Antifungal effects of seven plant essential oils against Penicillium digitatum
Abstract Background Research interest in plant essential oils has increased significantly due to their natural properties and consumer demand for safer methods of food preservation. Plants produce large amounts of secondary metabolites, which have potential activity against fungal pathogens. This st...
Ausführliche Beschreibung
Autor*in: |
Lovemore Zulu [verfasserIn] Hongshan Gao [verfasserIn] Yijing Zhu [verfasserIn] Huiming Wu [verfasserIn] Yongjian Xie [verfasserIn] Xunyue Liu [verfasserIn] Haifeng Yao [verfasserIn] Qiong Rao [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Chemical and Biological Technologies in Agriculture - SpringerOpen, 2015, 10(2023), 1, Seite 12 |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2023 ; number:1 ; pages:12 |
Links: |
---|
DOI / URN: |
10.1186/s40538-023-00434-3 |
---|
Katalog-ID: |
DOAJ093304528 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ093304528 | ||
003 | DE-627 | ||
005 | 20240413004818.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s40538-023-00434-3 |2 doi | |
035 | |a (DE-627)DOAJ093304528 | ||
035 | |a (DE-599)DOAJ31984df1a01a4fa78bbce6b4b743e00a | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Lovemore Zulu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Antifungal effects of seven plant essential oils against Penicillium digitatum |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Background Research interest in plant essential oils has increased significantly due to their natural properties and consumer demand for safer methods of food preservation. Plants produce large amounts of secondary metabolites, which have potential activity against fungal pathogens. This study aimed at screening essential oils for their antifungal effects on citrus against Penicillium digitatum, morphological effect and finally determine which essential oils are the most effective. Results The EC50 of seven selected cinnamon (0.424 μL/mL), patchouli (0.513 μL/mL), vetiver (0.612 μL/mL), dill (1.597 μL/mL), origanum (1.971 μL/mL) and ylang (2.214 μL/mL) was determined. In addition, cinnamon substantially reduced sporulation (100%) followed by patchouli (86.02%), vetiver (82.73%), and chamomile (79.04%), respectively. Our GC–MS result determined variance in concentration of essential oils compound composition. The total compound composition in all seven essential oils < 1% was found to be 3 in cinnamon, 5 in dill, 10 in origanum, 13 in ylang, 11 in patchouli, 9 in chamomile and 16 in vetiver. Addition of essential oils significantly altered fungal morphology by scanning electron cryomicroscopy. Patchouli and origanum showed broken hyphae while there was an indication of severe deformation and collapse of spores in cinnamon and chamomile. Conclusion Based on our findings, we report that these essential oils could potentially be applicable in controlling P. digitatum with reduced concern for human health, environmental contamination and possibly replacement of synthetic treatments. Graphical abstract | ||
650 | 4 | |a Penicillium digitatum | |
650 | 4 | |a Essential oil | |
650 | 4 | |a Antifungal | |
650 | 4 | |a Sporulation | |
650 | 4 | |a Inhibition | |
650 | 4 | |a Cryo-SEM | |
653 | 0 | |a Agriculture | |
653 | 0 | |a S | |
700 | 0 | |a Hongshan Gao |e verfasserin |4 aut | |
700 | 0 | |a Yijing Zhu |e verfasserin |4 aut | |
700 | 0 | |a Huiming Wu |e verfasserin |4 aut | |
700 | 0 | |a Yongjian Xie |e verfasserin |4 aut | |
700 | 0 | |a Xunyue Liu |e verfasserin |4 aut | |
700 | 0 | |a Haifeng Yao |e verfasserin |4 aut | |
700 | 0 | |a Qiong Rao |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Chemical and Biological Technologies in Agriculture |d SpringerOpen, 2015 |g 10(2023), 1, Seite 12 |w (DE-627)78156820X |w (DE-600)2762782-2 |x 21965641 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2023 |g number:1 |g pages:12 |
856 | 4 | 0 | |u https://doi.org/10.1186/s40538-023-00434-3 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/31984df1a01a4fa78bbce6b4b743e00a |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1186/s40538-023-00434-3 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2196-5641 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2023 |e 1 |h 12 |
author_variant |
l z lz h g hg y z yz h w hw y x yx x l xl h y hy q r qr |
---|---|
matchkey_str |
article:21965641:2023----::niuglfetosvnlnesnilisgisp |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.1186/s40538-023-00434-3 doi (DE-627)DOAJ093304528 (DE-599)DOAJ31984df1a01a4fa78bbce6b4b743e00a DE-627 ger DE-627 rakwb eng Lovemore Zulu verfasserin aut Antifungal effects of seven plant essential oils against Penicillium digitatum 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background Research interest in plant essential oils has increased significantly due to their natural properties and consumer demand for safer methods of food preservation. Plants produce large amounts of secondary metabolites, which have potential activity against fungal pathogens. This study aimed at screening essential oils for their antifungal effects on citrus against Penicillium digitatum, morphological effect and finally determine which essential oils are the most effective. Results The EC50 of seven selected cinnamon (0.424 μL/mL), patchouli (0.513 μL/mL), vetiver (0.612 μL/mL), dill (1.597 μL/mL), origanum (1.971 μL/mL) and ylang (2.214 μL/mL) was determined. In addition, cinnamon substantially reduced sporulation (100%) followed by patchouli (86.02%), vetiver (82.73%), and chamomile (79.04%), respectively. Our GC–MS result determined variance in concentration of essential oils compound composition. The total compound composition in all seven essential oils < 1% was found to be 3 in cinnamon, 5 in dill, 10 in origanum, 13 in ylang, 11 in patchouli, 9 in chamomile and 16 in vetiver. Addition of essential oils significantly altered fungal morphology by scanning electron cryomicroscopy. Patchouli and origanum showed broken hyphae while there was an indication of severe deformation and collapse of spores in cinnamon and chamomile. Conclusion Based on our findings, we report that these essential oils could potentially be applicable in controlling P. digitatum with reduced concern for human health, environmental contamination and possibly replacement of synthetic treatments. Graphical abstract Penicillium digitatum Essential oil Antifungal Sporulation Inhibition Cryo-SEM Agriculture S Hongshan Gao verfasserin aut Yijing Zhu verfasserin aut Huiming Wu verfasserin aut Yongjian Xie verfasserin aut Xunyue Liu verfasserin aut Haifeng Yao verfasserin aut Qiong Rao verfasserin aut In Chemical and Biological Technologies in Agriculture SpringerOpen, 2015 10(2023), 1, Seite 12 (DE-627)78156820X (DE-600)2762782-2 21965641 nnns volume:10 year:2023 number:1 pages:12 https://doi.org/10.1186/s40538-023-00434-3 kostenfrei https://doaj.org/article/31984df1a01a4fa78bbce6b4b743e00a kostenfrei https://doi.org/10.1186/s40538-023-00434-3 kostenfrei https://doaj.org/toc/2196-5641 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2023 1 12 |
spelling |
10.1186/s40538-023-00434-3 doi (DE-627)DOAJ093304528 (DE-599)DOAJ31984df1a01a4fa78bbce6b4b743e00a DE-627 ger DE-627 rakwb eng Lovemore Zulu verfasserin aut Antifungal effects of seven plant essential oils against Penicillium digitatum 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background Research interest in plant essential oils has increased significantly due to their natural properties and consumer demand for safer methods of food preservation. Plants produce large amounts of secondary metabolites, which have potential activity against fungal pathogens. This study aimed at screening essential oils for their antifungal effects on citrus against Penicillium digitatum, morphological effect and finally determine which essential oils are the most effective. Results The EC50 of seven selected cinnamon (0.424 μL/mL), patchouli (0.513 μL/mL), vetiver (0.612 μL/mL), dill (1.597 μL/mL), origanum (1.971 μL/mL) and ylang (2.214 μL/mL) was determined. In addition, cinnamon substantially reduced sporulation (100%) followed by patchouli (86.02%), vetiver (82.73%), and chamomile (79.04%), respectively. Our GC–MS result determined variance in concentration of essential oils compound composition. The total compound composition in all seven essential oils < 1% was found to be 3 in cinnamon, 5 in dill, 10 in origanum, 13 in ylang, 11 in patchouli, 9 in chamomile and 16 in vetiver. Addition of essential oils significantly altered fungal morphology by scanning electron cryomicroscopy. Patchouli and origanum showed broken hyphae while there was an indication of severe deformation and collapse of spores in cinnamon and chamomile. Conclusion Based on our findings, we report that these essential oils could potentially be applicable in controlling P. digitatum with reduced concern for human health, environmental contamination and possibly replacement of synthetic treatments. Graphical abstract Penicillium digitatum Essential oil Antifungal Sporulation Inhibition Cryo-SEM Agriculture S Hongshan Gao verfasserin aut Yijing Zhu verfasserin aut Huiming Wu verfasserin aut Yongjian Xie verfasserin aut Xunyue Liu verfasserin aut Haifeng Yao verfasserin aut Qiong Rao verfasserin aut In Chemical and Biological Technologies in Agriculture SpringerOpen, 2015 10(2023), 1, Seite 12 (DE-627)78156820X (DE-600)2762782-2 21965641 nnns volume:10 year:2023 number:1 pages:12 https://doi.org/10.1186/s40538-023-00434-3 kostenfrei https://doaj.org/article/31984df1a01a4fa78bbce6b4b743e00a kostenfrei https://doi.org/10.1186/s40538-023-00434-3 kostenfrei https://doaj.org/toc/2196-5641 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2023 1 12 |
allfields_unstemmed |
10.1186/s40538-023-00434-3 doi (DE-627)DOAJ093304528 (DE-599)DOAJ31984df1a01a4fa78bbce6b4b743e00a DE-627 ger DE-627 rakwb eng Lovemore Zulu verfasserin aut Antifungal effects of seven plant essential oils against Penicillium digitatum 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background Research interest in plant essential oils has increased significantly due to their natural properties and consumer demand for safer methods of food preservation. Plants produce large amounts of secondary metabolites, which have potential activity against fungal pathogens. This study aimed at screening essential oils for their antifungal effects on citrus against Penicillium digitatum, morphological effect and finally determine which essential oils are the most effective. Results The EC50 of seven selected cinnamon (0.424 μL/mL), patchouli (0.513 μL/mL), vetiver (0.612 μL/mL), dill (1.597 μL/mL), origanum (1.971 μL/mL) and ylang (2.214 μL/mL) was determined. In addition, cinnamon substantially reduced sporulation (100%) followed by patchouli (86.02%), vetiver (82.73%), and chamomile (79.04%), respectively. Our GC–MS result determined variance in concentration of essential oils compound composition. The total compound composition in all seven essential oils < 1% was found to be 3 in cinnamon, 5 in dill, 10 in origanum, 13 in ylang, 11 in patchouli, 9 in chamomile and 16 in vetiver. Addition of essential oils significantly altered fungal morphology by scanning electron cryomicroscopy. Patchouli and origanum showed broken hyphae while there was an indication of severe deformation and collapse of spores in cinnamon and chamomile. Conclusion Based on our findings, we report that these essential oils could potentially be applicable in controlling P. digitatum with reduced concern for human health, environmental contamination and possibly replacement of synthetic treatments. Graphical abstract Penicillium digitatum Essential oil Antifungal Sporulation Inhibition Cryo-SEM Agriculture S Hongshan Gao verfasserin aut Yijing Zhu verfasserin aut Huiming Wu verfasserin aut Yongjian Xie verfasserin aut Xunyue Liu verfasserin aut Haifeng Yao verfasserin aut Qiong Rao verfasserin aut In Chemical and Biological Technologies in Agriculture SpringerOpen, 2015 10(2023), 1, Seite 12 (DE-627)78156820X (DE-600)2762782-2 21965641 nnns volume:10 year:2023 number:1 pages:12 https://doi.org/10.1186/s40538-023-00434-3 kostenfrei https://doaj.org/article/31984df1a01a4fa78bbce6b4b743e00a kostenfrei https://doi.org/10.1186/s40538-023-00434-3 kostenfrei https://doaj.org/toc/2196-5641 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2023 1 12 |
allfieldsGer |
10.1186/s40538-023-00434-3 doi (DE-627)DOAJ093304528 (DE-599)DOAJ31984df1a01a4fa78bbce6b4b743e00a DE-627 ger DE-627 rakwb eng Lovemore Zulu verfasserin aut Antifungal effects of seven plant essential oils against Penicillium digitatum 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background Research interest in plant essential oils has increased significantly due to their natural properties and consumer demand for safer methods of food preservation. Plants produce large amounts of secondary metabolites, which have potential activity against fungal pathogens. This study aimed at screening essential oils for their antifungal effects on citrus against Penicillium digitatum, morphological effect and finally determine which essential oils are the most effective. Results The EC50 of seven selected cinnamon (0.424 μL/mL), patchouli (0.513 μL/mL), vetiver (0.612 μL/mL), dill (1.597 μL/mL), origanum (1.971 μL/mL) and ylang (2.214 μL/mL) was determined. In addition, cinnamon substantially reduced sporulation (100%) followed by patchouli (86.02%), vetiver (82.73%), and chamomile (79.04%), respectively. Our GC–MS result determined variance in concentration of essential oils compound composition. The total compound composition in all seven essential oils < 1% was found to be 3 in cinnamon, 5 in dill, 10 in origanum, 13 in ylang, 11 in patchouli, 9 in chamomile and 16 in vetiver. Addition of essential oils significantly altered fungal morphology by scanning electron cryomicroscopy. Patchouli and origanum showed broken hyphae while there was an indication of severe deformation and collapse of spores in cinnamon and chamomile. Conclusion Based on our findings, we report that these essential oils could potentially be applicable in controlling P. digitatum with reduced concern for human health, environmental contamination and possibly replacement of synthetic treatments. Graphical abstract Penicillium digitatum Essential oil Antifungal Sporulation Inhibition Cryo-SEM Agriculture S Hongshan Gao verfasserin aut Yijing Zhu verfasserin aut Huiming Wu verfasserin aut Yongjian Xie verfasserin aut Xunyue Liu verfasserin aut Haifeng Yao verfasserin aut Qiong Rao verfasserin aut In Chemical and Biological Technologies in Agriculture SpringerOpen, 2015 10(2023), 1, Seite 12 (DE-627)78156820X (DE-600)2762782-2 21965641 nnns volume:10 year:2023 number:1 pages:12 https://doi.org/10.1186/s40538-023-00434-3 kostenfrei https://doaj.org/article/31984df1a01a4fa78bbce6b4b743e00a kostenfrei https://doi.org/10.1186/s40538-023-00434-3 kostenfrei https://doaj.org/toc/2196-5641 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2023 1 12 |
allfieldsSound |
10.1186/s40538-023-00434-3 doi (DE-627)DOAJ093304528 (DE-599)DOAJ31984df1a01a4fa78bbce6b4b743e00a DE-627 ger DE-627 rakwb eng Lovemore Zulu verfasserin aut Antifungal effects of seven plant essential oils against Penicillium digitatum 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background Research interest in plant essential oils has increased significantly due to their natural properties and consumer demand for safer methods of food preservation. Plants produce large amounts of secondary metabolites, which have potential activity against fungal pathogens. This study aimed at screening essential oils for their antifungal effects on citrus against Penicillium digitatum, morphological effect and finally determine which essential oils are the most effective. Results The EC50 of seven selected cinnamon (0.424 μL/mL), patchouli (0.513 μL/mL), vetiver (0.612 μL/mL), dill (1.597 μL/mL), origanum (1.971 μL/mL) and ylang (2.214 μL/mL) was determined. In addition, cinnamon substantially reduced sporulation (100%) followed by patchouli (86.02%), vetiver (82.73%), and chamomile (79.04%), respectively. Our GC–MS result determined variance in concentration of essential oils compound composition. The total compound composition in all seven essential oils < 1% was found to be 3 in cinnamon, 5 in dill, 10 in origanum, 13 in ylang, 11 in patchouli, 9 in chamomile and 16 in vetiver. Addition of essential oils significantly altered fungal morphology by scanning electron cryomicroscopy. Patchouli and origanum showed broken hyphae while there was an indication of severe deformation and collapse of spores in cinnamon and chamomile. Conclusion Based on our findings, we report that these essential oils could potentially be applicable in controlling P. digitatum with reduced concern for human health, environmental contamination and possibly replacement of synthetic treatments. Graphical abstract Penicillium digitatum Essential oil Antifungal Sporulation Inhibition Cryo-SEM Agriculture S Hongshan Gao verfasserin aut Yijing Zhu verfasserin aut Huiming Wu verfasserin aut Yongjian Xie verfasserin aut Xunyue Liu verfasserin aut Haifeng Yao verfasserin aut Qiong Rao verfasserin aut In Chemical and Biological Technologies in Agriculture SpringerOpen, 2015 10(2023), 1, Seite 12 (DE-627)78156820X (DE-600)2762782-2 21965641 nnns volume:10 year:2023 number:1 pages:12 https://doi.org/10.1186/s40538-023-00434-3 kostenfrei https://doaj.org/article/31984df1a01a4fa78bbce6b4b743e00a kostenfrei https://doi.org/10.1186/s40538-023-00434-3 kostenfrei https://doaj.org/toc/2196-5641 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2023 1 12 |
language |
English |
source |
In Chemical and Biological Technologies in Agriculture 10(2023), 1, Seite 12 volume:10 year:2023 number:1 pages:12 |
sourceStr |
In Chemical and Biological Technologies in Agriculture 10(2023), 1, Seite 12 volume:10 year:2023 number:1 pages:12 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Penicillium digitatum Essential oil Antifungal Sporulation Inhibition Cryo-SEM Agriculture S |
isfreeaccess_bool |
true |
container_title |
Chemical and Biological Technologies in Agriculture |
authorswithroles_txt_mv |
Lovemore Zulu @@aut@@ Hongshan Gao @@aut@@ Yijing Zhu @@aut@@ Huiming Wu @@aut@@ Yongjian Xie @@aut@@ Xunyue Liu @@aut@@ Haifeng Yao @@aut@@ Qiong Rao @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
78156820X |
id |
DOAJ093304528 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ093304528</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413004818.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s40538-023-00434-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ093304528</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ31984df1a01a4fa78bbce6b4b743e00a</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Lovemore Zulu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Antifungal effects of seven plant essential oils against Penicillium digitatum</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Background Research interest in plant essential oils has increased significantly due to their natural properties and consumer demand for safer methods of food preservation. Plants produce large amounts of secondary metabolites, which have potential activity against fungal pathogens. This study aimed at screening essential oils for their antifungal effects on citrus against Penicillium digitatum, morphological effect and finally determine which essential oils are the most effective. Results The EC50 of seven selected cinnamon (0.424 μL/mL), patchouli (0.513 μL/mL), vetiver (0.612 μL/mL), dill (1.597 μL/mL), origanum (1.971 μL/mL) and ylang (2.214 μL/mL) was determined. In addition, cinnamon substantially reduced sporulation (100%) followed by patchouli (86.02%), vetiver (82.73%), and chamomile (79.04%), respectively. Our GC–MS result determined variance in concentration of essential oils compound composition. The total compound composition in all seven essential oils < 1% was found to be 3 in cinnamon, 5 in dill, 10 in origanum, 13 in ylang, 11 in patchouli, 9 in chamomile and 16 in vetiver. Addition of essential oils significantly altered fungal morphology by scanning electron cryomicroscopy. Patchouli and origanum showed broken hyphae while there was an indication of severe deformation and collapse of spores in cinnamon and chamomile. Conclusion Based on our findings, we report that these essential oils could potentially be applicable in controlling P. digitatum with reduced concern for human health, environmental contamination and possibly replacement of synthetic treatments. Graphical abstract</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Penicillium digitatum</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Essential oil</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Antifungal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sporulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inhibition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cryo-SEM</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Agriculture</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">S</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hongshan Gao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yijing Zhu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Huiming Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yongjian Xie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xunyue Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haifeng Yao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qiong Rao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Chemical and Biological Technologies in Agriculture</subfield><subfield code="d">SpringerOpen, 2015</subfield><subfield code="g">10(2023), 1, Seite 12</subfield><subfield code="w">(DE-627)78156820X</subfield><subfield code="w">(DE-600)2762782-2</subfield><subfield code="x">21965641</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:12</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s40538-023-00434-3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/31984df1a01a4fa78bbce6b4b743e00a</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s40538-023-00434-3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2196-5641</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="h">12</subfield></datafield></record></collection>
|
author |
Lovemore Zulu |
spellingShingle |
Lovemore Zulu misc Penicillium digitatum misc Essential oil misc Antifungal misc Sporulation misc Inhibition misc Cryo-SEM misc Agriculture misc S Antifungal effects of seven plant essential oils against Penicillium digitatum |
authorStr |
Lovemore Zulu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)78156820X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
21965641 |
topic_title |
Antifungal effects of seven plant essential oils against Penicillium digitatum Penicillium digitatum Essential oil Antifungal Sporulation Inhibition Cryo-SEM |
topic |
misc Penicillium digitatum misc Essential oil misc Antifungal misc Sporulation misc Inhibition misc Cryo-SEM misc Agriculture misc S |
topic_unstemmed |
misc Penicillium digitatum misc Essential oil misc Antifungal misc Sporulation misc Inhibition misc Cryo-SEM misc Agriculture misc S |
topic_browse |
misc Penicillium digitatum misc Essential oil misc Antifungal misc Sporulation misc Inhibition misc Cryo-SEM misc Agriculture misc S |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Chemical and Biological Technologies in Agriculture |
hierarchy_parent_id |
78156820X |
hierarchy_top_title |
Chemical and Biological Technologies in Agriculture |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)78156820X (DE-600)2762782-2 |
title |
Antifungal effects of seven plant essential oils against Penicillium digitatum |
ctrlnum |
(DE-627)DOAJ093304528 (DE-599)DOAJ31984df1a01a4fa78bbce6b4b743e00a |
title_full |
Antifungal effects of seven plant essential oils against Penicillium digitatum |
author_sort |
Lovemore Zulu |
journal |
Chemical and Biological Technologies in Agriculture |
journalStr |
Chemical and Biological Technologies in Agriculture |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
container_start_page |
12 |
author_browse |
Lovemore Zulu Hongshan Gao Yijing Zhu Huiming Wu Yongjian Xie Xunyue Liu Haifeng Yao Qiong Rao |
container_volume |
10 |
format_se |
Elektronische Aufsätze |
author-letter |
Lovemore Zulu |
doi_str_mv |
10.1186/s40538-023-00434-3 |
author2-role |
verfasserin |
title_sort |
antifungal effects of seven plant essential oils against penicillium digitatum |
title_auth |
Antifungal effects of seven plant essential oils against Penicillium digitatum |
abstract |
Abstract Background Research interest in plant essential oils has increased significantly due to their natural properties and consumer demand for safer methods of food preservation. Plants produce large amounts of secondary metabolites, which have potential activity against fungal pathogens. This study aimed at screening essential oils for their antifungal effects on citrus against Penicillium digitatum, morphological effect and finally determine which essential oils are the most effective. Results The EC50 of seven selected cinnamon (0.424 μL/mL), patchouli (0.513 μL/mL), vetiver (0.612 μL/mL), dill (1.597 μL/mL), origanum (1.971 μL/mL) and ylang (2.214 μL/mL) was determined. In addition, cinnamon substantially reduced sporulation (100%) followed by patchouli (86.02%), vetiver (82.73%), and chamomile (79.04%), respectively. Our GC–MS result determined variance in concentration of essential oils compound composition. The total compound composition in all seven essential oils < 1% was found to be 3 in cinnamon, 5 in dill, 10 in origanum, 13 in ylang, 11 in patchouli, 9 in chamomile and 16 in vetiver. Addition of essential oils significantly altered fungal morphology by scanning electron cryomicroscopy. Patchouli and origanum showed broken hyphae while there was an indication of severe deformation and collapse of spores in cinnamon and chamomile. Conclusion Based on our findings, we report that these essential oils could potentially be applicable in controlling P. digitatum with reduced concern for human health, environmental contamination and possibly replacement of synthetic treatments. Graphical abstract |
abstractGer |
Abstract Background Research interest in plant essential oils has increased significantly due to their natural properties and consumer demand for safer methods of food preservation. Plants produce large amounts of secondary metabolites, which have potential activity against fungal pathogens. This study aimed at screening essential oils for their antifungal effects on citrus against Penicillium digitatum, morphological effect and finally determine which essential oils are the most effective. Results The EC50 of seven selected cinnamon (0.424 μL/mL), patchouli (0.513 μL/mL), vetiver (0.612 μL/mL), dill (1.597 μL/mL), origanum (1.971 μL/mL) and ylang (2.214 μL/mL) was determined. In addition, cinnamon substantially reduced sporulation (100%) followed by patchouli (86.02%), vetiver (82.73%), and chamomile (79.04%), respectively. Our GC–MS result determined variance in concentration of essential oils compound composition. The total compound composition in all seven essential oils < 1% was found to be 3 in cinnamon, 5 in dill, 10 in origanum, 13 in ylang, 11 in patchouli, 9 in chamomile and 16 in vetiver. Addition of essential oils significantly altered fungal morphology by scanning electron cryomicroscopy. Patchouli and origanum showed broken hyphae while there was an indication of severe deformation and collapse of spores in cinnamon and chamomile. Conclusion Based on our findings, we report that these essential oils could potentially be applicable in controlling P. digitatum with reduced concern for human health, environmental contamination and possibly replacement of synthetic treatments. Graphical abstract |
abstract_unstemmed |
Abstract Background Research interest in plant essential oils has increased significantly due to their natural properties and consumer demand for safer methods of food preservation. Plants produce large amounts of secondary metabolites, which have potential activity against fungal pathogens. This study aimed at screening essential oils for their antifungal effects on citrus against Penicillium digitatum, morphological effect and finally determine which essential oils are the most effective. Results The EC50 of seven selected cinnamon (0.424 μL/mL), patchouli (0.513 μL/mL), vetiver (0.612 μL/mL), dill (1.597 μL/mL), origanum (1.971 μL/mL) and ylang (2.214 μL/mL) was determined. In addition, cinnamon substantially reduced sporulation (100%) followed by patchouli (86.02%), vetiver (82.73%), and chamomile (79.04%), respectively. Our GC–MS result determined variance in concentration of essential oils compound composition. The total compound composition in all seven essential oils < 1% was found to be 3 in cinnamon, 5 in dill, 10 in origanum, 13 in ylang, 11 in patchouli, 9 in chamomile and 16 in vetiver. Addition of essential oils significantly altered fungal morphology by scanning electron cryomicroscopy. Patchouli and origanum showed broken hyphae while there was an indication of severe deformation and collapse of spores in cinnamon and chamomile. Conclusion Based on our findings, we report that these essential oils could potentially be applicable in controlling P. digitatum with reduced concern for human health, environmental contamination and possibly replacement of synthetic treatments. Graphical abstract |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Antifungal effects of seven plant essential oils against Penicillium digitatum |
url |
https://doi.org/10.1186/s40538-023-00434-3 https://doaj.org/article/31984df1a01a4fa78bbce6b4b743e00a https://doaj.org/toc/2196-5641 |
remote_bool |
true |
author2 |
Hongshan Gao Yijing Zhu Huiming Wu Yongjian Xie Xunyue Liu Haifeng Yao Qiong Rao |
author2Str |
Hongshan Gao Yijing Zhu Huiming Wu Yongjian Xie Xunyue Liu Haifeng Yao Qiong Rao |
ppnlink |
78156820X |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s40538-023-00434-3 |
up_date |
2024-07-03T16:30:37.312Z |
_version_ |
1803576134666813440 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ093304528</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413004818.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s40538-023-00434-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ093304528</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ31984df1a01a4fa78bbce6b4b743e00a</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Lovemore Zulu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Antifungal effects of seven plant essential oils against Penicillium digitatum</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Background Research interest in plant essential oils has increased significantly due to their natural properties and consumer demand for safer methods of food preservation. Plants produce large amounts of secondary metabolites, which have potential activity against fungal pathogens. This study aimed at screening essential oils for their antifungal effects on citrus against Penicillium digitatum, morphological effect and finally determine which essential oils are the most effective. Results The EC50 of seven selected cinnamon (0.424 μL/mL), patchouli (0.513 μL/mL), vetiver (0.612 μL/mL), dill (1.597 μL/mL), origanum (1.971 μL/mL) and ylang (2.214 μL/mL) was determined. In addition, cinnamon substantially reduced sporulation (100%) followed by patchouli (86.02%), vetiver (82.73%), and chamomile (79.04%), respectively. Our GC–MS result determined variance in concentration of essential oils compound composition. The total compound composition in all seven essential oils < 1% was found to be 3 in cinnamon, 5 in dill, 10 in origanum, 13 in ylang, 11 in patchouli, 9 in chamomile and 16 in vetiver. Addition of essential oils significantly altered fungal morphology by scanning electron cryomicroscopy. Patchouli and origanum showed broken hyphae while there was an indication of severe deformation and collapse of spores in cinnamon and chamomile. Conclusion Based on our findings, we report that these essential oils could potentially be applicable in controlling P. digitatum with reduced concern for human health, environmental contamination and possibly replacement of synthetic treatments. Graphical abstract</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Penicillium digitatum</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Essential oil</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Antifungal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sporulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inhibition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cryo-SEM</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Agriculture</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">S</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hongshan Gao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yijing Zhu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Huiming Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yongjian Xie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xunyue Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haifeng Yao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qiong Rao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Chemical and Biological Technologies in Agriculture</subfield><subfield code="d">SpringerOpen, 2015</subfield><subfield code="g">10(2023), 1, Seite 12</subfield><subfield code="w">(DE-627)78156820X</subfield><subfield code="w">(DE-600)2762782-2</subfield><subfield code="x">21965641</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:12</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s40538-023-00434-3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/31984df1a01a4fa78bbce6b4b743e00a</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s40538-023-00434-3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2196-5641</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="h">12</subfield></datafield></record></collection>
|
score |
7.4004107 |