The Approximation Characteristics of Weighted <i<p</i<-Wiener Algebra
In this paper, we study the approximation characteristics of weighted <i<p</i<-Wiener algebra <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mi mathvariant="script"...
Ausführliche Beschreibung
Autor*in: |
Ying Chen [verfasserIn] Xiangyu Pan [verfasserIn] Yanyan Xu [verfasserIn] Guanggui Chen [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Mathematics - MDPI AG, 2013, 11(2023), 3974, p 3974 |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:2023 ; number:3974, p 3974 |
Links: |
---|
DOI / URN: |
10.3390/math11183974 |
---|
Katalog-ID: |
DOAJ093357834 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ093357834 | ||
003 | DE-627 | ||
005 | 20240413211921.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/math11183974 |2 doi | |
035 | |a (DE-627)DOAJ093357834 | ||
035 | |a (DE-599)DOAJ8d6ec5fc8fa54345853fc7029f7fdebb | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QA1-939 | |
100 | 0 | |a Ying Chen |e verfasserin |4 aut | |
245 | 1 | 4 | |a The Approximation Characteristics of Weighted <i<p</i<-Wiener Algebra |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In this paper, we study the approximation characteristics of weighted <i<p</i<-Wiener algebra <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mi mathvariant="script"<A</mi<<mrow<<mi<ω</mi<</mrow<<mi<p</mi<</msubsup<<mfenced separators="" open="(" close=")"<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</mfenced<</mrow<</semantics<</math<</inline-formula< for <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mn<1</mn<<mo<≤</mo<<mi<p</mi<<mo<<</mo<<mo<∞</mo<</mrow<</semantics<</math<</inline-formula< defined on the <i<d</i<-dimensional torus <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</semantics<</math<</inline-formula<. In particular, we investigate the asymptotic behavior of the approximation numbers, Kolmogorov numbers, and entropy numbers associated with the embeddings <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<i</mi<<mi<d</mi<<mo<:</mo<<msubsup<<mi mathvariant="script"<A</mi<<mrow<<mi<ω</mi<</mrow<<mi<p</mi<</msubsup<<mfenced separators="" open="(" close=")"<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</mfenced<<mo<→</mo<<mi mathvariant="script"<A</mi<<mfenced separators="" open="(" close=")"<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</mfenced<</mrow<</semantics<</math<</inline-formula< and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<i</mi<<mi<d</mi<<mo<:</mo<<msubsup<<mi mathvariant="script"<A</mi<<mrow<<mi<ω</mi<</mrow<<mi<p</mi<</msubsup<<mfenced separators="" open="(" close=")"<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</mfenced<<mo<→</mo<<msub<<mi<L</mi<<mi<q</mi<</msub<<mfenced separators="" open="(" close=")"<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</mfenced<</mrow<</semantics<</math<</inline-formula< for <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mn<1</mn<<mo<≤</mo<<mi<p</mi<</mrow<</semantics<</math<</inline-formula<, <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<q</mi<<mo<<</mo<<mo<∞</mo<</mrow<</semantics<</math<</inline-formula<, where <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi mathvariant="script"<A</mi<<mfenced separators="" open="(" close=")"<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</mfenced<</mrow<</semantics<</math<</inline-formula< is the Wiener algebra defined on the <i<d</i<-dimensional torus <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</semantics<</math<</inline-formula<. | ||
650 | 4 | |a Wiener algebra | |
650 | 4 | |a approximation numbers | |
650 | 4 | |a Kolmogorov numbers | |
650 | 4 | |a entropy numbers | |
653 | 0 | |a Mathematics | |
700 | 0 | |a Xiangyu Pan |e verfasserin |4 aut | |
700 | 0 | |a Yanyan Xu |e verfasserin |4 aut | |
700 | 0 | |a Guanggui Chen |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Mathematics |d MDPI AG, 2013 |g 11(2023), 3974, p 3974 |w (DE-627)737287764 |w (DE-600)2704244-3 |x 22277390 |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:2023 |g number:3974, p 3974 |
856 | 4 | 0 | |u https://doi.org/10.3390/math11183974 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/8d6ec5fc8fa54345853fc7029f7fdebb |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2227-7390/11/18/3974 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2227-7390 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 11 |j 2023 |e 3974, p 3974 |
author_variant |
y c yc x p xp y x yx g c gc |
---|---|
matchkey_str |
article:22277390:2023----::hapoiainhrceitcowihei |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
QA |
publishDate |
2023 |
allfields |
10.3390/math11183974 doi (DE-627)DOAJ093357834 (DE-599)DOAJ8d6ec5fc8fa54345853fc7029f7fdebb DE-627 ger DE-627 rakwb eng QA1-939 Ying Chen verfasserin aut The Approximation Characteristics of Weighted <i<p</i<-Wiener Algebra 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, we study the approximation characteristics of weighted <i<p</i<-Wiener algebra <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mi mathvariant="script"<A</mi<<mrow<<mi<ω</mi<</mrow<<mi<p</mi<</msubsup<<mfenced separators="" open="(" close=")"<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</mfenced<</mrow<</semantics<</math<</inline-formula< for <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mn<1</mn<<mo<≤</mo<<mi<p</mi<<mo<<</mo<<mo<∞</mo<</mrow<</semantics<</math<</inline-formula< defined on the <i<d</i<-dimensional torus <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</semantics<</math<</inline-formula<. In particular, we investigate the asymptotic behavior of the approximation numbers, Kolmogorov numbers, and entropy numbers associated with the embeddings <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<i</mi<<mi<d</mi<<mo<:</mo<<msubsup<<mi mathvariant="script"<A</mi<<mrow<<mi<ω</mi<</mrow<<mi<p</mi<</msubsup<<mfenced separators="" open="(" close=")"<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</mfenced<<mo<→</mo<<mi mathvariant="script"<A</mi<<mfenced separators="" open="(" close=")"<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</mfenced<</mrow<</semantics<</math<</inline-formula< and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<i</mi<<mi<d</mi<<mo<:</mo<<msubsup<<mi mathvariant="script"<A</mi<<mrow<<mi<ω</mi<</mrow<<mi<p</mi<</msubsup<<mfenced separators="" open="(" close=")"<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</mfenced<<mo<→</mo<<msub<<mi<L</mi<<mi<q</mi<</msub<<mfenced separators="" open="(" close=")"<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</mfenced<</mrow<</semantics<</math<</inline-formula< for <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mn<1</mn<<mo<≤</mo<<mi<p</mi<</mrow<</semantics<</math<</inline-formula<, <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<q</mi<<mo<<</mo<<mo<∞</mo<</mrow<</semantics<</math<</inline-formula<, where <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi mathvariant="script"<A</mi<<mfenced separators="" open="(" close=")"<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</mfenced<</mrow<</semantics<</math<</inline-formula< is the Wiener algebra defined on the <i<d</i<-dimensional torus <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</semantics<</math<</inline-formula<. Wiener algebra approximation numbers Kolmogorov numbers entropy numbers Mathematics Xiangyu Pan verfasserin aut Yanyan Xu verfasserin aut Guanggui Chen verfasserin aut In Mathematics MDPI AG, 2013 11(2023), 3974, p 3974 (DE-627)737287764 (DE-600)2704244-3 22277390 nnns volume:11 year:2023 number:3974, p 3974 https://doi.org/10.3390/math11183974 kostenfrei https://doaj.org/article/8d6ec5fc8fa54345853fc7029f7fdebb kostenfrei https://www.mdpi.com/2227-7390/11/18/3974 kostenfrei https://doaj.org/toc/2227-7390 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 3974, p 3974 |
spelling |
10.3390/math11183974 doi (DE-627)DOAJ093357834 (DE-599)DOAJ8d6ec5fc8fa54345853fc7029f7fdebb DE-627 ger DE-627 rakwb eng QA1-939 Ying Chen verfasserin aut The Approximation Characteristics of Weighted <i<p</i<-Wiener Algebra 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, we study the approximation characteristics of weighted <i<p</i<-Wiener algebra <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mi mathvariant="script"<A</mi<<mrow<<mi<ω</mi<</mrow<<mi<p</mi<</msubsup<<mfenced separators="" open="(" close=")"<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</mfenced<</mrow<</semantics<</math<</inline-formula< for <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mn<1</mn<<mo<≤</mo<<mi<p</mi<<mo<<</mo<<mo<∞</mo<</mrow<</semantics<</math<</inline-formula< defined on the <i<d</i<-dimensional torus <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</semantics<</math<</inline-formula<. In particular, we investigate the asymptotic behavior of the approximation numbers, Kolmogorov numbers, and entropy numbers associated with the embeddings <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<i</mi<<mi<d</mi<<mo<:</mo<<msubsup<<mi mathvariant="script"<A</mi<<mrow<<mi<ω</mi<</mrow<<mi<p</mi<</msubsup<<mfenced separators="" open="(" close=")"<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</mfenced<<mo<→</mo<<mi mathvariant="script"<A</mi<<mfenced separators="" open="(" close=")"<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</mfenced<</mrow<</semantics<</math<</inline-formula< and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<i</mi<<mi<d</mi<<mo<:</mo<<msubsup<<mi mathvariant="script"<A</mi<<mrow<<mi<ω</mi<</mrow<<mi<p</mi<</msubsup<<mfenced separators="" open="(" close=")"<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</mfenced<<mo<→</mo<<msub<<mi<L</mi<<mi<q</mi<</msub<<mfenced separators="" open="(" close=")"<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</mfenced<</mrow<</semantics<</math<</inline-formula< for <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mn<1</mn<<mo<≤</mo<<mi<p</mi<</mrow<</semantics<</math<</inline-formula<, <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<q</mi<<mo<<</mo<<mo<∞</mo<</mrow<</semantics<</math<</inline-formula<, where <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi mathvariant="script"<A</mi<<mfenced separators="" open="(" close=")"<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</mfenced<</mrow<</semantics<</math<</inline-formula< is the Wiener algebra defined on the <i<d</i<-dimensional torus <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</semantics<</math<</inline-formula<. Wiener algebra approximation numbers Kolmogorov numbers entropy numbers Mathematics Xiangyu Pan verfasserin aut Yanyan Xu verfasserin aut Guanggui Chen verfasserin aut In Mathematics MDPI AG, 2013 11(2023), 3974, p 3974 (DE-627)737287764 (DE-600)2704244-3 22277390 nnns volume:11 year:2023 number:3974, p 3974 https://doi.org/10.3390/math11183974 kostenfrei https://doaj.org/article/8d6ec5fc8fa54345853fc7029f7fdebb kostenfrei https://www.mdpi.com/2227-7390/11/18/3974 kostenfrei https://doaj.org/toc/2227-7390 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 3974, p 3974 |
allfields_unstemmed |
10.3390/math11183974 doi (DE-627)DOAJ093357834 (DE-599)DOAJ8d6ec5fc8fa54345853fc7029f7fdebb DE-627 ger DE-627 rakwb eng QA1-939 Ying Chen verfasserin aut The Approximation Characteristics of Weighted <i<p</i<-Wiener Algebra 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, we study the approximation characteristics of weighted <i<p</i<-Wiener algebra <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mi mathvariant="script"<A</mi<<mrow<<mi<ω</mi<</mrow<<mi<p</mi<</msubsup<<mfenced separators="" open="(" close=")"<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</mfenced<</mrow<</semantics<</math<</inline-formula< for <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mn<1</mn<<mo<≤</mo<<mi<p</mi<<mo<<</mo<<mo<∞</mo<</mrow<</semantics<</math<</inline-formula< defined on the <i<d</i<-dimensional torus <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</semantics<</math<</inline-formula<. In particular, we investigate the asymptotic behavior of the approximation numbers, Kolmogorov numbers, and entropy numbers associated with the embeddings <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<i</mi<<mi<d</mi<<mo<:</mo<<msubsup<<mi mathvariant="script"<A</mi<<mrow<<mi<ω</mi<</mrow<<mi<p</mi<</msubsup<<mfenced separators="" open="(" close=")"<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</mfenced<<mo<→</mo<<mi mathvariant="script"<A</mi<<mfenced separators="" open="(" close=")"<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</mfenced<</mrow<</semantics<</math<</inline-formula< and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<i</mi<<mi<d</mi<<mo<:</mo<<msubsup<<mi mathvariant="script"<A</mi<<mrow<<mi<ω</mi<</mrow<<mi<p</mi<</msubsup<<mfenced separators="" open="(" close=")"<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</mfenced<<mo<→</mo<<msub<<mi<L</mi<<mi<q</mi<</msub<<mfenced separators="" open="(" close=")"<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</mfenced<</mrow<</semantics<</math<</inline-formula< for <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mn<1</mn<<mo<≤</mo<<mi<p</mi<</mrow<</semantics<</math<</inline-formula<, <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<q</mi<<mo<<</mo<<mo<∞</mo<</mrow<</semantics<</math<</inline-formula<, where <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi mathvariant="script"<A</mi<<mfenced separators="" open="(" close=")"<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</mfenced<</mrow<</semantics<</math<</inline-formula< is the Wiener algebra defined on the <i<d</i<-dimensional torus <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</semantics<</math<</inline-formula<. Wiener algebra approximation numbers Kolmogorov numbers entropy numbers Mathematics Xiangyu Pan verfasserin aut Yanyan Xu verfasserin aut Guanggui Chen verfasserin aut In Mathematics MDPI AG, 2013 11(2023), 3974, p 3974 (DE-627)737287764 (DE-600)2704244-3 22277390 nnns volume:11 year:2023 number:3974, p 3974 https://doi.org/10.3390/math11183974 kostenfrei https://doaj.org/article/8d6ec5fc8fa54345853fc7029f7fdebb kostenfrei https://www.mdpi.com/2227-7390/11/18/3974 kostenfrei https://doaj.org/toc/2227-7390 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 3974, p 3974 |
allfieldsGer |
10.3390/math11183974 doi (DE-627)DOAJ093357834 (DE-599)DOAJ8d6ec5fc8fa54345853fc7029f7fdebb DE-627 ger DE-627 rakwb eng QA1-939 Ying Chen verfasserin aut The Approximation Characteristics of Weighted <i<p</i<-Wiener Algebra 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, we study the approximation characteristics of weighted <i<p</i<-Wiener algebra <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mi mathvariant="script"<A</mi<<mrow<<mi<ω</mi<</mrow<<mi<p</mi<</msubsup<<mfenced separators="" open="(" close=")"<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</mfenced<</mrow<</semantics<</math<</inline-formula< for <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mn<1</mn<<mo<≤</mo<<mi<p</mi<<mo<<</mo<<mo<∞</mo<</mrow<</semantics<</math<</inline-formula< defined on the <i<d</i<-dimensional torus <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</semantics<</math<</inline-formula<. In particular, we investigate the asymptotic behavior of the approximation numbers, Kolmogorov numbers, and entropy numbers associated with the embeddings <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<i</mi<<mi<d</mi<<mo<:</mo<<msubsup<<mi mathvariant="script"<A</mi<<mrow<<mi<ω</mi<</mrow<<mi<p</mi<</msubsup<<mfenced separators="" open="(" close=")"<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</mfenced<<mo<→</mo<<mi mathvariant="script"<A</mi<<mfenced separators="" open="(" close=")"<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</mfenced<</mrow<</semantics<</math<</inline-formula< and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<i</mi<<mi<d</mi<<mo<:</mo<<msubsup<<mi mathvariant="script"<A</mi<<mrow<<mi<ω</mi<</mrow<<mi<p</mi<</msubsup<<mfenced separators="" open="(" close=")"<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</mfenced<<mo<→</mo<<msub<<mi<L</mi<<mi<q</mi<</msub<<mfenced separators="" open="(" close=")"<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</mfenced<</mrow<</semantics<</math<</inline-formula< for <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mn<1</mn<<mo<≤</mo<<mi<p</mi<</mrow<</semantics<</math<</inline-formula<, <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<q</mi<<mo<<</mo<<mo<∞</mo<</mrow<</semantics<</math<</inline-formula<, where <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi mathvariant="script"<A</mi<<mfenced separators="" open="(" close=")"<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</mfenced<</mrow<</semantics<</math<</inline-formula< is the Wiener algebra defined on the <i<d</i<-dimensional torus <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</semantics<</math<</inline-formula<. Wiener algebra approximation numbers Kolmogorov numbers entropy numbers Mathematics Xiangyu Pan verfasserin aut Yanyan Xu verfasserin aut Guanggui Chen verfasserin aut In Mathematics MDPI AG, 2013 11(2023), 3974, p 3974 (DE-627)737287764 (DE-600)2704244-3 22277390 nnns volume:11 year:2023 number:3974, p 3974 https://doi.org/10.3390/math11183974 kostenfrei https://doaj.org/article/8d6ec5fc8fa54345853fc7029f7fdebb kostenfrei https://www.mdpi.com/2227-7390/11/18/3974 kostenfrei https://doaj.org/toc/2227-7390 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 3974, p 3974 |
allfieldsSound |
10.3390/math11183974 doi (DE-627)DOAJ093357834 (DE-599)DOAJ8d6ec5fc8fa54345853fc7029f7fdebb DE-627 ger DE-627 rakwb eng QA1-939 Ying Chen verfasserin aut The Approximation Characteristics of Weighted <i<p</i<-Wiener Algebra 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, we study the approximation characteristics of weighted <i<p</i<-Wiener algebra <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mi mathvariant="script"<A</mi<<mrow<<mi<ω</mi<</mrow<<mi<p</mi<</msubsup<<mfenced separators="" open="(" close=")"<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</mfenced<</mrow<</semantics<</math<</inline-formula< for <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mn<1</mn<<mo<≤</mo<<mi<p</mi<<mo<<</mo<<mo<∞</mo<</mrow<</semantics<</math<</inline-formula< defined on the <i<d</i<-dimensional torus <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</semantics<</math<</inline-formula<. In particular, we investigate the asymptotic behavior of the approximation numbers, Kolmogorov numbers, and entropy numbers associated with the embeddings <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<i</mi<<mi<d</mi<<mo<:</mo<<msubsup<<mi mathvariant="script"<A</mi<<mrow<<mi<ω</mi<</mrow<<mi<p</mi<</msubsup<<mfenced separators="" open="(" close=")"<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</mfenced<<mo<→</mo<<mi mathvariant="script"<A</mi<<mfenced separators="" open="(" close=")"<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</mfenced<</mrow<</semantics<</math<</inline-formula< and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<i</mi<<mi<d</mi<<mo<:</mo<<msubsup<<mi mathvariant="script"<A</mi<<mrow<<mi<ω</mi<</mrow<<mi<p</mi<</msubsup<<mfenced separators="" open="(" close=")"<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</mfenced<<mo<→</mo<<msub<<mi<L</mi<<mi<q</mi<</msub<<mfenced separators="" open="(" close=")"<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</mfenced<</mrow<</semantics<</math<</inline-formula< for <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mn<1</mn<<mo<≤</mo<<mi<p</mi<</mrow<</semantics<</math<</inline-formula<, <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<q</mi<<mo<<</mo<<mo<∞</mo<</mrow<</semantics<</math<</inline-formula<, where <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi mathvariant="script"<A</mi<<mfenced separators="" open="(" close=")"<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</mfenced<</mrow<</semantics<</math<</inline-formula< is the Wiener algebra defined on the <i<d</i<-dimensional torus <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</semantics<</math<</inline-formula<. Wiener algebra approximation numbers Kolmogorov numbers entropy numbers Mathematics Xiangyu Pan verfasserin aut Yanyan Xu verfasserin aut Guanggui Chen verfasserin aut In Mathematics MDPI AG, 2013 11(2023), 3974, p 3974 (DE-627)737287764 (DE-600)2704244-3 22277390 nnns volume:11 year:2023 number:3974, p 3974 https://doi.org/10.3390/math11183974 kostenfrei https://doaj.org/article/8d6ec5fc8fa54345853fc7029f7fdebb kostenfrei https://www.mdpi.com/2227-7390/11/18/3974 kostenfrei https://doaj.org/toc/2227-7390 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 3974, p 3974 |
language |
English |
source |
In Mathematics 11(2023), 3974, p 3974 volume:11 year:2023 number:3974, p 3974 |
sourceStr |
In Mathematics 11(2023), 3974, p 3974 volume:11 year:2023 number:3974, p 3974 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Wiener algebra approximation numbers Kolmogorov numbers entropy numbers Mathematics |
isfreeaccess_bool |
true |
container_title |
Mathematics |
authorswithroles_txt_mv |
Ying Chen @@aut@@ Xiangyu Pan @@aut@@ Yanyan Xu @@aut@@ Guanggui Chen @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
737287764 |
id |
DOAJ093357834 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ093357834</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413211921.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/math11183974</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ093357834</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ8d6ec5fc8fa54345853fc7029f7fdebb</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Ying Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The Approximation Characteristics of Weighted <i<p</i<-Wiener Algebra</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, we study the approximation characteristics of weighted <i<p</i<-Wiener algebra <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mi mathvariant="script"<A</mi<<mrow<<mi<ω</mi<</mrow<<mi<p</mi<</msubsup<<mfenced separators="" open="(" close=")"<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</mfenced<</mrow<</semantics<</math<</inline-formula< for <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mn<1</mn<<mo<≤</mo<<mi<p</mi<<mo<<</mo<<mo<∞</mo<</mrow<</semantics<</math<</inline-formula< defined on the <i<d</i<-dimensional torus <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</semantics<</math<</inline-formula<. In particular, we investigate the asymptotic behavior of the approximation numbers, Kolmogorov numbers, and entropy numbers associated with the embeddings <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<i</mi<<mi<d</mi<<mo<:</mo<<msubsup<<mi mathvariant="script"<A</mi<<mrow<<mi<ω</mi<</mrow<<mi<p</mi<</msubsup<<mfenced separators="" open="(" close=")"<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</mfenced<<mo<→</mo<<mi mathvariant="script"<A</mi<<mfenced separators="" open="(" close=")"<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</mfenced<</mrow<</semantics<</math<</inline-formula< and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<i</mi<<mi<d</mi<<mo<:</mo<<msubsup<<mi mathvariant="script"<A</mi<<mrow<<mi<ω</mi<</mrow<<mi<p</mi<</msubsup<<mfenced separators="" open="(" close=")"<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</mfenced<<mo<→</mo<<msub<<mi<L</mi<<mi<q</mi<</msub<<mfenced separators="" open="(" close=")"<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</mfenced<</mrow<</semantics<</math<</inline-formula< for <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mn<1</mn<<mo<≤</mo<<mi<p</mi<</mrow<</semantics<</math<</inline-formula<, <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<q</mi<<mo<<</mo<<mo<∞</mo<</mrow<</semantics<</math<</inline-formula<, where <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi mathvariant="script"<A</mi<<mfenced separators="" open="(" close=")"<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</mfenced<</mrow<</semantics<</math<</inline-formula< is the Wiener algebra defined on the <i<d</i<-dimensional torus <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</semantics<</math<</inline-formula<.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wiener algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">approximation numbers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kolmogorov numbers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">entropy numbers</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiangyu Pan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yanyan Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Guanggui Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Mathematics</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">11(2023), 3974, p 3974</subfield><subfield code="w">(DE-627)737287764</subfield><subfield code="w">(DE-600)2704244-3</subfield><subfield code="x">22277390</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:3974, p 3974</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/math11183974</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/8d6ec5fc8fa54345853fc7029f7fdebb</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2227-7390/11/18/3974</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2227-7390</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2023</subfield><subfield code="e">3974, p 3974</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Ying Chen |
spellingShingle |
Ying Chen misc QA1-939 misc Wiener algebra misc approximation numbers misc Kolmogorov numbers misc entropy numbers misc Mathematics The Approximation Characteristics of Weighted <i<p</i<-Wiener Algebra |
authorStr |
Ying Chen |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)737287764 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QA1-939 |
illustrated |
Not Illustrated |
issn |
22277390 |
topic_title |
QA1-939 The Approximation Characteristics of Weighted <i<p</i<-Wiener Algebra Wiener algebra approximation numbers Kolmogorov numbers entropy numbers |
topic |
misc QA1-939 misc Wiener algebra misc approximation numbers misc Kolmogorov numbers misc entropy numbers misc Mathematics |
topic_unstemmed |
misc QA1-939 misc Wiener algebra misc approximation numbers misc Kolmogorov numbers misc entropy numbers misc Mathematics |
topic_browse |
misc QA1-939 misc Wiener algebra misc approximation numbers misc Kolmogorov numbers misc entropy numbers misc Mathematics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Mathematics |
hierarchy_parent_id |
737287764 |
hierarchy_top_title |
Mathematics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)737287764 (DE-600)2704244-3 |
title |
The Approximation Characteristics of Weighted <i<p</i<-Wiener Algebra |
ctrlnum |
(DE-627)DOAJ093357834 (DE-599)DOAJ8d6ec5fc8fa54345853fc7029f7fdebb |
title_full |
The Approximation Characteristics of Weighted <i<p</i<-Wiener Algebra |
author_sort |
Ying Chen |
journal |
Mathematics |
journalStr |
Mathematics |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Ying Chen Xiangyu Pan Yanyan Xu Guanggui Chen |
container_volume |
11 |
class |
QA1-939 |
format_se |
Elektronische Aufsätze |
author-letter |
Ying Chen |
doi_str_mv |
10.3390/math11183974 |
author2-role |
verfasserin |
title_sort |
approximation characteristics of weighted <i<p</i<-wiener algebra |
callnumber |
QA1-939 |
title_auth |
The Approximation Characteristics of Weighted <i<p</i<-Wiener Algebra |
abstract |
In this paper, we study the approximation characteristics of weighted <i<p</i<-Wiener algebra <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mi mathvariant="script"<A</mi<<mrow<<mi<ω</mi<</mrow<<mi<p</mi<</msubsup<<mfenced separators="" open="(" close=")"<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</mfenced<</mrow<</semantics<</math<</inline-formula< for <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mn<1</mn<<mo<≤</mo<<mi<p</mi<<mo<<</mo<<mo<∞</mo<</mrow<</semantics<</math<</inline-formula< defined on the <i<d</i<-dimensional torus <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</semantics<</math<</inline-formula<. In particular, we investigate the asymptotic behavior of the approximation numbers, Kolmogorov numbers, and entropy numbers associated with the embeddings <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<i</mi<<mi<d</mi<<mo<:</mo<<msubsup<<mi mathvariant="script"<A</mi<<mrow<<mi<ω</mi<</mrow<<mi<p</mi<</msubsup<<mfenced separators="" open="(" close=")"<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</mfenced<<mo<→</mo<<mi mathvariant="script"<A</mi<<mfenced separators="" open="(" close=")"<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</mfenced<</mrow<</semantics<</math<</inline-formula< and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<i</mi<<mi<d</mi<<mo<:</mo<<msubsup<<mi mathvariant="script"<A</mi<<mrow<<mi<ω</mi<</mrow<<mi<p</mi<</msubsup<<mfenced separators="" open="(" close=")"<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</mfenced<<mo<→</mo<<msub<<mi<L</mi<<mi<q</mi<</msub<<mfenced separators="" open="(" close=")"<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</mfenced<</mrow<</semantics<</math<</inline-formula< for <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mn<1</mn<<mo<≤</mo<<mi<p</mi<</mrow<</semantics<</math<</inline-formula<, <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<q</mi<<mo<<</mo<<mo<∞</mo<</mrow<</semantics<</math<</inline-formula<, where <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi mathvariant="script"<A</mi<<mfenced separators="" open="(" close=")"<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</mfenced<</mrow<</semantics<</math<</inline-formula< is the Wiener algebra defined on the <i<d</i<-dimensional torus <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</semantics<</math<</inline-formula<. |
abstractGer |
In this paper, we study the approximation characteristics of weighted <i<p</i<-Wiener algebra <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mi mathvariant="script"<A</mi<<mrow<<mi<ω</mi<</mrow<<mi<p</mi<</msubsup<<mfenced separators="" open="(" close=")"<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</mfenced<</mrow<</semantics<</math<</inline-formula< for <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mn<1</mn<<mo<≤</mo<<mi<p</mi<<mo<<</mo<<mo<∞</mo<</mrow<</semantics<</math<</inline-formula< defined on the <i<d</i<-dimensional torus <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</semantics<</math<</inline-formula<. In particular, we investigate the asymptotic behavior of the approximation numbers, Kolmogorov numbers, and entropy numbers associated with the embeddings <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<i</mi<<mi<d</mi<<mo<:</mo<<msubsup<<mi mathvariant="script"<A</mi<<mrow<<mi<ω</mi<</mrow<<mi<p</mi<</msubsup<<mfenced separators="" open="(" close=")"<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</mfenced<<mo<→</mo<<mi mathvariant="script"<A</mi<<mfenced separators="" open="(" close=")"<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</mfenced<</mrow<</semantics<</math<</inline-formula< and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<i</mi<<mi<d</mi<<mo<:</mo<<msubsup<<mi mathvariant="script"<A</mi<<mrow<<mi<ω</mi<</mrow<<mi<p</mi<</msubsup<<mfenced separators="" open="(" close=")"<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</mfenced<<mo<→</mo<<msub<<mi<L</mi<<mi<q</mi<</msub<<mfenced separators="" open="(" close=")"<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</mfenced<</mrow<</semantics<</math<</inline-formula< for <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mn<1</mn<<mo<≤</mo<<mi<p</mi<</mrow<</semantics<</math<</inline-formula<, <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<q</mi<<mo<<</mo<<mo<∞</mo<</mrow<</semantics<</math<</inline-formula<, where <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi mathvariant="script"<A</mi<<mfenced separators="" open="(" close=")"<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</mfenced<</mrow<</semantics<</math<</inline-formula< is the Wiener algebra defined on the <i<d</i<-dimensional torus <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</semantics<</math<</inline-formula<. |
abstract_unstemmed |
In this paper, we study the approximation characteristics of weighted <i<p</i<-Wiener algebra <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mi mathvariant="script"<A</mi<<mrow<<mi<ω</mi<</mrow<<mi<p</mi<</msubsup<<mfenced separators="" open="(" close=")"<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</mfenced<</mrow<</semantics<</math<</inline-formula< for <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mn<1</mn<<mo<≤</mo<<mi<p</mi<<mo<<</mo<<mo<∞</mo<</mrow<</semantics<</math<</inline-formula< defined on the <i<d</i<-dimensional torus <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</semantics<</math<</inline-formula<. In particular, we investigate the asymptotic behavior of the approximation numbers, Kolmogorov numbers, and entropy numbers associated with the embeddings <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<i</mi<<mi<d</mi<<mo<:</mo<<msubsup<<mi mathvariant="script"<A</mi<<mrow<<mi<ω</mi<</mrow<<mi<p</mi<</msubsup<<mfenced separators="" open="(" close=")"<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</mfenced<<mo<→</mo<<mi mathvariant="script"<A</mi<<mfenced separators="" open="(" close=")"<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</mfenced<</mrow<</semantics<</math<</inline-formula< and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<i</mi<<mi<d</mi<<mo<:</mo<<msubsup<<mi mathvariant="script"<A</mi<<mrow<<mi<ω</mi<</mrow<<mi<p</mi<</msubsup<<mfenced separators="" open="(" close=")"<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</mfenced<<mo<→</mo<<msub<<mi<L</mi<<mi<q</mi<</msub<<mfenced separators="" open="(" close=")"<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</mfenced<</mrow<</semantics<</math<</inline-formula< for <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mn<1</mn<<mo<≤</mo<<mi<p</mi<</mrow<</semantics<</math<</inline-formula<, <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<q</mi<<mo<<</mo<<mo<∞</mo<</mrow<</semantics<</math<</inline-formula<, where <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi mathvariant="script"<A</mi<<mfenced separators="" open="(" close=")"<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</mfenced<</mrow<</semantics<</math<</inline-formula< is the Wiener algebra defined on the <i<d</i<-dimensional torus <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</semantics<</math<</inline-formula<. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
3974, p 3974 |
title_short |
The Approximation Characteristics of Weighted <i<p</i<-Wiener Algebra |
url |
https://doi.org/10.3390/math11183974 https://doaj.org/article/8d6ec5fc8fa54345853fc7029f7fdebb https://www.mdpi.com/2227-7390/11/18/3974 https://doaj.org/toc/2227-7390 |
remote_bool |
true |
author2 |
Xiangyu Pan Yanyan Xu Guanggui Chen |
author2Str |
Xiangyu Pan Yanyan Xu Guanggui Chen |
ppnlink |
737287764 |
callnumber-subject |
QA - Mathematics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/math11183974 |
callnumber-a |
QA1-939 |
up_date |
2024-07-03T16:50:38.207Z |
_version_ |
1803577393895440384 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ093357834</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413211921.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/math11183974</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ093357834</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ8d6ec5fc8fa54345853fc7029f7fdebb</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Ying Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The Approximation Characteristics of Weighted <i<p</i<-Wiener Algebra</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, we study the approximation characteristics of weighted <i<p</i<-Wiener algebra <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mi mathvariant="script"<A</mi<<mrow<<mi<ω</mi<</mrow<<mi<p</mi<</msubsup<<mfenced separators="" open="(" close=")"<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</mfenced<</mrow<</semantics<</math<</inline-formula< for <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mn<1</mn<<mo<≤</mo<<mi<p</mi<<mo<<</mo<<mo<∞</mo<</mrow<</semantics<</math<</inline-formula< defined on the <i<d</i<-dimensional torus <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</semantics<</math<</inline-formula<. In particular, we investigate the asymptotic behavior of the approximation numbers, Kolmogorov numbers, and entropy numbers associated with the embeddings <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<i</mi<<mi<d</mi<<mo<:</mo<<msubsup<<mi mathvariant="script"<A</mi<<mrow<<mi<ω</mi<</mrow<<mi<p</mi<</msubsup<<mfenced separators="" open="(" close=")"<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</mfenced<<mo<→</mo<<mi mathvariant="script"<A</mi<<mfenced separators="" open="(" close=")"<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</mfenced<</mrow<</semantics<</math<</inline-formula< and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<i</mi<<mi<d</mi<<mo<:</mo<<msubsup<<mi mathvariant="script"<A</mi<<mrow<<mi<ω</mi<</mrow<<mi<p</mi<</msubsup<<mfenced separators="" open="(" close=")"<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</mfenced<<mo<→</mo<<msub<<mi<L</mi<<mi<q</mi<</msub<<mfenced separators="" open="(" close=")"<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</mfenced<</mrow<</semantics<</math<</inline-formula< for <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mn<1</mn<<mo<≤</mo<<mi<p</mi<</mrow<</semantics<</math<</inline-formula<, <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<q</mi<<mo<<</mo<<mo<∞</mo<</mrow<</semantics<</math<</inline-formula<, where <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi mathvariant="script"<A</mi<<mfenced separators="" open="(" close=")"<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</mfenced<</mrow<</semantics<</math<</inline-formula< is the Wiener algebra defined on the <i<d</i<-dimensional torus <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msup<<mi mathvariant="double-struck"<T</mi<<mi<d</mi<</msup<</semantics<</math<</inline-formula<.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wiener algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">approximation numbers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kolmogorov numbers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">entropy numbers</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiangyu Pan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yanyan Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Guanggui Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Mathematics</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">11(2023), 3974, p 3974</subfield><subfield code="w">(DE-627)737287764</subfield><subfield code="w">(DE-600)2704244-3</subfield><subfield code="x">22277390</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:3974, p 3974</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/math11183974</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/8d6ec5fc8fa54345853fc7029f7fdebb</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2227-7390/11/18/3974</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2227-7390</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2023</subfield><subfield code="e">3974, p 3974</subfield></datafield></record></collection>
|
score |
7.4023323 |