Giant Duckweed (<i<Spirodela polyrhiza</i<) Root Growth as a Simple and Sensitive Indicator of Copper and Chromium Contamination
Aquatic environment are often contaminated with heavy metals from various industrial sources. However, physicochemical techniques for pollutant detection are limited, thus prompting the need for additional bioassays. We investigated the use of greater duckweed (<i<Spirodela polyrhiza</i<...
Ausführliche Beschreibung
Autor*in: |
Hojun Lee [verfasserIn] Jonas De Saeger [verfasserIn] Sunwoo Bae [verfasserIn] Mirae Kim [verfasserIn] Stephen Depuydt [verfasserIn] Philippe M. Heynderickx [verfasserIn] Di Wu [verfasserIn] Taejun Han [verfasserIn] Jihae Park [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Toxics - MDPI AG, 2014, 11(2023), 788, p 788 |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:2023 ; number:788, p 788 |
Links: |
---|
DOI / URN: |
10.3390/toxics11090788 |
---|
Katalog-ID: |
DOAJ093258011 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ093258011 | ||
003 | DE-627 | ||
005 | 20240413155433.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/toxics11090788 |2 doi | |
035 | |a (DE-627)DOAJ093258011 | ||
035 | |a (DE-599)DOAJ2899b56652cf4522b025eebb2d247281 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TP1-1185 | |
100 | 0 | |a Hojun Lee |e verfasserin |4 aut | |
245 | 1 | 0 | |a Giant Duckweed (<i<Spirodela polyrhiza</i<) Root Growth as a Simple and Sensitive Indicator of Copper and Chromium Contamination |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Aquatic environment are often contaminated with heavy metals from various industrial sources. However, physicochemical techniques for pollutant detection are limited, thus prompting the need for additional bioassays. We investigated the use of greater duckweed (<i<Spirodela polyrhiza</i<) as a bioindicator of metal pollution. We exposed <i<S. polyrhiza</i< to four pollutants (namely, silver, cadmium, copper, and chromium) and assessed metal toxicity by measuring its frond area and the length of its regrown roots. The plant displayed significant differences in both frond size and root growth in response to the four metals. Silver was the most toxic (EC<sub<50</sub< = 23 µg L<sup<−1</sup<) while copper the least (EC<sub<50</sub< = 365–607 µg L<sup<−1</sup<). Direct comparisons of metal sensitivity and the reliability of the two endpoint assays showed that root growth was more sensitive (lower in terms of 50% effective concentration) to chromium, cadmium, and copper, and was more reliable (lower in terms of coefficient of variation) than those for frond area. Compared to conventional <i<Lemna</i<-based tests, the <i<S. polyrhiza</i< test is easier to perform (requiring only one 24-well plate, 3 mL of medium and a 72-h exposure). Moreover, it does not require livestock cultivation/maintenance, making it more suitable for repeated measurements. Measurements of <i<S. polyrhiza</i< root length may be suitable for assessment when copper and chromium in municipal and industrial wastewater exceed the environmentally permissible levels. | ||
650 | 4 | |a duckweed | |
650 | 4 | |a growth | |
650 | 4 | |a metals | |
650 | 4 | |a root regrowth length | |
650 | 4 | |a <i<Spirodela polyrhiza</i< | |
653 | 0 | |a Chemical technology | |
700 | 0 | |a Jonas De Saeger |e verfasserin |4 aut | |
700 | 0 | |a Sunwoo Bae |e verfasserin |4 aut | |
700 | 0 | |a Mirae Kim |e verfasserin |4 aut | |
700 | 0 | |a Stephen Depuydt |e verfasserin |4 aut | |
700 | 0 | |a Philippe M. Heynderickx |e verfasserin |4 aut | |
700 | 0 | |a Di Wu |e verfasserin |4 aut | |
700 | 0 | |a Taejun Han |e verfasserin |4 aut | |
700 | 0 | |a Jihae Park |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Toxics |d MDPI AG, 2014 |g 11(2023), 788, p 788 |w (DE-627)768577497 |w (DE-600)2733883-6 |x 23056304 |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:2023 |g number:788, p 788 |
856 | 4 | 0 | |u https://doi.org/10.3390/toxics11090788 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/2899b56652cf4522b025eebb2d247281 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2305-6304/11/9/788 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2305-6304 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 11 |j 2023 |e 788, p 788 |
author_variant |
h l hl j d s jds s b sb m k mk s d sd p m h pmh d w dw t h th j p jp |
---|---|
matchkey_str |
article:23056304:2023----::indcweiprdlplriarogotaaipensniieniaoocp |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
TP |
publishDate |
2023 |
allfields |
10.3390/toxics11090788 doi (DE-627)DOAJ093258011 (DE-599)DOAJ2899b56652cf4522b025eebb2d247281 DE-627 ger DE-627 rakwb eng TP1-1185 Hojun Lee verfasserin aut Giant Duckweed (<i<Spirodela polyrhiza</i<) Root Growth as a Simple and Sensitive Indicator of Copper and Chromium Contamination 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Aquatic environment are often contaminated with heavy metals from various industrial sources. However, physicochemical techniques for pollutant detection are limited, thus prompting the need for additional bioassays. We investigated the use of greater duckweed (<i<Spirodela polyrhiza</i<) as a bioindicator of metal pollution. We exposed <i<S. polyrhiza</i< to four pollutants (namely, silver, cadmium, copper, and chromium) and assessed metal toxicity by measuring its frond area and the length of its regrown roots. The plant displayed significant differences in both frond size and root growth in response to the four metals. Silver was the most toxic (EC<sub<50</sub< = 23 µg L<sup<−1</sup<) while copper the least (EC<sub<50</sub< = 365–607 µg L<sup<−1</sup<). Direct comparisons of metal sensitivity and the reliability of the two endpoint assays showed that root growth was more sensitive (lower in terms of 50% effective concentration) to chromium, cadmium, and copper, and was more reliable (lower in terms of coefficient of variation) than those for frond area. Compared to conventional <i<Lemna</i<-based tests, the <i<S. polyrhiza</i< test is easier to perform (requiring only one 24-well plate, 3 mL of medium and a 72-h exposure). Moreover, it does not require livestock cultivation/maintenance, making it more suitable for repeated measurements. Measurements of <i<S. polyrhiza</i< root length may be suitable for assessment when copper and chromium in municipal and industrial wastewater exceed the environmentally permissible levels. duckweed growth metals root regrowth length <i<Spirodela polyrhiza</i< Chemical technology Jonas De Saeger verfasserin aut Sunwoo Bae verfasserin aut Mirae Kim verfasserin aut Stephen Depuydt verfasserin aut Philippe M. Heynderickx verfasserin aut Di Wu verfasserin aut Taejun Han verfasserin aut Jihae Park verfasserin aut In Toxics MDPI AG, 2014 11(2023), 788, p 788 (DE-627)768577497 (DE-600)2733883-6 23056304 nnns volume:11 year:2023 number:788, p 788 https://doi.org/10.3390/toxics11090788 kostenfrei https://doaj.org/article/2899b56652cf4522b025eebb2d247281 kostenfrei https://www.mdpi.com/2305-6304/11/9/788 kostenfrei https://doaj.org/toc/2305-6304 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 788, p 788 |
spelling |
10.3390/toxics11090788 doi (DE-627)DOAJ093258011 (DE-599)DOAJ2899b56652cf4522b025eebb2d247281 DE-627 ger DE-627 rakwb eng TP1-1185 Hojun Lee verfasserin aut Giant Duckweed (<i<Spirodela polyrhiza</i<) Root Growth as a Simple and Sensitive Indicator of Copper and Chromium Contamination 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Aquatic environment are often contaminated with heavy metals from various industrial sources. However, physicochemical techniques for pollutant detection are limited, thus prompting the need for additional bioassays. We investigated the use of greater duckweed (<i<Spirodela polyrhiza</i<) as a bioindicator of metal pollution. We exposed <i<S. polyrhiza</i< to four pollutants (namely, silver, cadmium, copper, and chromium) and assessed metal toxicity by measuring its frond area and the length of its regrown roots. The plant displayed significant differences in both frond size and root growth in response to the four metals. Silver was the most toxic (EC<sub<50</sub< = 23 µg L<sup<−1</sup<) while copper the least (EC<sub<50</sub< = 365–607 µg L<sup<−1</sup<). Direct comparisons of metal sensitivity and the reliability of the two endpoint assays showed that root growth was more sensitive (lower in terms of 50% effective concentration) to chromium, cadmium, and copper, and was more reliable (lower in terms of coefficient of variation) than those for frond area. Compared to conventional <i<Lemna</i<-based tests, the <i<S. polyrhiza</i< test is easier to perform (requiring only one 24-well plate, 3 mL of medium and a 72-h exposure). Moreover, it does not require livestock cultivation/maintenance, making it more suitable for repeated measurements. Measurements of <i<S. polyrhiza</i< root length may be suitable for assessment when copper and chromium in municipal and industrial wastewater exceed the environmentally permissible levels. duckweed growth metals root regrowth length <i<Spirodela polyrhiza</i< Chemical technology Jonas De Saeger verfasserin aut Sunwoo Bae verfasserin aut Mirae Kim verfasserin aut Stephen Depuydt verfasserin aut Philippe M. Heynderickx verfasserin aut Di Wu verfasserin aut Taejun Han verfasserin aut Jihae Park verfasserin aut In Toxics MDPI AG, 2014 11(2023), 788, p 788 (DE-627)768577497 (DE-600)2733883-6 23056304 nnns volume:11 year:2023 number:788, p 788 https://doi.org/10.3390/toxics11090788 kostenfrei https://doaj.org/article/2899b56652cf4522b025eebb2d247281 kostenfrei https://www.mdpi.com/2305-6304/11/9/788 kostenfrei https://doaj.org/toc/2305-6304 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 788, p 788 |
allfields_unstemmed |
10.3390/toxics11090788 doi (DE-627)DOAJ093258011 (DE-599)DOAJ2899b56652cf4522b025eebb2d247281 DE-627 ger DE-627 rakwb eng TP1-1185 Hojun Lee verfasserin aut Giant Duckweed (<i<Spirodela polyrhiza</i<) Root Growth as a Simple and Sensitive Indicator of Copper and Chromium Contamination 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Aquatic environment are often contaminated with heavy metals from various industrial sources. However, physicochemical techniques for pollutant detection are limited, thus prompting the need for additional bioassays. We investigated the use of greater duckweed (<i<Spirodela polyrhiza</i<) as a bioindicator of metal pollution. We exposed <i<S. polyrhiza</i< to four pollutants (namely, silver, cadmium, copper, and chromium) and assessed metal toxicity by measuring its frond area and the length of its regrown roots. The plant displayed significant differences in both frond size and root growth in response to the four metals. Silver was the most toxic (EC<sub<50</sub< = 23 µg L<sup<−1</sup<) while copper the least (EC<sub<50</sub< = 365–607 µg L<sup<−1</sup<). Direct comparisons of metal sensitivity and the reliability of the two endpoint assays showed that root growth was more sensitive (lower in terms of 50% effective concentration) to chromium, cadmium, and copper, and was more reliable (lower in terms of coefficient of variation) than those for frond area. Compared to conventional <i<Lemna</i<-based tests, the <i<S. polyrhiza</i< test is easier to perform (requiring only one 24-well plate, 3 mL of medium and a 72-h exposure). Moreover, it does not require livestock cultivation/maintenance, making it more suitable for repeated measurements. Measurements of <i<S. polyrhiza</i< root length may be suitable for assessment when copper and chromium in municipal and industrial wastewater exceed the environmentally permissible levels. duckweed growth metals root regrowth length <i<Spirodela polyrhiza</i< Chemical technology Jonas De Saeger verfasserin aut Sunwoo Bae verfasserin aut Mirae Kim verfasserin aut Stephen Depuydt verfasserin aut Philippe M. Heynderickx verfasserin aut Di Wu verfasserin aut Taejun Han verfasserin aut Jihae Park verfasserin aut In Toxics MDPI AG, 2014 11(2023), 788, p 788 (DE-627)768577497 (DE-600)2733883-6 23056304 nnns volume:11 year:2023 number:788, p 788 https://doi.org/10.3390/toxics11090788 kostenfrei https://doaj.org/article/2899b56652cf4522b025eebb2d247281 kostenfrei https://www.mdpi.com/2305-6304/11/9/788 kostenfrei https://doaj.org/toc/2305-6304 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 788, p 788 |
allfieldsGer |
10.3390/toxics11090788 doi (DE-627)DOAJ093258011 (DE-599)DOAJ2899b56652cf4522b025eebb2d247281 DE-627 ger DE-627 rakwb eng TP1-1185 Hojun Lee verfasserin aut Giant Duckweed (<i<Spirodela polyrhiza</i<) Root Growth as a Simple and Sensitive Indicator of Copper and Chromium Contamination 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Aquatic environment are often contaminated with heavy metals from various industrial sources. However, physicochemical techniques for pollutant detection are limited, thus prompting the need for additional bioassays. We investigated the use of greater duckweed (<i<Spirodela polyrhiza</i<) as a bioindicator of metal pollution. We exposed <i<S. polyrhiza</i< to four pollutants (namely, silver, cadmium, copper, and chromium) and assessed metal toxicity by measuring its frond area and the length of its regrown roots. The plant displayed significant differences in both frond size and root growth in response to the four metals. Silver was the most toxic (EC<sub<50</sub< = 23 µg L<sup<−1</sup<) while copper the least (EC<sub<50</sub< = 365–607 µg L<sup<−1</sup<). Direct comparisons of metal sensitivity and the reliability of the two endpoint assays showed that root growth was more sensitive (lower in terms of 50% effective concentration) to chromium, cadmium, and copper, and was more reliable (lower in terms of coefficient of variation) than those for frond area. Compared to conventional <i<Lemna</i<-based tests, the <i<S. polyrhiza</i< test is easier to perform (requiring only one 24-well plate, 3 mL of medium and a 72-h exposure). Moreover, it does not require livestock cultivation/maintenance, making it more suitable for repeated measurements. Measurements of <i<S. polyrhiza</i< root length may be suitable for assessment when copper and chromium in municipal and industrial wastewater exceed the environmentally permissible levels. duckweed growth metals root regrowth length <i<Spirodela polyrhiza</i< Chemical technology Jonas De Saeger verfasserin aut Sunwoo Bae verfasserin aut Mirae Kim verfasserin aut Stephen Depuydt verfasserin aut Philippe M. Heynderickx verfasserin aut Di Wu verfasserin aut Taejun Han verfasserin aut Jihae Park verfasserin aut In Toxics MDPI AG, 2014 11(2023), 788, p 788 (DE-627)768577497 (DE-600)2733883-6 23056304 nnns volume:11 year:2023 number:788, p 788 https://doi.org/10.3390/toxics11090788 kostenfrei https://doaj.org/article/2899b56652cf4522b025eebb2d247281 kostenfrei https://www.mdpi.com/2305-6304/11/9/788 kostenfrei https://doaj.org/toc/2305-6304 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 788, p 788 |
allfieldsSound |
10.3390/toxics11090788 doi (DE-627)DOAJ093258011 (DE-599)DOAJ2899b56652cf4522b025eebb2d247281 DE-627 ger DE-627 rakwb eng TP1-1185 Hojun Lee verfasserin aut Giant Duckweed (<i<Spirodela polyrhiza</i<) Root Growth as a Simple and Sensitive Indicator of Copper and Chromium Contamination 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Aquatic environment are often contaminated with heavy metals from various industrial sources. However, physicochemical techniques for pollutant detection are limited, thus prompting the need for additional bioassays. We investigated the use of greater duckweed (<i<Spirodela polyrhiza</i<) as a bioindicator of metal pollution. We exposed <i<S. polyrhiza</i< to four pollutants (namely, silver, cadmium, copper, and chromium) and assessed metal toxicity by measuring its frond area and the length of its regrown roots. The plant displayed significant differences in both frond size and root growth in response to the four metals. Silver was the most toxic (EC<sub<50</sub< = 23 µg L<sup<−1</sup<) while copper the least (EC<sub<50</sub< = 365–607 µg L<sup<−1</sup<). Direct comparisons of metal sensitivity and the reliability of the two endpoint assays showed that root growth was more sensitive (lower in terms of 50% effective concentration) to chromium, cadmium, and copper, and was more reliable (lower in terms of coefficient of variation) than those for frond area. Compared to conventional <i<Lemna</i<-based tests, the <i<S. polyrhiza</i< test is easier to perform (requiring only one 24-well plate, 3 mL of medium and a 72-h exposure). Moreover, it does not require livestock cultivation/maintenance, making it more suitable for repeated measurements. Measurements of <i<S. polyrhiza</i< root length may be suitable for assessment when copper and chromium in municipal and industrial wastewater exceed the environmentally permissible levels. duckweed growth metals root regrowth length <i<Spirodela polyrhiza</i< Chemical technology Jonas De Saeger verfasserin aut Sunwoo Bae verfasserin aut Mirae Kim verfasserin aut Stephen Depuydt verfasserin aut Philippe M. Heynderickx verfasserin aut Di Wu verfasserin aut Taejun Han verfasserin aut Jihae Park verfasserin aut In Toxics MDPI AG, 2014 11(2023), 788, p 788 (DE-627)768577497 (DE-600)2733883-6 23056304 nnns volume:11 year:2023 number:788, p 788 https://doi.org/10.3390/toxics11090788 kostenfrei https://doaj.org/article/2899b56652cf4522b025eebb2d247281 kostenfrei https://www.mdpi.com/2305-6304/11/9/788 kostenfrei https://doaj.org/toc/2305-6304 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 788, p 788 |
language |
English |
source |
In Toxics 11(2023), 788, p 788 volume:11 year:2023 number:788, p 788 |
sourceStr |
In Toxics 11(2023), 788, p 788 volume:11 year:2023 number:788, p 788 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
duckweed growth metals root regrowth length <i<Spirodela polyrhiza</i< Chemical technology |
isfreeaccess_bool |
true |
container_title |
Toxics |
authorswithroles_txt_mv |
Hojun Lee @@aut@@ Jonas De Saeger @@aut@@ Sunwoo Bae @@aut@@ Mirae Kim @@aut@@ Stephen Depuydt @@aut@@ Philippe M. Heynderickx @@aut@@ Di Wu @@aut@@ Taejun Han @@aut@@ Jihae Park @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
768577497 |
id |
DOAJ093258011 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ093258011</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413155433.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/toxics11090788</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ093258011</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ2899b56652cf4522b025eebb2d247281</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Hojun Lee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Giant Duckweed (<i<Spirodela polyrhiza</i<) Root Growth as a Simple and Sensitive Indicator of Copper and Chromium Contamination</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Aquatic environment are often contaminated with heavy metals from various industrial sources. However, physicochemical techniques for pollutant detection are limited, thus prompting the need for additional bioassays. We investigated the use of greater duckweed (<i<Spirodela polyrhiza</i<) as a bioindicator of metal pollution. We exposed <i<S. polyrhiza</i< to four pollutants (namely, silver, cadmium, copper, and chromium) and assessed metal toxicity by measuring its frond area and the length of its regrown roots. The plant displayed significant differences in both frond size and root growth in response to the four metals. Silver was the most toxic (EC<sub<50</sub< = 23 µg L<sup<−1</sup<) while copper the least (EC<sub<50</sub< = 365–607 µg L<sup<−1</sup<). Direct comparisons of metal sensitivity and the reliability of the two endpoint assays showed that root growth was more sensitive (lower in terms of 50% effective concentration) to chromium, cadmium, and copper, and was more reliable (lower in terms of coefficient of variation) than those for frond area. Compared to conventional <i<Lemna</i<-based tests, the <i<S. polyrhiza</i< test is easier to perform (requiring only one 24-well plate, 3 mL of medium and a 72-h exposure). Moreover, it does not require livestock cultivation/maintenance, making it more suitable for repeated measurements. Measurements of <i<S. polyrhiza</i< root length may be suitable for assessment when copper and chromium in municipal and industrial wastewater exceed the environmentally permissible levels.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">duckweed</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">growth</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">metals</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">root regrowth length</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><i<Spirodela polyrhiza</i<</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jonas De Saeger</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sunwoo Bae</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mirae Kim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Stephen Depuydt</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Philippe M. Heynderickx</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Di Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Taejun Han</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jihae Park</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Toxics</subfield><subfield code="d">MDPI AG, 2014</subfield><subfield code="g">11(2023), 788, p 788</subfield><subfield code="w">(DE-627)768577497</subfield><subfield code="w">(DE-600)2733883-6</subfield><subfield code="x">23056304</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:788, p 788</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/toxics11090788</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/2899b56652cf4522b025eebb2d247281</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2305-6304/11/9/788</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2305-6304</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2023</subfield><subfield code="e">788, p 788</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Hojun Lee |
spellingShingle |
Hojun Lee misc TP1-1185 misc duckweed misc growth misc metals misc root regrowth length misc <i<Spirodela polyrhiza</i< misc Chemical technology Giant Duckweed (<i<Spirodela polyrhiza</i<) Root Growth as a Simple and Sensitive Indicator of Copper and Chromium Contamination |
authorStr |
Hojun Lee |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)768577497 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TP1-1185 |
illustrated |
Not Illustrated |
issn |
23056304 |
topic_title |
TP1-1185 Giant Duckweed (<i<Spirodela polyrhiza</i<) Root Growth as a Simple and Sensitive Indicator of Copper and Chromium Contamination duckweed growth metals root regrowth length <i<Spirodela polyrhiza</i< |
topic |
misc TP1-1185 misc duckweed misc growth misc metals misc root regrowth length misc <i<Spirodela polyrhiza</i< misc Chemical technology |
topic_unstemmed |
misc TP1-1185 misc duckweed misc growth misc metals misc root regrowth length misc <i<Spirodela polyrhiza</i< misc Chemical technology |
topic_browse |
misc TP1-1185 misc duckweed misc growth misc metals misc root regrowth length misc <i<Spirodela polyrhiza</i< misc Chemical technology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Toxics |
hierarchy_parent_id |
768577497 |
hierarchy_top_title |
Toxics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)768577497 (DE-600)2733883-6 |
title |
Giant Duckweed (<i<Spirodela polyrhiza</i<) Root Growth as a Simple and Sensitive Indicator of Copper and Chromium Contamination |
ctrlnum |
(DE-627)DOAJ093258011 (DE-599)DOAJ2899b56652cf4522b025eebb2d247281 |
title_full |
Giant Duckweed (<i<Spirodela polyrhiza</i<) Root Growth as a Simple and Sensitive Indicator of Copper and Chromium Contamination |
author_sort |
Hojun Lee |
journal |
Toxics |
journalStr |
Toxics |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Hojun Lee Jonas De Saeger Sunwoo Bae Mirae Kim Stephen Depuydt Philippe M. Heynderickx Di Wu Taejun Han Jihae Park |
container_volume |
11 |
class |
TP1-1185 |
format_se |
Elektronische Aufsätze |
author-letter |
Hojun Lee |
doi_str_mv |
10.3390/toxics11090788 |
author2-role |
verfasserin |
title_sort |
giant duckweed (<i<spirodela polyrhiza</i<) root growth as a simple and sensitive indicator of copper and chromium contamination |
callnumber |
TP1-1185 |
title_auth |
Giant Duckweed (<i<Spirodela polyrhiza</i<) Root Growth as a Simple and Sensitive Indicator of Copper and Chromium Contamination |
abstract |
Aquatic environment are often contaminated with heavy metals from various industrial sources. However, physicochemical techniques for pollutant detection are limited, thus prompting the need for additional bioassays. We investigated the use of greater duckweed (<i<Spirodela polyrhiza</i<) as a bioindicator of metal pollution. We exposed <i<S. polyrhiza</i< to four pollutants (namely, silver, cadmium, copper, and chromium) and assessed metal toxicity by measuring its frond area and the length of its regrown roots. The plant displayed significant differences in both frond size and root growth in response to the four metals. Silver was the most toxic (EC<sub<50</sub< = 23 µg L<sup<−1</sup<) while copper the least (EC<sub<50</sub< = 365–607 µg L<sup<−1</sup<). Direct comparisons of metal sensitivity and the reliability of the two endpoint assays showed that root growth was more sensitive (lower in terms of 50% effective concentration) to chromium, cadmium, and copper, and was more reliable (lower in terms of coefficient of variation) than those for frond area. Compared to conventional <i<Lemna</i<-based tests, the <i<S. polyrhiza</i< test is easier to perform (requiring only one 24-well plate, 3 mL of medium and a 72-h exposure). Moreover, it does not require livestock cultivation/maintenance, making it more suitable for repeated measurements. Measurements of <i<S. polyrhiza</i< root length may be suitable for assessment when copper and chromium in municipal and industrial wastewater exceed the environmentally permissible levels. |
abstractGer |
Aquatic environment are often contaminated with heavy metals from various industrial sources. However, physicochemical techniques for pollutant detection are limited, thus prompting the need for additional bioassays. We investigated the use of greater duckweed (<i<Spirodela polyrhiza</i<) as a bioindicator of metal pollution. We exposed <i<S. polyrhiza</i< to four pollutants (namely, silver, cadmium, copper, and chromium) and assessed metal toxicity by measuring its frond area and the length of its regrown roots. The plant displayed significant differences in both frond size and root growth in response to the four metals. Silver was the most toxic (EC<sub<50</sub< = 23 µg L<sup<−1</sup<) while copper the least (EC<sub<50</sub< = 365–607 µg L<sup<−1</sup<). Direct comparisons of metal sensitivity and the reliability of the two endpoint assays showed that root growth was more sensitive (lower in terms of 50% effective concentration) to chromium, cadmium, and copper, and was more reliable (lower in terms of coefficient of variation) than those for frond area. Compared to conventional <i<Lemna</i<-based tests, the <i<S. polyrhiza</i< test is easier to perform (requiring only one 24-well plate, 3 mL of medium and a 72-h exposure). Moreover, it does not require livestock cultivation/maintenance, making it more suitable for repeated measurements. Measurements of <i<S. polyrhiza</i< root length may be suitable for assessment when copper and chromium in municipal and industrial wastewater exceed the environmentally permissible levels. |
abstract_unstemmed |
Aquatic environment are often contaminated with heavy metals from various industrial sources. However, physicochemical techniques for pollutant detection are limited, thus prompting the need for additional bioassays. We investigated the use of greater duckweed (<i<Spirodela polyrhiza</i<) as a bioindicator of metal pollution. We exposed <i<S. polyrhiza</i< to four pollutants (namely, silver, cadmium, copper, and chromium) and assessed metal toxicity by measuring its frond area and the length of its regrown roots. The plant displayed significant differences in both frond size and root growth in response to the four metals. Silver was the most toxic (EC<sub<50</sub< = 23 µg L<sup<−1</sup<) while copper the least (EC<sub<50</sub< = 365–607 µg L<sup<−1</sup<). Direct comparisons of metal sensitivity and the reliability of the two endpoint assays showed that root growth was more sensitive (lower in terms of 50% effective concentration) to chromium, cadmium, and copper, and was more reliable (lower in terms of coefficient of variation) than those for frond area. Compared to conventional <i<Lemna</i<-based tests, the <i<S. polyrhiza</i< test is easier to perform (requiring only one 24-well plate, 3 mL of medium and a 72-h exposure). Moreover, it does not require livestock cultivation/maintenance, making it more suitable for repeated measurements. Measurements of <i<S. polyrhiza</i< root length may be suitable for assessment when copper and chromium in municipal and industrial wastewater exceed the environmentally permissible levels. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
788, p 788 |
title_short |
Giant Duckweed (<i<Spirodela polyrhiza</i<) Root Growth as a Simple and Sensitive Indicator of Copper and Chromium Contamination |
url |
https://doi.org/10.3390/toxics11090788 https://doaj.org/article/2899b56652cf4522b025eebb2d247281 https://www.mdpi.com/2305-6304/11/9/788 https://doaj.org/toc/2305-6304 |
remote_bool |
true |
author2 |
Jonas De Saeger Sunwoo Bae Mirae Kim Stephen Depuydt Philippe M. Heynderickx Di Wu Taejun Han Jihae Park |
author2Str |
Jonas De Saeger Sunwoo Bae Mirae Kim Stephen Depuydt Philippe M. Heynderickx Di Wu Taejun Han Jihae Park |
ppnlink |
768577497 |
callnumber-subject |
TP - Chemical Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/toxics11090788 |
callnumber-a |
TP1-1185 |
up_date |
2024-07-03T16:13:36.983Z |
_version_ |
1803575064773263360 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ093258011</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413155433.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/toxics11090788</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ093258011</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ2899b56652cf4522b025eebb2d247281</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Hojun Lee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Giant Duckweed (<i<Spirodela polyrhiza</i<) Root Growth as a Simple and Sensitive Indicator of Copper and Chromium Contamination</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Aquatic environment are often contaminated with heavy metals from various industrial sources. However, physicochemical techniques for pollutant detection are limited, thus prompting the need for additional bioassays. We investigated the use of greater duckweed (<i<Spirodela polyrhiza</i<) as a bioindicator of metal pollution. We exposed <i<S. polyrhiza</i< to four pollutants (namely, silver, cadmium, copper, and chromium) and assessed metal toxicity by measuring its frond area and the length of its regrown roots. The plant displayed significant differences in both frond size and root growth in response to the four metals. Silver was the most toxic (EC<sub<50</sub< = 23 µg L<sup<−1</sup<) while copper the least (EC<sub<50</sub< = 365–607 µg L<sup<−1</sup<). Direct comparisons of metal sensitivity and the reliability of the two endpoint assays showed that root growth was more sensitive (lower in terms of 50% effective concentration) to chromium, cadmium, and copper, and was more reliable (lower in terms of coefficient of variation) than those for frond area. Compared to conventional <i<Lemna</i<-based tests, the <i<S. polyrhiza</i< test is easier to perform (requiring only one 24-well plate, 3 mL of medium and a 72-h exposure). Moreover, it does not require livestock cultivation/maintenance, making it more suitable for repeated measurements. Measurements of <i<S. polyrhiza</i< root length may be suitable for assessment when copper and chromium in municipal and industrial wastewater exceed the environmentally permissible levels.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">duckweed</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">growth</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">metals</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">root regrowth length</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><i<Spirodela polyrhiza</i<</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jonas De Saeger</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sunwoo Bae</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mirae Kim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Stephen Depuydt</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Philippe M. Heynderickx</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Di Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Taejun Han</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jihae Park</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Toxics</subfield><subfield code="d">MDPI AG, 2014</subfield><subfield code="g">11(2023), 788, p 788</subfield><subfield code="w">(DE-627)768577497</subfield><subfield code="w">(DE-600)2733883-6</subfield><subfield code="x">23056304</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:788, p 788</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/toxics11090788</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/2899b56652cf4522b025eebb2d247281</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2305-6304/11/9/788</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2305-6304</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2023</subfield><subfield code="e">788, p 788</subfield></datafield></record></collection>
|
score |
7.399585 |