |
10.3390/molecules28196831 doi (DE-627)DOAJ09321474X (DE-599)DOAJ69bb4be4b7a447829dbf53647c17da4a DE-627 ger DE-627 rakwb eng QD241-441 Hongfei Shi verfasserin aut Boosted Photocatalytic Performance for Antibiotics Removal with Ag/PW<sub<12</sub</TiO<sub<2</sub< Composite: Degradation Pathways and Toxicity Assessment 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Photocatalyst is the core of photocatalysis and directly determines photocatalytic performance. However, low quantum efficiency and low utilization of solar energy are important technical problems in the application of photocatalysis. In this work, a series of polyoxometalates (POMs) [H<sub<3</sub<PW<sub<12</sub<O<sub<40</sub<] (PW<sub<12</sub<)-doped titanium dioxide (TiO<sub<2</sub<) nanofibers modified with various amount of silver (Ag) nanoparticles (NPs) were prepared by utilizing electrospinning/photoreduction strategy, and were labelled as <i<x</i< wt% Ag/PW<sub<12</sub</TiO<sub<2</sub< (<i<abbr. x</i<% Ag/PT, <i<x</i< = 5, 10, and 15, respectively). The as-prepared materials were characterized with a series of techniques and exhibited remarkable catalytic activities for visible-light degradation tetracycline (TC), enrofloxacin (ENR), and methyl orange (MO). Particularly, the 10% Ag/PT catalyst with a specific surface area of 155.09 m<sup<2</sup</g and an average aperture of 4.61 nm possessed the optimal photodegradation performance, with efficiencies reaching 78.19% for TC, 93.65% for ENR, and 99.29% for MO, which were significantly higher than those of PW<sub<12</sub<-free Ag/TiO<sub<2</sub< and PT nanofibers. Additionally, various parameters (the pH of the solution, catalyst usage, and TC concentration) influencing the degradation process were investigated in detail. The optimal conditions are as follows: catalyst usage: 20 mg; TC: 20 mL of 20 ppm; pH = 7. Furthermore, the photodegradation intermediates and pathways were demonstrated by HPLC-MS measurement. We also investigated the toxicity of products generated during TC removal by employing quantitative structure-activity relationship (QSAR) prediction through a toxicity estimation software tool (T.E.S.T. Version 5.1.2.). The mechanism study showed that the doping of PW<sub<12</sub< and the modification of Ag NPs on TiO<sub<2</sub< broadened the visible-light absorption, accelerating the effective separation of photogenerated carriers, therefore resulting in an enhanced photocatalytic performance. The research provided some new thoughts for exploiting efficient and durable photocatalysts for environmental remediation. Ag nanoparticles PW<sub<12</sub</TiO<sub<2</sub< nanofibers degradation of antibiotics degradation pathways toxicity assessment Organic chemistry Haoshen Wang verfasserin aut Enji Zhang verfasserin aut Xiaoshu Qu verfasserin aut Jianping Li verfasserin aut Sisi Zhao verfasserin aut Huajing Gao verfasserin aut Zhe Chen verfasserin aut In Molecules MDPI AG, 2003 28(2023), 6831, p 6831 (DE-627)311313132 (DE-600)2008644-1 14203049 nnns volume:28 year:2023 number:6831, p 6831 https://doi.org/10.3390/molecules28196831 kostenfrei https://doaj.org/article/69bb4be4b7a447829dbf53647c17da4a kostenfrei https://www.mdpi.com/1420-3049/28/19/6831 kostenfrei https://doaj.org/toc/1420-3049 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 28 2023 6831, p 6831 |
allfieldsSound |
10.3390/molecules28196831 doi (DE-627)DOAJ09321474X (DE-599)DOAJ69bb4be4b7a447829dbf53647c17da4a DE-627 ger DE-627 rakwb eng QD241-441 Hongfei Shi verfasserin aut Boosted Photocatalytic Performance for Antibiotics Removal with Ag/PW<sub<12</sub</TiO<sub<2</sub< Composite: Degradation Pathways and Toxicity Assessment 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Photocatalyst is the core of photocatalysis and directly determines photocatalytic performance. However, low quantum efficiency and low utilization of solar energy are important technical problems in the application of photocatalysis. In this work, a series of polyoxometalates (POMs) [H<sub<3</sub<PW<sub<12</sub<O<sub<40</sub<] (PW<sub<12</sub<)-doped titanium dioxide (TiO<sub<2</sub<) nanofibers modified with various amount of silver (Ag) nanoparticles (NPs) were prepared by utilizing electrospinning/photoreduction strategy, and were labelled as <i<x</i< wt% Ag/PW<sub<12</sub</TiO<sub<2</sub< (<i<abbr. x</i<% Ag/PT, <i<x</i< = 5, 10, and 15, respectively). The as-prepared materials were characterized with a series of techniques and exhibited remarkable catalytic activities for visible-light degradation tetracycline (TC), enrofloxacin (ENR), and methyl orange (MO). Particularly, the 10% Ag/PT catalyst with a specific surface area of 155.09 m<sup<2</sup</g and an average aperture of 4.61 nm possessed the optimal photodegradation performance, with efficiencies reaching 78.19% for TC, 93.65% for ENR, and 99.29% for MO, which were significantly higher than those of PW<sub<12</sub<-free Ag/TiO<sub<2</sub< and PT nanofibers. Additionally, various parameters (the pH of the solution, catalyst usage, and TC concentration) influencing the degradation process were investigated in detail. The optimal conditions are as follows: catalyst usage: 20 mg; TC: 20 mL of 20 ppm; pH = 7. Furthermore, the photodegradation intermediates and pathways were demonstrated by HPLC-MS measurement. We also investigated the toxicity of products generated during TC removal by employing quantitative structure-activity relationship (QSAR) prediction through a toxicity estimation software tool (T.E.S.T. Version 5.1.2.). The mechanism study showed that the doping of PW<sub<12</sub< and the modification of Ag NPs on TiO<sub<2</sub< broadened the visible-light absorption, accelerating the effective separation of photogenerated carriers, therefore resulting in an enhanced photocatalytic performance. The research provided some new thoughts for exploiting efficient and durable photocatalysts for environmental remediation. Ag nanoparticles PW<sub<12</sub</TiO<sub<2</sub< nanofibers degradation of antibiotics degradation pathways toxicity assessment Organic chemistry Haoshen Wang verfasserin aut Enji Zhang verfasserin aut Xiaoshu Qu verfasserin aut Jianping Li verfasserin aut Sisi Zhao verfasserin aut Huajing Gao verfasserin aut Zhe Chen verfasserin aut In Molecules MDPI AG, 2003 28(2023), 6831, p 6831 (DE-627)311313132 (DE-600)2008644-1 14203049 nnns volume:28 year:2023 number:6831, p 6831 https://doi.org/10.3390/molecules28196831 kostenfrei https://doaj.org/article/69bb4be4b7a447829dbf53647c17da4a kostenfrei https://www.mdpi.com/1420-3049/28/19/6831 kostenfrei https://doaj.org/toc/1420-3049 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 28 2023 6831, p 6831 |
language |
English |
source |
In Molecules 28(2023), 6831, p 6831 volume:28 year:2023 number:6831, p 6831 |
sourceStr |
In Molecules 28(2023), 6831, p 6831 volume:28 year:2023 number:6831, p 6831 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Ag nanoparticles PW<sub<12</sub</TiO<sub<2</sub< nanofibers degradation of antibiotics degradation pathways toxicity assessment Organic chemistry |
isfreeaccess_bool |
true |
container_title |
Molecules |
authorswithroles_txt_mv |
Hongfei Shi @@aut@@ Haoshen Wang @@aut@@ Enji Zhang @@aut@@ Xiaoshu Qu @@aut@@ Jianping Li @@aut@@ Sisi Zhao @@aut@@ Huajing Gao @@aut@@ Zhe Chen @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
311313132 |
id |
DOAJ09321474X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ09321474X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413100754.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/molecules28196831</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ09321474X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ69bb4be4b7a447829dbf53647c17da4a</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD241-441</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Hongfei Shi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Boosted Photocatalytic Performance for Antibiotics Removal with Ag/PW<sub<12</sub</TiO<sub<2</sub< Composite: Degradation Pathways and Toxicity Assessment</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Photocatalyst is the core of photocatalysis and directly determines photocatalytic performance. However, low quantum efficiency and low utilization of solar energy are important technical problems in the application of photocatalysis. In this work, a series of polyoxometalates (POMs) [H<sub<3</sub<PW<sub<12</sub<O<sub<40</sub<] (PW<sub<12</sub<)-doped titanium dioxide (TiO<sub<2</sub<) nanofibers modified with various amount of silver (Ag) nanoparticles (NPs) were prepared by utilizing electrospinning/photoreduction strategy, and were labelled as <i<x</i< wt% Ag/PW<sub<12</sub</TiO<sub<2</sub< (<i<abbr. x</i<% Ag/PT, <i<x</i< = 5, 10, and 15, respectively). The as-prepared materials were characterized with a series of techniques and exhibited remarkable catalytic activities for visible-light degradation tetracycline (TC), enrofloxacin (ENR), and methyl orange (MO). Particularly, the 10% Ag/PT catalyst with a specific surface area of 155.09 m<sup<2</sup</g and an average aperture of 4.61 nm possessed the optimal photodegradation performance, with efficiencies reaching 78.19% for TC, 93.65% for ENR, and 99.29% for MO, which were significantly higher than those of PW<sub<12</sub<-free Ag/TiO<sub<2</sub< and PT nanofibers. Additionally, various parameters (the pH of the solution, catalyst usage, and TC concentration) influencing the degradation process were investigated in detail. The optimal conditions are as follows: catalyst usage: 20 mg; TC: 20 mL of 20 ppm; pH = 7. Furthermore, the photodegradation intermediates and pathways were demonstrated by HPLC-MS measurement. We also investigated the toxicity of products generated during TC removal by employing quantitative structure-activity relationship (QSAR) prediction through a toxicity estimation software tool (T.E.S.T. Version 5.1.2.). The mechanism study showed that the doping of PW<sub<12</sub< and the modification of Ag NPs on TiO<sub<2</sub< broadened the visible-light absorption, accelerating the effective separation of photogenerated carriers, therefore resulting in an enhanced photocatalytic performance. The research provided some new thoughts for exploiting efficient and durable photocatalysts for environmental remediation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ag nanoparticles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PW<sub<12</sub</TiO<sub<2</sub< nanofibers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">degradation of antibiotics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">degradation pathways</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">toxicity assessment</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Organic chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haoshen Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Enji Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaoshu Qu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jianping Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sisi Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Huajing Gao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhe Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Molecules</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">28(2023), 6831, p 6831</subfield><subfield code="w">(DE-627)311313132</subfield><subfield code="w">(DE-600)2008644-1</subfield><subfield code="x">14203049</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:28</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:6831, p 6831</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/molecules28196831</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/69bb4be4b7a447829dbf53647c17da4a</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1420-3049/28/19/6831</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1420-3049</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">28</subfield><subfield code="j">2023</subfield><subfield code="e">6831, p 6831</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Hongfei Shi |
spellingShingle |
Hongfei Shi misc QD241-441 misc Ag nanoparticles misc PW<sub<12</sub</TiO<sub<2</sub< nanofibers misc degradation of antibiotics misc degradation pathways misc toxicity assessment misc Organic chemistry Boosted Photocatalytic Performance for Antibiotics Removal with Ag/PW<sub<12</sub</TiO<sub<2</sub< Composite: Degradation Pathways and Toxicity Assessment |
authorStr |
Hongfei Shi |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)311313132 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QD241-441 |
illustrated |
Not Illustrated |
issn |
14203049 |
topic_title |
QD241-441 Boosted Photocatalytic Performance for Antibiotics Removal with Ag/PW<sub<12</sub</TiO<sub<2</sub< Composite: Degradation Pathways and Toxicity Assessment Ag nanoparticles PW<sub<12</sub</TiO<sub<2</sub< nanofibers degradation of antibiotics degradation pathways toxicity assessment |
topic |
misc QD241-441 misc Ag nanoparticles misc PW<sub<12</sub</TiO<sub<2</sub< nanofibers misc degradation of antibiotics misc degradation pathways misc toxicity assessment misc Organic chemistry |
topic_unstemmed |
misc QD241-441 misc Ag nanoparticles misc PW<sub<12</sub</TiO<sub<2</sub< nanofibers misc degradation of antibiotics misc degradation pathways misc toxicity assessment misc Organic chemistry |
topic_browse |
misc QD241-441 misc Ag nanoparticles misc PW<sub<12</sub</TiO<sub<2</sub< nanofibers misc degradation of antibiotics misc degradation pathways misc toxicity assessment misc Organic chemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Molecules |
hierarchy_parent_id |
311313132 |
hierarchy_top_title |
Molecules |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)311313132 (DE-600)2008644-1 |
title |
Boosted Photocatalytic Performance for Antibiotics Removal with Ag/PW<sub<12</sub</TiO<sub<2</sub< Composite: Degradation Pathways and Toxicity Assessment |
ctrlnum |
(DE-627)DOAJ09321474X (DE-599)DOAJ69bb4be4b7a447829dbf53647c17da4a |
title_full |
Boosted Photocatalytic Performance for Antibiotics Removal with Ag/PW<sub<12</sub</TiO<sub<2</sub< Composite: Degradation Pathways and Toxicity Assessment |
author_sort |
Hongfei Shi |
journal |
Molecules |
journalStr |
Molecules |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Hongfei Shi Haoshen Wang Enji Zhang Xiaoshu Qu Jianping Li Sisi Zhao Huajing Gao Zhe Chen |
container_volume |
28 |
class |
QD241-441 |
format_se |
Elektronische Aufsätze |
author-letter |
Hongfei Shi |
doi_str_mv |
10.3390/molecules28196831 |
author2-role |
verfasserin |
title_sort |
boosted photocatalytic performance for antibiotics removal with ag/pw<sub<12</sub</tio<sub<2</sub< composite: degradation pathways and toxicity assessment |
callnumber |
QD241-441 |
title_auth |
Boosted Photocatalytic Performance for Antibiotics Removal with Ag/PW<sub<12</sub</TiO<sub<2</sub< Composite: Degradation Pathways and Toxicity Assessment |
abstract |
Photocatalyst is the core of photocatalysis and directly determines photocatalytic performance. However, low quantum efficiency and low utilization of solar energy are important technical problems in the application of photocatalysis. In this work, a series of polyoxometalates (POMs) [H<sub<3</sub<PW<sub<12</sub<O<sub<40</sub<] (PW<sub<12</sub<)-doped titanium dioxide (TiO<sub<2</sub<) nanofibers modified with various amount of silver (Ag) nanoparticles (NPs) were prepared by utilizing electrospinning/photoreduction strategy, and were labelled as <i<x</i< wt% Ag/PW<sub<12</sub</TiO<sub<2</sub< (<i<abbr. x</i<% Ag/PT, <i<x</i< = 5, 10, and 15, respectively). The as-prepared materials were characterized with a series of techniques and exhibited remarkable catalytic activities for visible-light degradation tetracycline (TC), enrofloxacin (ENR), and methyl orange (MO). Particularly, the 10% Ag/PT catalyst with a specific surface area of 155.09 m<sup<2</sup</g and an average aperture of 4.61 nm possessed the optimal photodegradation performance, with efficiencies reaching 78.19% for TC, 93.65% for ENR, and 99.29% for MO, which were significantly higher than those of PW<sub<12</sub<-free Ag/TiO<sub<2</sub< and PT nanofibers. Additionally, various parameters (the pH of the solution, catalyst usage, and TC concentration) influencing the degradation process were investigated in detail. The optimal conditions are as follows: catalyst usage: 20 mg; TC: 20 mL of 20 ppm; pH = 7. Furthermore, the photodegradation intermediates and pathways were demonstrated by HPLC-MS measurement. We also investigated the toxicity of products generated during TC removal by employing quantitative structure-activity relationship (QSAR) prediction through a toxicity estimation software tool (T.E.S.T. Version 5.1.2.). The mechanism study showed that the doping of PW<sub<12</sub< and the modification of Ag NPs on TiO<sub<2</sub< broadened the visible-light absorption, accelerating the effective separation of photogenerated carriers, therefore resulting in an enhanced photocatalytic performance. The research provided some new thoughts for exploiting efficient and durable photocatalysts for environmental remediation. |
abstractGer |
Photocatalyst is the core of photocatalysis and directly determines photocatalytic performance. However, low quantum efficiency and low utilization of solar energy are important technical problems in the application of photocatalysis. In this work, a series of polyoxometalates (POMs) [H<sub<3</sub<PW<sub<12</sub<O<sub<40</sub<] (PW<sub<12</sub<)-doped titanium dioxide (TiO<sub<2</sub<) nanofibers modified with various amount of silver (Ag) nanoparticles (NPs) were prepared by utilizing electrospinning/photoreduction strategy, and were labelled as <i<x</i< wt% Ag/PW<sub<12</sub</TiO<sub<2</sub< (<i<abbr. x</i<% Ag/PT, <i<x</i< = 5, 10, and 15, respectively). The as-prepared materials were characterized with a series of techniques and exhibited remarkable catalytic activities for visible-light degradation tetracycline (TC), enrofloxacin (ENR), and methyl orange (MO). Particularly, the 10% Ag/PT catalyst with a specific surface area of 155.09 m<sup<2</sup</g and an average aperture of 4.61 nm possessed the optimal photodegradation performance, with efficiencies reaching 78.19% for TC, 93.65% for ENR, and 99.29% for MO, which were significantly higher than those of PW<sub<12</sub<-free Ag/TiO<sub<2</sub< and PT nanofibers. Additionally, various parameters (the pH of the solution, catalyst usage, and TC concentration) influencing the degradation process were investigated in detail. The optimal conditions are as follows: catalyst usage: 20 mg; TC: 20 mL of 20 ppm; pH = 7. Furthermore, the photodegradation intermediates and pathways were demonstrated by HPLC-MS measurement. We also investigated the toxicity of products generated during TC removal by employing quantitative structure-activity relationship (QSAR) prediction through a toxicity estimation software tool (T.E.S.T. Version 5.1.2.). The mechanism study showed that the doping of PW<sub<12</sub< and the modification of Ag NPs on TiO<sub<2</sub< broadened the visible-light absorption, accelerating the effective separation of photogenerated carriers, therefore resulting in an enhanced photocatalytic performance. The research provided some new thoughts for exploiting efficient and durable photocatalysts for environmental remediation. |
abstract_unstemmed |
Photocatalyst is the core of photocatalysis and directly determines photocatalytic performance. However, low quantum efficiency and low utilization of solar energy are important technical problems in the application of photocatalysis. In this work, a series of polyoxometalates (POMs) [H<sub<3</sub<PW<sub<12</sub<O<sub<40</sub<] (PW<sub<12</sub<)-doped titanium dioxide (TiO<sub<2</sub<) nanofibers modified with various amount of silver (Ag) nanoparticles (NPs) were prepared by utilizing electrospinning/photoreduction strategy, and were labelled as <i<x</i< wt% Ag/PW<sub<12</sub</TiO<sub<2</sub< (<i<abbr. x</i<% Ag/PT, <i<x</i< = 5, 10, and 15, respectively). The as-prepared materials were characterized with a series of techniques and exhibited remarkable catalytic activities for visible-light degradation tetracycline (TC), enrofloxacin (ENR), and methyl orange (MO). Particularly, the 10% Ag/PT catalyst with a specific surface area of 155.09 m<sup<2</sup</g and an average aperture of 4.61 nm possessed the optimal photodegradation performance, with efficiencies reaching 78.19% for TC, 93.65% for ENR, and 99.29% for MO, which were significantly higher than those of PW<sub<12</sub<-free Ag/TiO<sub<2</sub< and PT nanofibers. Additionally, various parameters (the pH of the solution, catalyst usage, and TC concentration) influencing the degradation process were investigated in detail. The optimal conditions are as follows: catalyst usage: 20 mg; TC: 20 mL of 20 ppm; pH = 7. Furthermore, the photodegradation intermediates and pathways were demonstrated by HPLC-MS measurement. We also investigated the toxicity of products generated during TC removal by employing quantitative structure-activity relationship (QSAR) prediction through a toxicity estimation software tool (T.E.S.T. Version 5.1.2.). The mechanism study showed that the doping of PW<sub<12</sub< and the modification of Ag NPs on TiO<sub<2</sub< broadened the visible-light absorption, accelerating the effective separation of photogenerated carriers, therefore resulting in an enhanced photocatalytic performance. The research provided some new thoughts for exploiting efficient and durable photocatalysts for environmental remediation. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
6831, p 6831 |
title_short |
Boosted Photocatalytic Performance for Antibiotics Removal with Ag/PW<sub<12</sub</TiO<sub<2</sub< Composite: Degradation Pathways and Toxicity Assessment |
url |
https://doi.org/10.3390/molecules28196831 https://doaj.org/article/69bb4be4b7a447829dbf53647c17da4a https://www.mdpi.com/1420-3049/28/19/6831 https://doaj.org/toc/1420-3049 |
remote_bool |
true |
author2 |
Haoshen Wang Enji Zhang Xiaoshu Qu Jianping Li Sisi Zhao Huajing Gao Zhe Chen |
author2Str |
Haoshen Wang Enji Zhang Xiaoshu Qu Jianping Li Sisi Zhao Huajing Gao Zhe Chen |
ppnlink |
311313132 |
callnumber-subject |
QD - Chemistry |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/molecules28196831 |
callnumber-a |
QD241-441 |
up_date |
2024-07-03T15:57:53.258Z |
_version_ |
1803574075209023488 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ09321474X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413100754.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/molecules28196831</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ09321474X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ69bb4be4b7a447829dbf53647c17da4a</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD241-441</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Hongfei Shi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Boosted Photocatalytic Performance for Antibiotics Removal with Ag/PW<sub<12</sub</TiO<sub<2</sub< Composite: Degradation Pathways and Toxicity Assessment</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Photocatalyst is the core of photocatalysis and directly determines photocatalytic performance. However, low quantum efficiency and low utilization of solar energy are important technical problems in the application of photocatalysis. In this work, a series of polyoxometalates (POMs) [H<sub<3</sub<PW<sub<12</sub<O<sub<40</sub<] (PW<sub<12</sub<)-doped titanium dioxide (TiO<sub<2</sub<) nanofibers modified with various amount of silver (Ag) nanoparticles (NPs) were prepared by utilizing electrospinning/photoreduction strategy, and were labelled as <i<x</i< wt% Ag/PW<sub<12</sub</TiO<sub<2</sub< (<i<abbr. x</i<% Ag/PT, <i<x</i< = 5, 10, and 15, respectively). The as-prepared materials were characterized with a series of techniques and exhibited remarkable catalytic activities for visible-light degradation tetracycline (TC), enrofloxacin (ENR), and methyl orange (MO). Particularly, the 10% Ag/PT catalyst with a specific surface area of 155.09 m<sup<2</sup</g and an average aperture of 4.61 nm possessed the optimal photodegradation performance, with efficiencies reaching 78.19% for TC, 93.65% for ENR, and 99.29% for MO, which were significantly higher than those of PW<sub<12</sub<-free Ag/TiO<sub<2</sub< and PT nanofibers. Additionally, various parameters (the pH of the solution, catalyst usage, and TC concentration) influencing the degradation process were investigated in detail. The optimal conditions are as follows: catalyst usage: 20 mg; TC: 20 mL of 20 ppm; pH = 7. Furthermore, the photodegradation intermediates and pathways were demonstrated by HPLC-MS measurement. We also investigated the toxicity of products generated during TC removal by employing quantitative structure-activity relationship (QSAR) prediction through a toxicity estimation software tool (T.E.S.T. Version 5.1.2.). The mechanism study showed that the doping of PW<sub<12</sub< and the modification of Ag NPs on TiO<sub<2</sub< broadened the visible-light absorption, accelerating the effective separation of photogenerated carriers, therefore resulting in an enhanced photocatalytic performance. The research provided some new thoughts for exploiting efficient and durable photocatalysts for environmental remediation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ag nanoparticles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PW<sub<12</sub</TiO<sub<2</sub< nanofibers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">degradation of antibiotics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">degradation pathways</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">toxicity assessment</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Organic chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haoshen Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Enji Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaoshu Qu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jianping Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sisi Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Huajing Gao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhe Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Molecules</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">28(2023), 6831, p 6831</subfield><subfield code="w">(DE-627)311313132</subfield><subfield code="w">(DE-600)2008644-1</subfield><subfield code="x">14203049</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:28</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:6831, p 6831</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/molecules28196831</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/69bb4be4b7a447829dbf53647c17da4a</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1420-3049/28/19/6831</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1420-3049</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">28</subfield><subfield code="j">2023</subfield><subfield code="e">6831, p 6831</subfield></datafield></record></collection>
|
score |
7.402421 |