Strongly Peraluminous Highly Fractionated I-Type Granite from Bangong–Nujiang Metallogenic Belt, Tibet: Implications for Continental Evolution and Evaluation of Economic Potentiality
The research on highly fractionated granite has significant implications for both the evolution and compositional maturation of the continental crust and metallogenic exploration. As a means of further understanding crustal evolution and promoting ore exploration in the Bangong–Nujiang metallogenic...
Ausführliche Beschreibung
Autor*in: |
Nan Wang [verfasserIn] Zhibo Liu [verfasserIn] Min Lei [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Minerals - MDPI AG, 2012, 13(2023), 1152, p 1152 |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2023 ; number:1152, p 1152 |
Links: |
---|
DOI / URN: |
10.3390/min13091152 |
---|
Katalog-ID: |
DOAJ093347332 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ093347332 | ||
003 | DE-627 | ||
005 | 20240413211744.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/min13091152 |2 doi | |
035 | |a (DE-627)DOAJ093347332 | ||
035 | |a (DE-599)DOAJc2fc499ba9a0449e8fda8cc63eccaf40 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QE351-399.2 | |
100 | 0 | |a Nan Wang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Strongly Peraluminous Highly Fractionated I-Type Granite from Bangong–Nujiang Metallogenic Belt, Tibet: Implications for Continental Evolution and Evaluation of Economic Potentiality |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The research on highly fractionated granite has significant implications for both the evolution and compositional maturation of the continental crust and metallogenic exploration. As a means of further understanding crustal evolution and promoting ore exploration in the Bangong–Nujiang metallogenic belt (BNMB), we present the petrography, zircon LA–ICP–MS U–Pb age, and Hf isotopic data, along with the whole-rock geochemical and Sr–Nd isotopic composition on Kese highly fractionated granite in the Baingoin area within the BNMB, central Tibet. The results show that Kese granite possesses a zircon U–Pb age of 127.8 ± 1.7 Ma and a relative enrichment in zircon Hf isotopic composition (−12.8~+0.3) with a two-stage Hf model age of 1.2~2.0 Ga. This granite belongs to the high-K calc-alkaline series, characterized by a strongly peraluminous feature, and is enriched in large-ion lithophile elements (LILEs) and Nd isotopes (−7.86~−7.74). The granite was likely to have been derived from the mixed melts derived from 40%~45% juvenile basaltic lower crust, 15%~20% ancient lower, and 40% middle–upper, following intense fractional crystallization processes involving amphibole, biotite, plagioclase, and some accessory minerals during the magma’s evolution. We infer that Kese highly fractionated granite can be formed from the continental collision of the Lhasa–Qiangtang terranes initiated before 128 Ma. The reworking of pre-existing juvenile and ancient crustal materials drove the composition of the northern Lhasa terrane to that of a mature continental crust. Moreover, the distinctive geochemical features have shown that the high degree of differentiation led to intense magmatic–hydrothermal interaction during the formation of Kese granite. A comparison of the geochemical characteristics of mineralized and barren granites suggests that the highly fractionated granites in Baingoin from the BNMB have a high economic potential and are suitable for preliminary exploration of Sn–W-(U) deposits. | ||
650 | 4 | |a economic potentiality | |
650 | 4 | |a reworking of continental crust | |
650 | 4 | |a petrogenesis | |
650 | 4 | |a highly fractionated granite | |
650 | 4 | |a Bangong–Nujiang metallogenic belt | |
653 | 0 | |a Mineralogy | |
700 | 0 | |a Zhibo Liu |e verfasserin |4 aut | |
700 | 0 | |a Min Lei |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Minerals |d MDPI AG, 2012 |g 13(2023), 1152, p 1152 |w (DE-627)689132069 |w (DE-600)2655947-X |x 2075163X |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2023 |g number:1152, p 1152 |
856 | 4 | 0 | |u https://doi.org/10.3390/min13091152 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/c2fc499ba9a0449e8fda8cc63eccaf40 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2075-163X/13/9/1152 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2075-163X |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 13 |j 2023 |e 1152, p 1152 |
author_variant |
n w nw z l zl m l ml |
---|---|
matchkey_str |
article:2075163X:2023----::togyeauiosihyrcintdtpgaiermagnnjagealgncetieipiainfrotnnae |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
QE |
publishDate |
2023 |
allfields |
10.3390/min13091152 doi (DE-627)DOAJ093347332 (DE-599)DOAJc2fc499ba9a0449e8fda8cc63eccaf40 DE-627 ger DE-627 rakwb eng QE351-399.2 Nan Wang verfasserin aut Strongly Peraluminous Highly Fractionated I-Type Granite from Bangong–Nujiang Metallogenic Belt, Tibet: Implications for Continental Evolution and Evaluation of Economic Potentiality 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The research on highly fractionated granite has significant implications for both the evolution and compositional maturation of the continental crust and metallogenic exploration. As a means of further understanding crustal evolution and promoting ore exploration in the Bangong–Nujiang metallogenic belt (BNMB), we present the petrography, zircon LA–ICP–MS U–Pb age, and Hf isotopic data, along with the whole-rock geochemical and Sr–Nd isotopic composition on Kese highly fractionated granite in the Baingoin area within the BNMB, central Tibet. The results show that Kese granite possesses a zircon U–Pb age of 127.8 ± 1.7 Ma and a relative enrichment in zircon Hf isotopic composition (−12.8~+0.3) with a two-stage Hf model age of 1.2~2.0 Ga. This granite belongs to the high-K calc-alkaline series, characterized by a strongly peraluminous feature, and is enriched in large-ion lithophile elements (LILEs) and Nd isotopes (−7.86~−7.74). The granite was likely to have been derived from the mixed melts derived from 40%~45% juvenile basaltic lower crust, 15%~20% ancient lower, and 40% middle–upper, following intense fractional crystallization processes involving amphibole, biotite, plagioclase, and some accessory minerals during the magma’s evolution. We infer that Kese highly fractionated granite can be formed from the continental collision of the Lhasa–Qiangtang terranes initiated before 128 Ma. The reworking of pre-existing juvenile and ancient crustal materials drove the composition of the northern Lhasa terrane to that of a mature continental crust. Moreover, the distinctive geochemical features have shown that the high degree of differentiation led to intense magmatic–hydrothermal interaction during the formation of Kese granite. A comparison of the geochemical characteristics of mineralized and barren granites suggests that the highly fractionated granites in Baingoin from the BNMB have a high economic potential and are suitable for preliminary exploration of Sn–W-(U) deposits. economic potentiality reworking of continental crust petrogenesis highly fractionated granite Bangong–Nujiang metallogenic belt Mineralogy Zhibo Liu verfasserin aut Min Lei verfasserin aut In Minerals MDPI AG, 2012 13(2023), 1152, p 1152 (DE-627)689132069 (DE-600)2655947-X 2075163X nnns volume:13 year:2023 number:1152, p 1152 https://doi.org/10.3390/min13091152 kostenfrei https://doaj.org/article/c2fc499ba9a0449e8fda8cc63eccaf40 kostenfrei https://www.mdpi.com/2075-163X/13/9/1152 kostenfrei https://doaj.org/toc/2075-163X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 1152, p 1152 |
spelling |
10.3390/min13091152 doi (DE-627)DOAJ093347332 (DE-599)DOAJc2fc499ba9a0449e8fda8cc63eccaf40 DE-627 ger DE-627 rakwb eng QE351-399.2 Nan Wang verfasserin aut Strongly Peraluminous Highly Fractionated I-Type Granite from Bangong–Nujiang Metallogenic Belt, Tibet: Implications for Continental Evolution and Evaluation of Economic Potentiality 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The research on highly fractionated granite has significant implications for both the evolution and compositional maturation of the continental crust and metallogenic exploration. As a means of further understanding crustal evolution and promoting ore exploration in the Bangong–Nujiang metallogenic belt (BNMB), we present the petrography, zircon LA–ICP–MS U–Pb age, and Hf isotopic data, along with the whole-rock geochemical and Sr–Nd isotopic composition on Kese highly fractionated granite in the Baingoin area within the BNMB, central Tibet. The results show that Kese granite possesses a zircon U–Pb age of 127.8 ± 1.7 Ma and a relative enrichment in zircon Hf isotopic composition (−12.8~+0.3) with a two-stage Hf model age of 1.2~2.0 Ga. This granite belongs to the high-K calc-alkaline series, characterized by a strongly peraluminous feature, and is enriched in large-ion lithophile elements (LILEs) and Nd isotopes (−7.86~−7.74). The granite was likely to have been derived from the mixed melts derived from 40%~45% juvenile basaltic lower crust, 15%~20% ancient lower, and 40% middle–upper, following intense fractional crystallization processes involving amphibole, biotite, plagioclase, and some accessory minerals during the magma’s evolution. We infer that Kese highly fractionated granite can be formed from the continental collision of the Lhasa–Qiangtang terranes initiated before 128 Ma. The reworking of pre-existing juvenile and ancient crustal materials drove the composition of the northern Lhasa terrane to that of a mature continental crust. Moreover, the distinctive geochemical features have shown that the high degree of differentiation led to intense magmatic–hydrothermal interaction during the formation of Kese granite. A comparison of the geochemical characteristics of mineralized and barren granites suggests that the highly fractionated granites in Baingoin from the BNMB have a high economic potential and are suitable for preliminary exploration of Sn–W-(U) deposits. economic potentiality reworking of continental crust petrogenesis highly fractionated granite Bangong–Nujiang metallogenic belt Mineralogy Zhibo Liu verfasserin aut Min Lei verfasserin aut In Minerals MDPI AG, 2012 13(2023), 1152, p 1152 (DE-627)689132069 (DE-600)2655947-X 2075163X nnns volume:13 year:2023 number:1152, p 1152 https://doi.org/10.3390/min13091152 kostenfrei https://doaj.org/article/c2fc499ba9a0449e8fda8cc63eccaf40 kostenfrei https://www.mdpi.com/2075-163X/13/9/1152 kostenfrei https://doaj.org/toc/2075-163X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 1152, p 1152 |
allfields_unstemmed |
10.3390/min13091152 doi (DE-627)DOAJ093347332 (DE-599)DOAJc2fc499ba9a0449e8fda8cc63eccaf40 DE-627 ger DE-627 rakwb eng QE351-399.2 Nan Wang verfasserin aut Strongly Peraluminous Highly Fractionated I-Type Granite from Bangong–Nujiang Metallogenic Belt, Tibet: Implications for Continental Evolution and Evaluation of Economic Potentiality 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The research on highly fractionated granite has significant implications for both the evolution and compositional maturation of the continental crust and metallogenic exploration. As a means of further understanding crustal evolution and promoting ore exploration in the Bangong–Nujiang metallogenic belt (BNMB), we present the petrography, zircon LA–ICP–MS U–Pb age, and Hf isotopic data, along with the whole-rock geochemical and Sr–Nd isotopic composition on Kese highly fractionated granite in the Baingoin area within the BNMB, central Tibet. The results show that Kese granite possesses a zircon U–Pb age of 127.8 ± 1.7 Ma and a relative enrichment in zircon Hf isotopic composition (−12.8~+0.3) with a two-stage Hf model age of 1.2~2.0 Ga. This granite belongs to the high-K calc-alkaline series, characterized by a strongly peraluminous feature, and is enriched in large-ion lithophile elements (LILEs) and Nd isotopes (−7.86~−7.74). The granite was likely to have been derived from the mixed melts derived from 40%~45% juvenile basaltic lower crust, 15%~20% ancient lower, and 40% middle–upper, following intense fractional crystallization processes involving amphibole, biotite, plagioclase, and some accessory minerals during the magma’s evolution. We infer that Kese highly fractionated granite can be formed from the continental collision of the Lhasa–Qiangtang terranes initiated before 128 Ma. The reworking of pre-existing juvenile and ancient crustal materials drove the composition of the northern Lhasa terrane to that of a mature continental crust. Moreover, the distinctive geochemical features have shown that the high degree of differentiation led to intense magmatic–hydrothermal interaction during the formation of Kese granite. A comparison of the geochemical characteristics of mineralized and barren granites suggests that the highly fractionated granites in Baingoin from the BNMB have a high economic potential and are suitable for preliminary exploration of Sn–W-(U) deposits. economic potentiality reworking of continental crust petrogenesis highly fractionated granite Bangong–Nujiang metallogenic belt Mineralogy Zhibo Liu verfasserin aut Min Lei verfasserin aut In Minerals MDPI AG, 2012 13(2023), 1152, p 1152 (DE-627)689132069 (DE-600)2655947-X 2075163X nnns volume:13 year:2023 number:1152, p 1152 https://doi.org/10.3390/min13091152 kostenfrei https://doaj.org/article/c2fc499ba9a0449e8fda8cc63eccaf40 kostenfrei https://www.mdpi.com/2075-163X/13/9/1152 kostenfrei https://doaj.org/toc/2075-163X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 1152, p 1152 |
allfieldsGer |
10.3390/min13091152 doi (DE-627)DOAJ093347332 (DE-599)DOAJc2fc499ba9a0449e8fda8cc63eccaf40 DE-627 ger DE-627 rakwb eng QE351-399.2 Nan Wang verfasserin aut Strongly Peraluminous Highly Fractionated I-Type Granite from Bangong–Nujiang Metallogenic Belt, Tibet: Implications for Continental Evolution and Evaluation of Economic Potentiality 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The research on highly fractionated granite has significant implications for both the evolution and compositional maturation of the continental crust and metallogenic exploration. As a means of further understanding crustal evolution and promoting ore exploration in the Bangong–Nujiang metallogenic belt (BNMB), we present the petrography, zircon LA–ICP–MS U–Pb age, and Hf isotopic data, along with the whole-rock geochemical and Sr–Nd isotopic composition on Kese highly fractionated granite in the Baingoin area within the BNMB, central Tibet. The results show that Kese granite possesses a zircon U–Pb age of 127.8 ± 1.7 Ma and a relative enrichment in zircon Hf isotopic composition (−12.8~+0.3) with a two-stage Hf model age of 1.2~2.0 Ga. This granite belongs to the high-K calc-alkaline series, characterized by a strongly peraluminous feature, and is enriched in large-ion lithophile elements (LILEs) and Nd isotopes (−7.86~−7.74). The granite was likely to have been derived from the mixed melts derived from 40%~45% juvenile basaltic lower crust, 15%~20% ancient lower, and 40% middle–upper, following intense fractional crystallization processes involving amphibole, biotite, plagioclase, and some accessory minerals during the magma’s evolution. We infer that Kese highly fractionated granite can be formed from the continental collision of the Lhasa–Qiangtang terranes initiated before 128 Ma. The reworking of pre-existing juvenile and ancient crustal materials drove the composition of the northern Lhasa terrane to that of a mature continental crust. Moreover, the distinctive geochemical features have shown that the high degree of differentiation led to intense magmatic–hydrothermal interaction during the formation of Kese granite. A comparison of the geochemical characteristics of mineralized and barren granites suggests that the highly fractionated granites in Baingoin from the BNMB have a high economic potential and are suitable for preliminary exploration of Sn–W-(U) deposits. economic potentiality reworking of continental crust petrogenesis highly fractionated granite Bangong–Nujiang metallogenic belt Mineralogy Zhibo Liu verfasserin aut Min Lei verfasserin aut In Minerals MDPI AG, 2012 13(2023), 1152, p 1152 (DE-627)689132069 (DE-600)2655947-X 2075163X nnns volume:13 year:2023 number:1152, p 1152 https://doi.org/10.3390/min13091152 kostenfrei https://doaj.org/article/c2fc499ba9a0449e8fda8cc63eccaf40 kostenfrei https://www.mdpi.com/2075-163X/13/9/1152 kostenfrei https://doaj.org/toc/2075-163X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 1152, p 1152 |
allfieldsSound |
10.3390/min13091152 doi (DE-627)DOAJ093347332 (DE-599)DOAJc2fc499ba9a0449e8fda8cc63eccaf40 DE-627 ger DE-627 rakwb eng QE351-399.2 Nan Wang verfasserin aut Strongly Peraluminous Highly Fractionated I-Type Granite from Bangong–Nujiang Metallogenic Belt, Tibet: Implications for Continental Evolution and Evaluation of Economic Potentiality 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The research on highly fractionated granite has significant implications for both the evolution and compositional maturation of the continental crust and metallogenic exploration. As a means of further understanding crustal evolution and promoting ore exploration in the Bangong–Nujiang metallogenic belt (BNMB), we present the petrography, zircon LA–ICP–MS U–Pb age, and Hf isotopic data, along with the whole-rock geochemical and Sr–Nd isotopic composition on Kese highly fractionated granite in the Baingoin area within the BNMB, central Tibet. The results show that Kese granite possesses a zircon U–Pb age of 127.8 ± 1.7 Ma and a relative enrichment in zircon Hf isotopic composition (−12.8~+0.3) with a two-stage Hf model age of 1.2~2.0 Ga. This granite belongs to the high-K calc-alkaline series, characterized by a strongly peraluminous feature, and is enriched in large-ion lithophile elements (LILEs) and Nd isotopes (−7.86~−7.74). The granite was likely to have been derived from the mixed melts derived from 40%~45% juvenile basaltic lower crust, 15%~20% ancient lower, and 40% middle–upper, following intense fractional crystallization processes involving amphibole, biotite, plagioclase, and some accessory minerals during the magma’s evolution. We infer that Kese highly fractionated granite can be formed from the continental collision of the Lhasa–Qiangtang terranes initiated before 128 Ma. The reworking of pre-existing juvenile and ancient crustal materials drove the composition of the northern Lhasa terrane to that of a mature continental crust. Moreover, the distinctive geochemical features have shown that the high degree of differentiation led to intense magmatic–hydrothermal interaction during the formation of Kese granite. A comparison of the geochemical characteristics of mineralized and barren granites suggests that the highly fractionated granites in Baingoin from the BNMB have a high economic potential and are suitable for preliminary exploration of Sn–W-(U) deposits. economic potentiality reworking of continental crust petrogenesis highly fractionated granite Bangong–Nujiang metallogenic belt Mineralogy Zhibo Liu verfasserin aut Min Lei verfasserin aut In Minerals MDPI AG, 2012 13(2023), 1152, p 1152 (DE-627)689132069 (DE-600)2655947-X 2075163X nnns volume:13 year:2023 number:1152, p 1152 https://doi.org/10.3390/min13091152 kostenfrei https://doaj.org/article/c2fc499ba9a0449e8fda8cc63eccaf40 kostenfrei https://www.mdpi.com/2075-163X/13/9/1152 kostenfrei https://doaj.org/toc/2075-163X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 1152, p 1152 |
language |
English |
source |
In Minerals 13(2023), 1152, p 1152 volume:13 year:2023 number:1152, p 1152 |
sourceStr |
In Minerals 13(2023), 1152, p 1152 volume:13 year:2023 number:1152, p 1152 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
economic potentiality reworking of continental crust petrogenesis highly fractionated granite Bangong–Nujiang metallogenic belt Mineralogy |
isfreeaccess_bool |
true |
container_title |
Minerals |
authorswithroles_txt_mv |
Nan Wang @@aut@@ Zhibo Liu @@aut@@ Min Lei @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
689132069 |
id |
DOAJ093347332 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ093347332</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413211744.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/min13091152</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ093347332</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJc2fc499ba9a0449e8fda8cc63eccaf40</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QE351-399.2</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Nan Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Strongly Peraluminous Highly Fractionated I-Type Granite from Bangong–Nujiang Metallogenic Belt, Tibet: Implications for Continental Evolution and Evaluation of Economic Potentiality</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The research on highly fractionated granite has significant implications for both the evolution and compositional maturation of the continental crust and metallogenic exploration. As a means of further understanding crustal evolution and promoting ore exploration in the Bangong–Nujiang metallogenic belt (BNMB), we present the petrography, zircon LA–ICP–MS U–Pb age, and Hf isotopic data, along with the whole-rock geochemical and Sr–Nd isotopic composition on Kese highly fractionated granite in the Baingoin area within the BNMB, central Tibet. The results show that Kese granite possesses a zircon U–Pb age of 127.8 ± 1.7 Ma and a relative enrichment in zircon Hf isotopic composition (−12.8~+0.3) with a two-stage Hf model age of 1.2~2.0 Ga. This granite belongs to the high-K calc-alkaline series, characterized by a strongly peraluminous feature, and is enriched in large-ion lithophile elements (LILEs) and Nd isotopes (−7.86~−7.74). The granite was likely to have been derived from the mixed melts derived from 40%~45% juvenile basaltic lower crust, 15%~20% ancient lower, and 40% middle–upper, following intense fractional crystallization processes involving amphibole, biotite, plagioclase, and some accessory minerals during the magma’s evolution. We infer that Kese highly fractionated granite can be formed from the continental collision of the Lhasa–Qiangtang terranes initiated before 128 Ma. The reworking of pre-existing juvenile and ancient crustal materials drove the composition of the northern Lhasa terrane to that of a mature continental crust. Moreover, the distinctive geochemical features have shown that the high degree of differentiation led to intense magmatic–hydrothermal interaction during the formation of Kese granite. A comparison of the geochemical characteristics of mineralized and barren granites suggests that the highly fractionated granites in Baingoin from the BNMB have a high economic potential and are suitable for preliminary exploration of Sn–W-(U) deposits.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">economic potentiality</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">reworking of continental crust</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">petrogenesis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">highly fractionated granite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bangong–Nujiang metallogenic belt</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mineralogy</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhibo Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Min Lei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Minerals</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">13(2023), 1152, p 1152</subfield><subfield code="w">(DE-627)689132069</subfield><subfield code="w">(DE-600)2655947-X</subfield><subfield code="x">2075163X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1152, p 1152</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/min13091152</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/c2fc499ba9a0449e8fda8cc63eccaf40</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2075-163X/13/9/1152</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2075-163X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2023</subfield><subfield code="e">1152, p 1152</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Nan Wang |
spellingShingle |
Nan Wang misc QE351-399.2 misc economic potentiality misc reworking of continental crust misc petrogenesis misc highly fractionated granite misc Bangong–Nujiang metallogenic belt misc Mineralogy Strongly Peraluminous Highly Fractionated I-Type Granite from Bangong–Nujiang Metallogenic Belt, Tibet: Implications for Continental Evolution and Evaluation of Economic Potentiality |
authorStr |
Nan Wang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)689132069 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QE351-399 |
illustrated |
Not Illustrated |
issn |
2075163X |
topic_title |
QE351-399.2 Strongly Peraluminous Highly Fractionated I-Type Granite from Bangong–Nujiang Metallogenic Belt, Tibet: Implications for Continental Evolution and Evaluation of Economic Potentiality economic potentiality reworking of continental crust petrogenesis highly fractionated granite Bangong–Nujiang metallogenic belt |
topic |
misc QE351-399.2 misc economic potentiality misc reworking of continental crust misc petrogenesis misc highly fractionated granite misc Bangong–Nujiang metallogenic belt misc Mineralogy |
topic_unstemmed |
misc QE351-399.2 misc economic potentiality misc reworking of continental crust misc petrogenesis misc highly fractionated granite misc Bangong–Nujiang metallogenic belt misc Mineralogy |
topic_browse |
misc QE351-399.2 misc economic potentiality misc reworking of continental crust misc petrogenesis misc highly fractionated granite misc Bangong–Nujiang metallogenic belt misc Mineralogy |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Minerals |
hierarchy_parent_id |
689132069 |
hierarchy_top_title |
Minerals |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)689132069 (DE-600)2655947-X |
title |
Strongly Peraluminous Highly Fractionated I-Type Granite from Bangong–Nujiang Metallogenic Belt, Tibet: Implications for Continental Evolution and Evaluation of Economic Potentiality |
ctrlnum |
(DE-627)DOAJ093347332 (DE-599)DOAJc2fc499ba9a0449e8fda8cc63eccaf40 |
title_full |
Strongly Peraluminous Highly Fractionated I-Type Granite from Bangong–Nujiang Metallogenic Belt, Tibet: Implications for Continental Evolution and Evaluation of Economic Potentiality |
author_sort |
Nan Wang |
journal |
Minerals |
journalStr |
Minerals |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Nan Wang Zhibo Liu Min Lei |
container_volume |
13 |
class |
QE351-399.2 |
format_se |
Elektronische Aufsätze |
author-letter |
Nan Wang |
doi_str_mv |
10.3390/min13091152 |
author2-role |
verfasserin |
title_sort |
strongly peraluminous highly fractionated i-type granite from bangong–nujiang metallogenic belt, tibet: implications for continental evolution and evaluation of economic potentiality |
callnumber |
QE351-399.2 |
title_auth |
Strongly Peraluminous Highly Fractionated I-Type Granite from Bangong–Nujiang Metallogenic Belt, Tibet: Implications for Continental Evolution and Evaluation of Economic Potentiality |
abstract |
The research on highly fractionated granite has significant implications for both the evolution and compositional maturation of the continental crust and metallogenic exploration. As a means of further understanding crustal evolution and promoting ore exploration in the Bangong–Nujiang metallogenic belt (BNMB), we present the petrography, zircon LA–ICP–MS U–Pb age, and Hf isotopic data, along with the whole-rock geochemical and Sr–Nd isotopic composition on Kese highly fractionated granite in the Baingoin area within the BNMB, central Tibet. The results show that Kese granite possesses a zircon U–Pb age of 127.8 ± 1.7 Ma and a relative enrichment in zircon Hf isotopic composition (−12.8~+0.3) with a two-stage Hf model age of 1.2~2.0 Ga. This granite belongs to the high-K calc-alkaline series, characterized by a strongly peraluminous feature, and is enriched in large-ion lithophile elements (LILEs) and Nd isotopes (−7.86~−7.74). The granite was likely to have been derived from the mixed melts derived from 40%~45% juvenile basaltic lower crust, 15%~20% ancient lower, and 40% middle–upper, following intense fractional crystallization processes involving amphibole, biotite, plagioclase, and some accessory minerals during the magma’s evolution. We infer that Kese highly fractionated granite can be formed from the continental collision of the Lhasa–Qiangtang terranes initiated before 128 Ma. The reworking of pre-existing juvenile and ancient crustal materials drove the composition of the northern Lhasa terrane to that of a mature continental crust. Moreover, the distinctive geochemical features have shown that the high degree of differentiation led to intense magmatic–hydrothermal interaction during the formation of Kese granite. A comparison of the geochemical characteristics of mineralized and barren granites suggests that the highly fractionated granites in Baingoin from the BNMB have a high economic potential and are suitable for preliminary exploration of Sn–W-(U) deposits. |
abstractGer |
The research on highly fractionated granite has significant implications for both the evolution and compositional maturation of the continental crust and metallogenic exploration. As a means of further understanding crustal evolution and promoting ore exploration in the Bangong–Nujiang metallogenic belt (BNMB), we present the petrography, zircon LA–ICP–MS U–Pb age, and Hf isotopic data, along with the whole-rock geochemical and Sr–Nd isotopic composition on Kese highly fractionated granite in the Baingoin area within the BNMB, central Tibet. The results show that Kese granite possesses a zircon U–Pb age of 127.8 ± 1.7 Ma and a relative enrichment in zircon Hf isotopic composition (−12.8~+0.3) with a two-stage Hf model age of 1.2~2.0 Ga. This granite belongs to the high-K calc-alkaline series, characterized by a strongly peraluminous feature, and is enriched in large-ion lithophile elements (LILEs) and Nd isotopes (−7.86~−7.74). The granite was likely to have been derived from the mixed melts derived from 40%~45% juvenile basaltic lower crust, 15%~20% ancient lower, and 40% middle–upper, following intense fractional crystallization processes involving amphibole, biotite, plagioclase, and some accessory minerals during the magma’s evolution. We infer that Kese highly fractionated granite can be formed from the continental collision of the Lhasa–Qiangtang terranes initiated before 128 Ma. The reworking of pre-existing juvenile and ancient crustal materials drove the composition of the northern Lhasa terrane to that of a mature continental crust. Moreover, the distinctive geochemical features have shown that the high degree of differentiation led to intense magmatic–hydrothermal interaction during the formation of Kese granite. A comparison of the geochemical characteristics of mineralized and barren granites suggests that the highly fractionated granites in Baingoin from the BNMB have a high economic potential and are suitable for preliminary exploration of Sn–W-(U) deposits. |
abstract_unstemmed |
The research on highly fractionated granite has significant implications for both the evolution and compositional maturation of the continental crust and metallogenic exploration. As a means of further understanding crustal evolution and promoting ore exploration in the Bangong–Nujiang metallogenic belt (BNMB), we present the petrography, zircon LA–ICP–MS U–Pb age, and Hf isotopic data, along with the whole-rock geochemical and Sr–Nd isotopic composition on Kese highly fractionated granite in the Baingoin area within the BNMB, central Tibet. The results show that Kese granite possesses a zircon U–Pb age of 127.8 ± 1.7 Ma and a relative enrichment in zircon Hf isotopic composition (−12.8~+0.3) with a two-stage Hf model age of 1.2~2.0 Ga. This granite belongs to the high-K calc-alkaline series, characterized by a strongly peraluminous feature, and is enriched in large-ion lithophile elements (LILEs) and Nd isotopes (−7.86~−7.74). The granite was likely to have been derived from the mixed melts derived from 40%~45% juvenile basaltic lower crust, 15%~20% ancient lower, and 40% middle–upper, following intense fractional crystallization processes involving amphibole, biotite, plagioclase, and some accessory minerals during the magma’s evolution. We infer that Kese highly fractionated granite can be formed from the continental collision of the Lhasa–Qiangtang terranes initiated before 128 Ma. The reworking of pre-existing juvenile and ancient crustal materials drove the composition of the northern Lhasa terrane to that of a mature continental crust. Moreover, the distinctive geochemical features have shown that the high degree of differentiation led to intense magmatic–hydrothermal interaction during the formation of Kese granite. A comparison of the geochemical characteristics of mineralized and barren granites suggests that the highly fractionated granites in Baingoin from the BNMB have a high economic potential and are suitable for preliminary exploration of Sn–W-(U) deposits. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1152, p 1152 |
title_short |
Strongly Peraluminous Highly Fractionated I-Type Granite from Bangong–Nujiang Metallogenic Belt, Tibet: Implications for Continental Evolution and Evaluation of Economic Potentiality |
url |
https://doi.org/10.3390/min13091152 https://doaj.org/article/c2fc499ba9a0449e8fda8cc63eccaf40 https://www.mdpi.com/2075-163X/13/9/1152 https://doaj.org/toc/2075-163X |
remote_bool |
true |
author2 |
Zhibo Liu Min Lei |
author2Str |
Zhibo Liu Min Lei |
ppnlink |
689132069 |
callnumber-subject |
QE - Geology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/min13091152 |
callnumber-a |
QE351-399.2 |
up_date |
2024-07-03T16:46:58.993Z |
_version_ |
1803577164030803968 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ093347332</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413211744.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/min13091152</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ093347332</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJc2fc499ba9a0449e8fda8cc63eccaf40</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QE351-399.2</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Nan Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Strongly Peraluminous Highly Fractionated I-Type Granite from Bangong–Nujiang Metallogenic Belt, Tibet: Implications for Continental Evolution and Evaluation of Economic Potentiality</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The research on highly fractionated granite has significant implications for both the evolution and compositional maturation of the continental crust and metallogenic exploration. As a means of further understanding crustal evolution and promoting ore exploration in the Bangong–Nujiang metallogenic belt (BNMB), we present the petrography, zircon LA–ICP–MS U–Pb age, and Hf isotopic data, along with the whole-rock geochemical and Sr–Nd isotopic composition on Kese highly fractionated granite in the Baingoin area within the BNMB, central Tibet. The results show that Kese granite possesses a zircon U–Pb age of 127.8 ± 1.7 Ma and a relative enrichment in zircon Hf isotopic composition (−12.8~+0.3) with a two-stage Hf model age of 1.2~2.0 Ga. This granite belongs to the high-K calc-alkaline series, characterized by a strongly peraluminous feature, and is enriched in large-ion lithophile elements (LILEs) and Nd isotopes (−7.86~−7.74). The granite was likely to have been derived from the mixed melts derived from 40%~45% juvenile basaltic lower crust, 15%~20% ancient lower, and 40% middle–upper, following intense fractional crystallization processes involving amphibole, biotite, plagioclase, and some accessory minerals during the magma’s evolution. We infer that Kese highly fractionated granite can be formed from the continental collision of the Lhasa–Qiangtang terranes initiated before 128 Ma. The reworking of pre-existing juvenile and ancient crustal materials drove the composition of the northern Lhasa terrane to that of a mature continental crust. Moreover, the distinctive geochemical features have shown that the high degree of differentiation led to intense magmatic–hydrothermal interaction during the formation of Kese granite. A comparison of the geochemical characteristics of mineralized and barren granites suggests that the highly fractionated granites in Baingoin from the BNMB have a high economic potential and are suitable for preliminary exploration of Sn–W-(U) deposits.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">economic potentiality</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">reworking of continental crust</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">petrogenesis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">highly fractionated granite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bangong–Nujiang metallogenic belt</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mineralogy</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhibo Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Min Lei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Minerals</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">13(2023), 1152, p 1152</subfield><subfield code="w">(DE-627)689132069</subfield><subfield code="w">(DE-600)2655947-X</subfield><subfield code="x">2075163X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1152, p 1152</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/min13091152</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/c2fc499ba9a0449e8fda8cc63eccaf40</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2075-163X/13/9/1152</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2075-163X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2023</subfield><subfield code="e">1152, p 1152</subfield></datafield></record></collection>
|
score |
7.401846 |