Aerodynamic Drag Reduction Analysis of Race Walking Formations Based on CFD Numerical Simulations and Wind Tunnel Experiments
Drafting formations have been long recognized as highly effective for reducing drag and enhancing athletic performance, particularly in race walking events. The precise spacing and positioning of the race walkers are critical to optimizing the effectiveness of drafting. In this study, drag reduction...
Ausführliche Beschreibung
Autor*in: |
Yiming Zhang [verfasserIn] Peng Ke [verfasserIn] Ping Hong [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Applied Sciences - MDPI AG, 2012, 13(2023), 10604, p 10604 |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2023 ; number:10604, p 10604 |
Links: |
---|
DOI / URN: |
10.3390/app131910604 |
---|
Katalog-ID: |
DOAJ09324665X |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ09324665X | ||
003 | DE-627 | ||
005 | 20240413160926.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/app131910604 |2 doi | |
035 | |a (DE-627)DOAJ09324665X | ||
035 | |a (DE-599)DOAJ5a9387755af348209580dae7b95b9ff2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TA1-2040 | |
050 | 0 | |a QH301-705.5 | |
050 | 0 | |a QC1-999 | |
050 | 0 | |a QD1-999 | |
100 | 0 | |a Yiming Zhang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Aerodynamic Drag Reduction Analysis of Race Walking Formations Based on CFD Numerical Simulations and Wind Tunnel Experiments |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Drafting formations have been long recognized as highly effective for reducing drag and enhancing athletic performance, particularly in race walking events. The precise spacing and positioning of the race walkers are critical to optimizing the effectiveness of drafting. In this study, drag reduction in 15 drafting formations is investigated using wind tunnel experiments and CFD numerical simulations. The results show excellent consistency in drag reduction rate between the two methods, with differences being within 10%. This can be attributed to spacing replacing body shape differences as the primary factor influencing drag reduction. Optimal double, triple, and quadruple drafting formations produce the same results in both the wind tunnel experiments and CFD simulation, resulting in drag reductions of 67%, 66%, and 81% (wind tunnel) and 65%, 72%, and 85% (CFD). The sources of drag differences in the two methods are discussed from various aspects. The flow field obtained through CFD analysis is used to examine the mechanism of drag reduction, revealing that drafting formations have a significant shielding effect on incoming air, which reduces the number and speed of airflow impacting the core race walker. This shielding effect is identified as the primary cause of drag reduction. Using an empirical model for mechanical power output, optimal double, triple, and quadruple drafting formations enhance sports economy (4.4–5.7%), speed (3.61–4.67%), and performance (173.8–223.3 s) compared to race walking alone. The findings can serve as a reference for race walkers’ positioning strategies and provide insights for considering drafting formations in various running events. | ||
650 | 4 | |a race walking | |
650 | 4 | |a error analysis | |
650 | 4 | |a numerical simulation | |
650 | 4 | |a aerodynamic drag reduction | |
650 | 4 | |a drag reduction mechanism | |
650 | 4 | |a performance evaluation | |
653 | 0 | |a Technology | |
653 | 0 | |a T | |
653 | 0 | |a Engineering (General). Civil engineering (General) | |
653 | 0 | |a Biology (General) | |
653 | 0 | |a Physics | |
653 | 0 | |a Chemistry | |
700 | 0 | |a Peng Ke |e verfasserin |4 aut | |
700 | 0 | |a Ping Hong |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Applied Sciences |d MDPI AG, 2012 |g 13(2023), 10604, p 10604 |w (DE-627)737287640 |w (DE-600)2704225-X |x 20763417 |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2023 |g number:10604, p 10604 |
856 | 4 | 0 | |u https://doi.org/10.3390/app131910604 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/5a9387755af348209580dae7b95b9ff2 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2076-3417/13/19/10604 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2076-3417 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 13 |j 2023 |e 10604, p 10604 |
author_variant |
y z yz p k pk p h ph |
---|---|
matchkey_str |
article:20763417:2023----::eoyaidardcinnlssfaeaknfrainbsdnfnmrcliua |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
TA |
publishDate |
2023 |
allfields |
10.3390/app131910604 doi (DE-627)DOAJ09324665X (DE-599)DOAJ5a9387755af348209580dae7b95b9ff2 DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Yiming Zhang verfasserin aut Aerodynamic Drag Reduction Analysis of Race Walking Formations Based on CFD Numerical Simulations and Wind Tunnel Experiments 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Drafting formations have been long recognized as highly effective for reducing drag and enhancing athletic performance, particularly in race walking events. The precise spacing and positioning of the race walkers are critical to optimizing the effectiveness of drafting. In this study, drag reduction in 15 drafting formations is investigated using wind tunnel experiments and CFD numerical simulations. The results show excellent consistency in drag reduction rate between the two methods, with differences being within 10%. This can be attributed to spacing replacing body shape differences as the primary factor influencing drag reduction. Optimal double, triple, and quadruple drafting formations produce the same results in both the wind tunnel experiments and CFD simulation, resulting in drag reductions of 67%, 66%, and 81% (wind tunnel) and 65%, 72%, and 85% (CFD). The sources of drag differences in the two methods are discussed from various aspects. The flow field obtained through CFD analysis is used to examine the mechanism of drag reduction, revealing that drafting formations have a significant shielding effect on incoming air, which reduces the number and speed of airflow impacting the core race walker. This shielding effect is identified as the primary cause of drag reduction. Using an empirical model for mechanical power output, optimal double, triple, and quadruple drafting formations enhance sports economy (4.4–5.7%), speed (3.61–4.67%), and performance (173.8–223.3 s) compared to race walking alone. The findings can serve as a reference for race walkers’ positioning strategies and provide insights for considering drafting formations in various running events. race walking error analysis numerical simulation aerodynamic drag reduction drag reduction mechanism performance evaluation Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Peng Ke verfasserin aut Ping Hong verfasserin aut In Applied Sciences MDPI AG, 2012 13(2023), 10604, p 10604 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:13 year:2023 number:10604, p 10604 https://doi.org/10.3390/app131910604 kostenfrei https://doaj.org/article/5a9387755af348209580dae7b95b9ff2 kostenfrei https://www.mdpi.com/2076-3417/13/19/10604 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 10604, p 10604 |
spelling |
10.3390/app131910604 doi (DE-627)DOAJ09324665X (DE-599)DOAJ5a9387755af348209580dae7b95b9ff2 DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Yiming Zhang verfasserin aut Aerodynamic Drag Reduction Analysis of Race Walking Formations Based on CFD Numerical Simulations and Wind Tunnel Experiments 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Drafting formations have been long recognized as highly effective for reducing drag and enhancing athletic performance, particularly in race walking events. The precise spacing and positioning of the race walkers are critical to optimizing the effectiveness of drafting. In this study, drag reduction in 15 drafting formations is investigated using wind tunnel experiments and CFD numerical simulations. The results show excellent consistency in drag reduction rate between the two methods, with differences being within 10%. This can be attributed to spacing replacing body shape differences as the primary factor influencing drag reduction. Optimal double, triple, and quadruple drafting formations produce the same results in both the wind tunnel experiments and CFD simulation, resulting in drag reductions of 67%, 66%, and 81% (wind tunnel) and 65%, 72%, and 85% (CFD). The sources of drag differences in the two methods are discussed from various aspects. The flow field obtained through CFD analysis is used to examine the mechanism of drag reduction, revealing that drafting formations have a significant shielding effect on incoming air, which reduces the number and speed of airflow impacting the core race walker. This shielding effect is identified as the primary cause of drag reduction. Using an empirical model for mechanical power output, optimal double, triple, and quadruple drafting formations enhance sports economy (4.4–5.7%), speed (3.61–4.67%), and performance (173.8–223.3 s) compared to race walking alone. The findings can serve as a reference for race walkers’ positioning strategies and provide insights for considering drafting formations in various running events. race walking error analysis numerical simulation aerodynamic drag reduction drag reduction mechanism performance evaluation Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Peng Ke verfasserin aut Ping Hong verfasserin aut In Applied Sciences MDPI AG, 2012 13(2023), 10604, p 10604 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:13 year:2023 number:10604, p 10604 https://doi.org/10.3390/app131910604 kostenfrei https://doaj.org/article/5a9387755af348209580dae7b95b9ff2 kostenfrei https://www.mdpi.com/2076-3417/13/19/10604 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 10604, p 10604 |
allfields_unstemmed |
10.3390/app131910604 doi (DE-627)DOAJ09324665X (DE-599)DOAJ5a9387755af348209580dae7b95b9ff2 DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Yiming Zhang verfasserin aut Aerodynamic Drag Reduction Analysis of Race Walking Formations Based on CFD Numerical Simulations and Wind Tunnel Experiments 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Drafting formations have been long recognized as highly effective for reducing drag and enhancing athletic performance, particularly in race walking events. The precise spacing and positioning of the race walkers are critical to optimizing the effectiveness of drafting. In this study, drag reduction in 15 drafting formations is investigated using wind tunnel experiments and CFD numerical simulations. The results show excellent consistency in drag reduction rate between the two methods, with differences being within 10%. This can be attributed to spacing replacing body shape differences as the primary factor influencing drag reduction. Optimal double, triple, and quadruple drafting formations produce the same results in both the wind tunnel experiments and CFD simulation, resulting in drag reductions of 67%, 66%, and 81% (wind tunnel) and 65%, 72%, and 85% (CFD). The sources of drag differences in the two methods are discussed from various aspects. The flow field obtained through CFD analysis is used to examine the mechanism of drag reduction, revealing that drafting formations have a significant shielding effect on incoming air, which reduces the number and speed of airflow impacting the core race walker. This shielding effect is identified as the primary cause of drag reduction. Using an empirical model for mechanical power output, optimal double, triple, and quadruple drafting formations enhance sports economy (4.4–5.7%), speed (3.61–4.67%), and performance (173.8–223.3 s) compared to race walking alone. The findings can serve as a reference for race walkers’ positioning strategies and provide insights for considering drafting formations in various running events. race walking error analysis numerical simulation aerodynamic drag reduction drag reduction mechanism performance evaluation Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Peng Ke verfasserin aut Ping Hong verfasserin aut In Applied Sciences MDPI AG, 2012 13(2023), 10604, p 10604 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:13 year:2023 number:10604, p 10604 https://doi.org/10.3390/app131910604 kostenfrei https://doaj.org/article/5a9387755af348209580dae7b95b9ff2 kostenfrei https://www.mdpi.com/2076-3417/13/19/10604 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 10604, p 10604 |
allfieldsGer |
10.3390/app131910604 doi (DE-627)DOAJ09324665X (DE-599)DOAJ5a9387755af348209580dae7b95b9ff2 DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Yiming Zhang verfasserin aut Aerodynamic Drag Reduction Analysis of Race Walking Formations Based on CFD Numerical Simulations and Wind Tunnel Experiments 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Drafting formations have been long recognized as highly effective for reducing drag and enhancing athletic performance, particularly in race walking events. The precise spacing and positioning of the race walkers are critical to optimizing the effectiveness of drafting. In this study, drag reduction in 15 drafting formations is investigated using wind tunnel experiments and CFD numerical simulations. The results show excellent consistency in drag reduction rate between the two methods, with differences being within 10%. This can be attributed to spacing replacing body shape differences as the primary factor influencing drag reduction. Optimal double, triple, and quadruple drafting formations produce the same results in both the wind tunnel experiments and CFD simulation, resulting in drag reductions of 67%, 66%, and 81% (wind tunnel) and 65%, 72%, and 85% (CFD). The sources of drag differences in the two methods are discussed from various aspects. The flow field obtained through CFD analysis is used to examine the mechanism of drag reduction, revealing that drafting formations have a significant shielding effect on incoming air, which reduces the number and speed of airflow impacting the core race walker. This shielding effect is identified as the primary cause of drag reduction. Using an empirical model for mechanical power output, optimal double, triple, and quadruple drafting formations enhance sports economy (4.4–5.7%), speed (3.61–4.67%), and performance (173.8–223.3 s) compared to race walking alone. The findings can serve as a reference for race walkers’ positioning strategies and provide insights for considering drafting formations in various running events. race walking error analysis numerical simulation aerodynamic drag reduction drag reduction mechanism performance evaluation Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Peng Ke verfasserin aut Ping Hong verfasserin aut In Applied Sciences MDPI AG, 2012 13(2023), 10604, p 10604 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:13 year:2023 number:10604, p 10604 https://doi.org/10.3390/app131910604 kostenfrei https://doaj.org/article/5a9387755af348209580dae7b95b9ff2 kostenfrei https://www.mdpi.com/2076-3417/13/19/10604 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 10604, p 10604 |
allfieldsSound |
10.3390/app131910604 doi (DE-627)DOAJ09324665X (DE-599)DOAJ5a9387755af348209580dae7b95b9ff2 DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Yiming Zhang verfasserin aut Aerodynamic Drag Reduction Analysis of Race Walking Formations Based on CFD Numerical Simulations and Wind Tunnel Experiments 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Drafting formations have been long recognized as highly effective for reducing drag and enhancing athletic performance, particularly in race walking events. The precise spacing and positioning of the race walkers are critical to optimizing the effectiveness of drafting. In this study, drag reduction in 15 drafting formations is investigated using wind tunnel experiments and CFD numerical simulations. The results show excellent consistency in drag reduction rate between the two methods, with differences being within 10%. This can be attributed to spacing replacing body shape differences as the primary factor influencing drag reduction. Optimal double, triple, and quadruple drafting formations produce the same results in both the wind tunnel experiments and CFD simulation, resulting in drag reductions of 67%, 66%, and 81% (wind tunnel) and 65%, 72%, and 85% (CFD). The sources of drag differences in the two methods are discussed from various aspects. The flow field obtained through CFD analysis is used to examine the mechanism of drag reduction, revealing that drafting formations have a significant shielding effect on incoming air, which reduces the number and speed of airflow impacting the core race walker. This shielding effect is identified as the primary cause of drag reduction. Using an empirical model for mechanical power output, optimal double, triple, and quadruple drafting formations enhance sports economy (4.4–5.7%), speed (3.61–4.67%), and performance (173.8–223.3 s) compared to race walking alone. The findings can serve as a reference for race walkers’ positioning strategies and provide insights for considering drafting formations in various running events. race walking error analysis numerical simulation aerodynamic drag reduction drag reduction mechanism performance evaluation Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Peng Ke verfasserin aut Ping Hong verfasserin aut In Applied Sciences MDPI AG, 2012 13(2023), 10604, p 10604 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:13 year:2023 number:10604, p 10604 https://doi.org/10.3390/app131910604 kostenfrei https://doaj.org/article/5a9387755af348209580dae7b95b9ff2 kostenfrei https://www.mdpi.com/2076-3417/13/19/10604 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 10604, p 10604 |
language |
English |
source |
In Applied Sciences 13(2023), 10604, p 10604 volume:13 year:2023 number:10604, p 10604 |
sourceStr |
In Applied Sciences 13(2023), 10604, p 10604 volume:13 year:2023 number:10604, p 10604 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
race walking error analysis numerical simulation aerodynamic drag reduction drag reduction mechanism performance evaluation Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry |
isfreeaccess_bool |
true |
container_title |
Applied Sciences |
authorswithroles_txt_mv |
Yiming Zhang @@aut@@ Peng Ke @@aut@@ Ping Hong @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
737287640 |
id |
DOAJ09324665X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ09324665X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413160926.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/app131910604</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ09324665X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ5a9387755af348209580dae7b95b9ff2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yiming Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Aerodynamic Drag Reduction Analysis of Race Walking Formations Based on CFD Numerical Simulations and Wind Tunnel Experiments</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Drafting formations have been long recognized as highly effective for reducing drag and enhancing athletic performance, particularly in race walking events. The precise spacing and positioning of the race walkers are critical to optimizing the effectiveness of drafting. In this study, drag reduction in 15 drafting formations is investigated using wind tunnel experiments and CFD numerical simulations. The results show excellent consistency in drag reduction rate between the two methods, with differences being within 10%. This can be attributed to spacing replacing body shape differences as the primary factor influencing drag reduction. Optimal double, triple, and quadruple drafting formations produce the same results in both the wind tunnel experiments and CFD simulation, resulting in drag reductions of 67%, 66%, and 81% (wind tunnel) and 65%, 72%, and 85% (CFD). The sources of drag differences in the two methods are discussed from various aspects. The flow field obtained through CFD analysis is used to examine the mechanism of drag reduction, revealing that drafting formations have a significant shielding effect on incoming air, which reduces the number and speed of airflow impacting the core race walker. This shielding effect is identified as the primary cause of drag reduction. Using an empirical model for mechanical power output, optimal double, triple, and quadruple drafting formations enhance sports economy (4.4–5.7%), speed (3.61–4.67%), and performance (173.8–223.3 s) compared to race walking alone. The findings can serve as a reference for race walkers’ positioning strategies and provide insights for considering drafting formations in various running events.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">race walking</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">error analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">numerical simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">aerodynamic drag reduction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">drag reduction mechanism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">performance evaluation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Peng Ke</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ping Hong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Applied Sciences</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">13(2023), 10604, p 10604</subfield><subfield code="w">(DE-627)737287640</subfield><subfield code="w">(DE-600)2704225-X</subfield><subfield code="x">20763417</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:10604, p 10604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/app131910604</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/5a9387755af348209580dae7b95b9ff2</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2076-3417/13/19/10604</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2076-3417</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2023</subfield><subfield code="e">10604, p 10604</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Yiming Zhang |
spellingShingle |
Yiming Zhang misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc race walking misc error analysis misc numerical simulation misc aerodynamic drag reduction misc drag reduction mechanism misc performance evaluation misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry Aerodynamic Drag Reduction Analysis of Race Walking Formations Based on CFD Numerical Simulations and Wind Tunnel Experiments |
authorStr |
Yiming Zhang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)737287640 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA1-2040 |
illustrated |
Not Illustrated |
issn |
20763417 |
topic_title |
TA1-2040 QH301-705.5 QC1-999 QD1-999 Aerodynamic Drag Reduction Analysis of Race Walking Formations Based on CFD Numerical Simulations and Wind Tunnel Experiments race walking error analysis numerical simulation aerodynamic drag reduction drag reduction mechanism performance evaluation |
topic |
misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc race walking misc error analysis misc numerical simulation misc aerodynamic drag reduction misc drag reduction mechanism misc performance evaluation misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry |
topic_unstemmed |
misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc race walking misc error analysis misc numerical simulation misc aerodynamic drag reduction misc drag reduction mechanism misc performance evaluation misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry |
topic_browse |
misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc race walking misc error analysis misc numerical simulation misc aerodynamic drag reduction misc drag reduction mechanism misc performance evaluation misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Applied Sciences |
hierarchy_parent_id |
737287640 |
hierarchy_top_title |
Applied Sciences |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)737287640 (DE-600)2704225-X |
title |
Aerodynamic Drag Reduction Analysis of Race Walking Formations Based on CFD Numerical Simulations and Wind Tunnel Experiments |
ctrlnum |
(DE-627)DOAJ09324665X (DE-599)DOAJ5a9387755af348209580dae7b95b9ff2 |
title_full |
Aerodynamic Drag Reduction Analysis of Race Walking Formations Based on CFD Numerical Simulations and Wind Tunnel Experiments |
author_sort |
Yiming Zhang |
journal |
Applied Sciences |
journalStr |
Applied Sciences |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Yiming Zhang Peng Ke Ping Hong |
container_volume |
13 |
class |
TA1-2040 QH301-705.5 QC1-999 QD1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Yiming Zhang |
doi_str_mv |
10.3390/app131910604 |
author2-role |
verfasserin |
title_sort |
aerodynamic drag reduction analysis of race walking formations based on cfd numerical simulations and wind tunnel experiments |
callnumber |
TA1-2040 |
title_auth |
Aerodynamic Drag Reduction Analysis of Race Walking Formations Based on CFD Numerical Simulations and Wind Tunnel Experiments |
abstract |
Drafting formations have been long recognized as highly effective for reducing drag and enhancing athletic performance, particularly in race walking events. The precise spacing and positioning of the race walkers are critical to optimizing the effectiveness of drafting. In this study, drag reduction in 15 drafting formations is investigated using wind tunnel experiments and CFD numerical simulations. The results show excellent consistency in drag reduction rate between the two methods, with differences being within 10%. This can be attributed to spacing replacing body shape differences as the primary factor influencing drag reduction. Optimal double, triple, and quadruple drafting formations produce the same results in both the wind tunnel experiments and CFD simulation, resulting in drag reductions of 67%, 66%, and 81% (wind tunnel) and 65%, 72%, and 85% (CFD). The sources of drag differences in the two methods are discussed from various aspects. The flow field obtained through CFD analysis is used to examine the mechanism of drag reduction, revealing that drafting formations have a significant shielding effect on incoming air, which reduces the number and speed of airflow impacting the core race walker. This shielding effect is identified as the primary cause of drag reduction. Using an empirical model for mechanical power output, optimal double, triple, and quadruple drafting formations enhance sports economy (4.4–5.7%), speed (3.61–4.67%), and performance (173.8–223.3 s) compared to race walking alone. The findings can serve as a reference for race walkers’ positioning strategies and provide insights for considering drafting formations in various running events. |
abstractGer |
Drafting formations have been long recognized as highly effective for reducing drag and enhancing athletic performance, particularly in race walking events. The precise spacing and positioning of the race walkers are critical to optimizing the effectiveness of drafting. In this study, drag reduction in 15 drafting formations is investigated using wind tunnel experiments and CFD numerical simulations. The results show excellent consistency in drag reduction rate between the two methods, with differences being within 10%. This can be attributed to spacing replacing body shape differences as the primary factor influencing drag reduction. Optimal double, triple, and quadruple drafting formations produce the same results in both the wind tunnel experiments and CFD simulation, resulting in drag reductions of 67%, 66%, and 81% (wind tunnel) and 65%, 72%, and 85% (CFD). The sources of drag differences in the two methods are discussed from various aspects. The flow field obtained through CFD analysis is used to examine the mechanism of drag reduction, revealing that drafting formations have a significant shielding effect on incoming air, which reduces the number and speed of airflow impacting the core race walker. This shielding effect is identified as the primary cause of drag reduction. Using an empirical model for mechanical power output, optimal double, triple, and quadruple drafting formations enhance sports economy (4.4–5.7%), speed (3.61–4.67%), and performance (173.8–223.3 s) compared to race walking alone. The findings can serve as a reference for race walkers’ positioning strategies and provide insights for considering drafting formations in various running events. |
abstract_unstemmed |
Drafting formations have been long recognized as highly effective for reducing drag and enhancing athletic performance, particularly in race walking events. The precise spacing and positioning of the race walkers are critical to optimizing the effectiveness of drafting. In this study, drag reduction in 15 drafting formations is investigated using wind tunnel experiments and CFD numerical simulations. The results show excellent consistency in drag reduction rate between the two methods, with differences being within 10%. This can be attributed to spacing replacing body shape differences as the primary factor influencing drag reduction. Optimal double, triple, and quadruple drafting formations produce the same results in both the wind tunnel experiments and CFD simulation, resulting in drag reductions of 67%, 66%, and 81% (wind tunnel) and 65%, 72%, and 85% (CFD). The sources of drag differences in the two methods are discussed from various aspects. The flow field obtained through CFD analysis is used to examine the mechanism of drag reduction, revealing that drafting formations have a significant shielding effect on incoming air, which reduces the number and speed of airflow impacting the core race walker. This shielding effect is identified as the primary cause of drag reduction. Using an empirical model for mechanical power output, optimal double, triple, and quadruple drafting formations enhance sports economy (4.4–5.7%), speed (3.61–4.67%), and performance (173.8–223.3 s) compared to race walking alone. The findings can serve as a reference for race walkers’ positioning strategies and provide insights for considering drafting formations in various running events. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
10604, p 10604 |
title_short |
Aerodynamic Drag Reduction Analysis of Race Walking Formations Based on CFD Numerical Simulations and Wind Tunnel Experiments |
url |
https://doi.org/10.3390/app131910604 https://doaj.org/article/5a9387755af348209580dae7b95b9ff2 https://www.mdpi.com/2076-3417/13/19/10604 https://doaj.org/toc/2076-3417 |
remote_bool |
true |
author2 |
Peng Ke Ping Hong |
author2Str |
Peng Ke Ping Hong |
ppnlink |
737287640 |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/app131910604 |
callnumber-a |
TA1-2040 |
up_date |
2024-07-03T16:09:23.450Z |
_version_ |
1803574798938275840 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ09324665X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413160926.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/app131910604</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ09324665X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ5a9387755af348209580dae7b95b9ff2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yiming Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Aerodynamic Drag Reduction Analysis of Race Walking Formations Based on CFD Numerical Simulations and Wind Tunnel Experiments</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Drafting formations have been long recognized as highly effective for reducing drag and enhancing athletic performance, particularly in race walking events. The precise spacing and positioning of the race walkers are critical to optimizing the effectiveness of drafting. In this study, drag reduction in 15 drafting formations is investigated using wind tunnel experiments and CFD numerical simulations. The results show excellent consistency in drag reduction rate between the two methods, with differences being within 10%. This can be attributed to spacing replacing body shape differences as the primary factor influencing drag reduction. Optimal double, triple, and quadruple drafting formations produce the same results in both the wind tunnel experiments and CFD simulation, resulting in drag reductions of 67%, 66%, and 81% (wind tunnel) and 65%, 72%, and 85% (CFD). The sources of drag differences in the two methods are discussed from various aspects. The flow field obtained through CFD analysis is used to examine the mechanism of drag reduction, revealing that drafting formations have a significant shielding effect on incoming air, which reduces the number and speed of airflow impacting the core race walker. This shielding effect is identified as the primary cause of drag reduction. Using an empirical model for mechanical power output, optimal double, triple, and quadruple drafting formations enhance sports economy (4.4–5.7%), speed (3.61–4.67%), and performance (173.8–223.3 s) compared to race walking alone. The findings can serve as a reference for race walkers’ positioning strategies and provide insights for considering drafting formations in various running events.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">race walking</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">error analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">numerical simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">aerodynamic drag reduction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">drag reduction mechanism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">performance evaluation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Peng Ke</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ping Hong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Applied Sciences</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">13(2023), 10604, p 10604</subfield><subfield code="w">(DE-627)737287640</subfield><subfield code="w">(DE-600)2704225-X</subfield><subfield code="x">20763417</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:10604, p 10604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/app131910604</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/5a9387755af348209580dae7b95b9ff2</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2076-3417/13/19/10604</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2076-3417</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2023</subfield><subfield code="e">10604, p 10604</subfield></datafield></record></collection>
|
score |
7.402135 |