Genetic Diversity and Population Structure in Ethiopian Mustard (<i<Brassica carinata</i< A. Braun) as Revealed by Single Nucleotide Polymorphism Markers
Ethiopian mustard (<i<Brassica carinata</i< A. Braun) is currently one of the potential oilseeds dedicated to the production for biofuel and other bio-industrial applications. The crop is assumed to be native to Ethiopia where a number of diversified <i<B. carinata</i< germpl...
Ausführliche Beschreibung
Autor*in: |
Misteru Tesfaye [verfasserIn] Tileye Feyissa [verfasserIn] Teklehaimanot Hailesilassie [verfasserIn] Selvaraju Kanagarajan [verfasserIn] Li-Hua Zhu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Genes - MDPI AG, 2010, 14(2023), 1757, p 1757 |
---|---|
Übergeordnetes Werk: |
volume:14 ; year:2023 ; number:1757, p 1757 |
Links: |
---|
DOI / URN: |
10.3390/genes14091757 |
---|
Katalog-ID: |
DOAJ093398034 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ093398034 | ||
003 | DE-627 | ||
005 | 20240413212538.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/genes14091757 |2 doi | |
035 | |a (DE-627)DOAJ093398034 | ||
035 | |a (DE-599)DOAJ512c9c274045422a86c65dc45ef96ca0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QH426-470 | |
100 | 0 | |a Misteru Tesfaye |e verfasserin |4 aut | |
245 | 1 | 0 | |a Genetic Diversity and Population Structure in Ethiopian Mustard (<i<Brassica carinata</i< A. Braun) as Revealed by Single Nucleotide Polymorphism Markers |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Ethiopian mustard (<i<Brassica carinata</i< A. Braun) is currently one of the potential oilseeds dedicated to the production for biofuel and other bio-industrial applications. The crop is assumed to be native to Ethiopia where a number of diversified <i<B. carinata</i< germplasms are found and conserved <i<ex situ</i<. However, there is very limited information on the genetic diversity and population structure of the species. This study aimed to investigate the genetic diversity and population structure of <i<B. carinata</i< genotypes of different origins using high-throughput single nucleotide polymorphism (SNP) markers. We used Brassica 90K Illumina Infinium<sup<TM</sup< SNP array for genotyping 90 <i<B. carinata</i< genotypes, and a total of 11,499 informative SNP markers were used for investigating the population structure and genetic diversity. The structure analysis, principal coordinate analysis (PcoA) and neighbor-joining tree analysis clustered the 90 <i<B. carinata</i< genotypes into two distinct subpopulations (Pop1 and Pop2). The majority of accessions (65%) were clustered in Pop1, mainly obtained from Oromia and South West Ethiopian People (SWEP) regions. Pop2 constituted dominantly of breeding lines and varieties, implying target selection contributed to the formation of distinct populations. Analysis of molecular variance (AMOVA) revealed a higher genetic variation (93%) within populations than between populations (7%), with low genetic differentiation (PhiPT = 0.07) and poor correlation between genetic and geographical distance (R = 0.02). This implies the presence of gene flow (Nm < 1) and weak geographical structure of accessions. Genetic diversity indices showed the presence of moderate genetic diversity in <i<B. carinata</i< populations with an average genetic diversity value (<i<H<sub<E</sub<</i< = 0.31) and polymorphism information content (PIC = 0.26). The findings of this study provide important and relevant information for future breeding and conservation efforts of <i<B. carinata</i<. | ||
650 | 4 | |a <i<Brassica carinata</i< | |
650 | 4 | |a genetic diversity | |
650 | 4 | |a population structure | |
650 | 4 | |a single nucleotide polymorphism marker | |
653 | 0 | |a Genetics | |
700 | 0 | |a Tileye Feyissa |e verfasserin |4 aut | |
700 | 0 | |a Teklehaimanot Hailesilassie |e verfasserin |4 aut | |
700 | 0 | |a Selvaraju Kanagarajan |e verfasserin |4 aut | |
700 | 0 | |a Li-Hua Zhu |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Genes |d MDPI AG, 2010 |g 14(2023), 1757, p 1757 |w (DE-627)614096537 |w (DE-600)2527218-4 |x 20734425 |7 nnns |
773 | 1 | 8 | |g volume:14 |g year:2023 |g number:1757, p 1757 |
856 | 4 | 0 | |u https://doi.org/10.3390/genes14091757 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/512c9c274045422a86c65dc45ef96ca0 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2073-4425/14/9/1757 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2073-4425 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 14 |j 2023 |e 1757, p 1757 |
author_variant |
m t mt t f tf t h th s k sk l h z lhz |
---|---|
matchkey_str |
article:20734425:2023----::eeidvriynppltosrcuentipamsadbasccrntibanseeldy |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
QH |
publishDate |
2023 |
allfields |
10.3390/genes14091757 doi (DE-627)DOAJ093398034 (DE-599)DOAJ512c9c274045422a86c65dc45ef96ca0 DE-627 ger DE-627 rakwb eng QH426-470 Misteru Tesfaye verfasserin aut Genetic Diversity and Population Structure in Ethiopian Mustard (<i<Brassica carinata</i< A. Braun) as Revealed by Single Nucleotide Polymorphism Markers 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Ethiopian mustard (<i<Brassica carinata</i< A. Braun) is currently one of the potential oilseeds dedicated to the production for biofuel and other bio-industrial applications. The crop is assumed to be native to Ethiopia where a number of diversified <i<B. carinata</i< germplasms are found and conserved <i<ex situ</i<. However, there is very limited information on the genetic diversity and population structure of the species. This study aimed to investigate the genetic diversity and population structure of <i<B. carinata</i< genotypes of different origins using high-throughput single nucleotide polymorphism (SNP) markers. We used Brassica 90K Illumina Infinium<sup<TM</sup< SNP array for genotyping 90 <i<B. carinata</i< genotypes, and a total of 11,499 informative SNP markers were used for investigating the population structure and genetic diversity. The structure analysis, principal coordinate analysis (PcoA) and neighbor-joining tree analysis clustered the 90 <i<B. carinata</i< genotypes into two distinct subpopulations (Pop1 and Pop2). The majority of accessions (65%) were clustered in Pop1, mainly obtained from Oromia and South West Ethiopian People (SWEP) regions. Pop2 constituted dominantly of breeding lines and varieties, implying target selection contributed to the formation of distinct populations. Analysis of molecular variance (AMOVA) revealed a higher genetic variation (93%) within populations than between populations (7%), with low genetic differentiation (PhiPT = 0.07) and poor correlation between genetic and geographical distance (R = 0.02). This implies the presence of gene flow (Nm < 1) and weak geographical structure of accessions. Genetic diversity indices showed the presence of moderate genetic diversity in <i<B. carinata</i< populations with an average genetic diversity value (<i<H<sub<E</sub<</i< = 0.31) and polymorphism information content (PIC = 0.26). The findings of this study provide important and relevant information for future breeding and conservation efforts of <i<B. carinata</i<. <i<Brassica carinata</i< genetic diversity population structure single nucleotide polymorphism marker Genetics Tileye Feyissa verfasserin aut Teklehaimanot Hailesilassie verfasserin aut Selvaraju Kanagarajan verfasserin aut Li-Hua Zhu verfasserin aut In Genes MDPI AG, 2010 14(2023), 1757, p 1757 (DE-627)614096537 (DE-600)2527218-4 20734425 nnns volume:14 year:2023 number:1757, p 1757 https://doi.org/10.3390/genes14091757 kostenfrei https://doaj.org/article/512c9c274045422a86c65dc45ef96ca0 kostenfrei https://www.mdpi.com/2073-4425/14/9/1757 kostenfrei https://doaj.org/toc/2073-4425 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2023 1757, p 1757 |
spelling |
10.3390/genes14091757 doi (DE-627)DOAJ093398034 (DE-599)DOAJ512c9c274045422a86c65dc45ef96ca0 DE-627 ger DE-627 rakwb eng QH426-470 Misteru Tesfaye verfasserin aut Genetic Diversity and Population Structure in Ethiopian Mustard (<i<Brassica carinata</i< A. Braun) as Revealed by Single Nucleotide Polymorphism Markers 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Ethiopian mustard (<i<Brassica carinata</i< A. Braun) is currently one of the potential oilseeds dedicated to the production for biofuel and other bio-industrial applications. The crop is assumed to be native to Ethiopia where a number of diversified <i<B. carinata</i< germplasms are found and conserved <i<ex situ</i<. However, there is very limited information on the genetic diversity and population structure of the species. This study aimed to investigate the genetic diversity and population structure of <i<B. carinata</i< genotypes of different origins using high-throughput single nucleotide polymorphism (SNP) markers. We used Brassica 90K Illumina Infinium<sup<TM</sup< SNP array for genotyping 90 <i<B. carinata</i< genotypes, and a total of 11,499 informative SNP markers were used for investigating the population structure and genetic diversity. The structure analysis, principal coordinate analysis (PcoA) and neighbor-joining tree analysis clustered the 90 <i<B. carinata</i< genotypes into two distinct subpopulations (Pop1 and Pop2). The majority of accessions (65%) were clustered in Pop1, mainly obtained from Oromia and South West Ethiopian People (SWEP) regions. Pop2 constituted dominantly of breeding lines and varieties, implying target selection contributed to the formation of distinct populations. Analysis of molecular variance (AMOVA) revealed a higher genetic variation (93%) within populations than between populations (7%), with low genetic differentiation (PhiPT = 0.07) and poor correlation between genetic and geographical distance (R = 0.02). This implies the presence of gene flow (Nm < 1) and weak geographical structure of accessions. Genetic diversity indices showed the presence of moderate genetic diversity in <i<B. carinata</i< populations with an average genetic diversity value (<i<H<sub<E</sub<</i< = 0.31) and polymorphism information content (PIC = 0.26). The findings of this study provide important and relevant information for future breeding and conservation efforts of <i<B. carinata</i<. <i<Brassica carinata</i< genetic diversity population structure single nucleotide polymorphism marker Genetics Tileye Feyissa verfasserin aut Teklehaimanot Hailesilassie verfasserin aut Selvaraju Kanagarajan verfasserin aut Li-Hua Zhu verfasserin aut In Genes MDPI AG, 2010 14(2023), 1757, p 1757 (DE-627)614096537 (DE-600)2527218-4 20734425 nnns volume:14 year:2023 number:1757, p 1757 https://doi.org/10.3390/genes14091757 kostenfrei https://doaj.org/article/512c9c274045422a86c65dc45ef96ca0 kostenfrei https://www.mdpi.com/2073-4425/14/9/1757 kostenfrei https://doaj.org/toc/2073-4425 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2023 1757, p 1757 |
allfields_unstemmed |
10.3390/genes14091757 doi (DE-627)DOAJ093398034 (DE-599)DOAJ512c9c274045422a86c65dc45ef96ca0 DE-627 ger DE-627 rakwb eng QH426-470 Misteru Tesfaye verfasserin aut Genetic Diversity and Population Structure in Ethiopian Mustard (<i<Brassica carinata</i< A. Braun) as Revealed by Single Nucleotide Polymorphism Markers 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Ethiopian mustard (<i<Brassica carinata</i< A. Braun) is currently one of the potential oilseeds dedicated to the production for biofuel and other bio-industrial applications. The crop is assumed to be native to Ethiopia where a number of diversified <i<B. carinata</i< germplasms are found and conserved <i<ex situ</i<. However, there is very limited information on the genetic diversity and population structure of the species. This study aimed to investigate the genetic diversity and population structure of <i<B. carinata</i< genotypes of different origins using high-throughput single nucleotide polymorphism (SNP) markers. We used Brassica 90K Illumina Infinium<sup<TM</sup< SNP array for genotyping 90 <i<B. carinata</i< genotypes, and a total of 11,499 informative SNP markers were used for investigating the population structure and genetic diversity. The structure analysis, principal coordinate analysis (PcoA) and neighbor-joining tree analysis clustered the 90 <i<B. carinata</i< genotypes into two distinct subpopulations (Pop1 and Pop2). The majority of accessions (65%) were clustered in Pop1, mainly obtained from Oromia and South West Ethiopian People (SWEP) regions. Pop2 constituted dominantly of breeding lines and varieties, implying target selection contributed to the formation of distinct populations. Analysis of molecular variance (AMOVA) revealed a higher genetic variation (93%) within populations than between populations (7%), with low genetic differentiation (PhiPT = 0.07) and poor correlation between genetic and geographical distance (R = 0.02). This implies the presence of gene flow (Nm < 1) and weak geographical structure of accessions. Genetic diversity indices showed the presence of moderate genetic diversity in <i<B. carinata</i< populations with an average genetic diversity value (<i<H<sub<E</sub<</i< = 0.31) and polymorphism information content (PIC = 0.26). The findings of this study provide important and relevant information for future breeding and conservation efforts of <i<B. carinata</i<. <i<Brassica carinata</i< genetic diversity population structure single nucleotide polymorphism marker Genetics Tileye Feyissa verfasserin aut Teklehaimanot Hailesilassie verfasserin aut Selvaraju Kanagarajan verfasserin aut Li-Hua Zhu verfasserin aut In Genes MDPI AG, 2010 14(2023), 1757, p 1757 (DE-627)614096537 (DE-600)2527218-4 20734425 nnns volume:14 year:2023 number:1757, p 1757 https://doi.org/10.3390/genes14091757 kostenfrei https://doaj.org/article/512c9c274045422a86c65dc45ef96ca0 kostenfrei https://www.mdpi.com/2073-4425/14/9/1757 kostenfrei https://doaj.org/toc/2073-4425 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2023 1757, p 1757 |
allfieldsGer |
10.3390/genes14091757 doi (DE-627)DOAJ093398034 (DE-599)DOAJ512c9c274045422a86c65dc45ef96ca0 DE-627 ger DE-627 rakwb eng QH426-470 Misteru Tesfaye verfasserin aut Genetic Diversity and Population Structure in Ethiopian Mustard (<i<Brassica carinata</i< A. Braun) as Revealed by Single Nucleotide Polymorphism Markers 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Ethiopian mustard (<i<Brassica carinata</i< A. Braun) is currently one of the potential oilseeds dedicated to the production for biofuel and other bio-industrial applications. The crop is assumed to be native to Ethiopia where a number of diversified <i<B. carinata</i< germplasms are found and conserved <i<ex situ</i<. However, there is very limited information on the genetic diversity and population structure of the species. This study aimed to investigate the genetic diversity and population structure of <i<B. carinata</i< genotypes of different origins using high-throughput single nucleotide polymorphism (SNP) markers. We used Brassica 90K Illumina Infinium<sup<TM</sup< SNP array for genotyping 90 <i<B. carinata</i< genotypes, and a total of 11,499 informative SNP markers were used for investigating the population structure and genetic diversity. The structure analysis, principal coordinate analysis (PcoA) and neighbor-joining tree analysis clustered the 90 <i<B. carinata</i< genotypes into two distinct subpopulations (Pop1 and Pop2). The majority of accessions (65%) were clustered in Pop1, mainly obtained from Oromia and South West Ethiopian People (SWEP) regions. Pop2 constituted dominantly of breeding lines and varieties, implying target selection contributed to the formation of distinct populations. Analysis of molecular variance (AMOVA) revealed a higher genetic variation (93%) within populations than between populations (7%), with low genetic differentiation (PhiPT = 0.07) and poor correlation between genetic and geographical distance (R = 0.02). This implies the presence of gene flow (Nm < 1) and weak geographical structure of accessions. Genetic diversity indices showed the presence of moderate genetic diversity in <i<B. carinata</i< populations with an average genetic diversity value (<i<H<sub<E</sub<</i< = 0.31) and polymorphism information content (PIC = 0.26). The findings of this study provide important and relevant information for future breeding and conservation efforts of <i<B. carinata</i<. <i<Brassica carinata</i< genetic diversity population structure single nucleotide polymorphism marker Genetics Tileye Feyissa verfasserin aut Teklehaimanot Hailesilassie verfasserin aut Selvaraju Kanagarajan verfasserin aut Li-Hua Zhu verfasserin aut In Genes MDPI AG, 2010 14(2023), 1757, p 1757 (DE-627)614096537 (DE-600)2527218-4 20734425 nnns volume:14 year:2023 number:1757, p 1757 https://doi.org/10.3390/genes14091757 kostenfrei https://doaj.org/article/512c9c274045422a86c65dc45ef96ca0 kostenfrei https://www.mdpi.com/2073-4425/14/9/1757 kostenfrei https://doaj.org/toc/2073-4425 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2023 1757, p 1757 |
allfieldsSound |
10.3390/genes14091757 doi (DE-627)DOAJ093398034 (DE-599)DOAJ512c9c274045422a86c65dc45ef96ca0 DE-627 ger DE-627 rakwb eng QH426-470 Misteru Tesfaye verfasserin aut Genetic Diversity and Population Structure in Ethiopian Mustard (<i<Brassica carinata</i< A. Braun) as Revealed by Single Nucleotide Polymorphism Markers 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Ethiopian mustard (<i<Brassica carinata</i< A. Braun) is currently one of the potential oilseeds dedicated to the production for biofuel and other bio-industrial applications. The crop is assumed to be native to Ethiopia where a number of diversified <i<B. carinata</i< germplasms are found and conserved <i<ex situ</i<. However, there is very limited information on the genetic diversity and population structure of the species. This study aimed to investigate the genetic diversity and population structure of <i<B. carinata</i< genotypes of different origins using high-throughput single nucleotide polymorphism (SNP) markers. We used Brassica 90K Illumina Infinium<sup<TM</sup< SNP array for genotyping 90 <i<B. carinata</i< genotypes, and a total of 11,499 informative SNP markers were used for investigating the population structure and genetic diversity. The structure analysis, principal coordinate analysis (PcoA) and neighbor-joining tree analysis clustered the 90 <i<B. carinata</i< genotypes into two distinct subpopulations (Pop1 and Pop2). The majority of accessions (65%) were clustered in Pop1, mainly obtained from Oromia and South West Ethiopian People (SWEP) regions. Pop2 constituted dominantly of breeding lines and varieties, implying target selection contributed to the formation of distinct populations. Analysis of molecular variance (AMOVA) revealed a higher genetic variation (93%) within populations than between populations (7%), with low genetic differentiation (PhiPT = 0.07) and poor correlation between genetic and geographical distance (R = 0.02). This implies the presence of gene flow (Nm < 1) and weak geographical structure of accessions. Genetic diversity indices showed the presence of moderate genetic diversity in <i<B. carinata</i< populations with an average genetic diversity value (<i<H<sub<E</sub<</i< = 0.31) and polymorphism information content (PIC = 0.26). The findings of this study provide important and relevant information for future breeding and conservation efforts of <i<B. carinata</i<. <i<Brassica carinata</i< genetic diversity population structure single nucleotide polymorphism marker Genetics Tileye Feyissa verfasserin aut Teklehaimanot Hailesilassie verfasserin aut Selvaraju Kanagarajan verfasserin aut Li-Hua Zhu verfasserin aut In Genes MDPI AG, 2010 14(2023), 1757, p 1757 (DE-627)614096537 (DE-600)2527218-4 20734425 nnns volume:14 year:2023 number:1757, p 1757 https://doi.org/10.3390/genes14091757 kostenfrei https://doaj.org/article/512c9c274045422a86c65dc45ef96ca0 kostenfrei https://www.mdpi.com/2073-4425/14/9/1757 kostenfrei https://doaj.org/toc/2073-4425 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2023 1757, p 1757 |
language |
English |
source |
In Genes 14(2023), 1757, p 1757 volume:14 year:2023 number:1757, p 1757 |
sourceStr |
In Genes 14(2023), 1757, p 1757 volume:14 year:2023 number:1757, p 1757 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
<i<Brassica carinata</i< genetic diversity population structure single nucleotide polymorphism marker Genetics |
isfreeaccess_bool |
true |
container_title |
Genes |
authorswithroles_txt_mv |
Misteru Tesfaye @@aut@@ Tileye Feyissa @@aut@@ Teklehaimanot Hailesilassie @@aut@@ Selvaraju Kanagarajan @@aut@@ Li-Hua Zhu @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
614096537 |
id |
DOAJ093398034 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ093398034</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413212538.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/genes14091757</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ093398034</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ512c9c274045422a86c65dc45ef96ca0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH426-470</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Misteru Tesfaye</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Genetic Diversity and Population Structure in Ethiopian Mustard (<i<Brassica carinata</i< A. Braun) as Revealed by Single Nucleotide Polymorphism Markers</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Ethiopian mustard (<i<Brassica carinata</i< A. Braun) is currently one of the potential oilseeds dedicated to the production for biofuel and other bio-industrial applications. The crop is assumed to be native to Ethiopia where a number of diversified <i<B. carinata</i< germplasms are found and conserved <i<ex situ</i<. However, there is very limited information on the genetic diversity and population structure of the species. This study aimed to investigate the genetic diversity and population structure of <i<B. carinata</i< genotypes of different origins using high-throughput single nucleotide polymorphism (SNP) markers. We used Brassica 90K Illumina Infinium<sup<TM</sup< SNP array for genotyping 90 <i<B. carinata</i< genotypes, and a total of 11,499 informative SNP markers were used for investigating the population structure and genetic diversity. The structure analysis, principal coordinate analysis (PcoA) and neighbor-joining tree analysis clustered the 90 <i<B. carinata</i< genotypes into two distinct subpopulations (Pop1 and Pop2). The majority of accessions (65%) were clustered in Pop1, mainly obtained from Oromia and South West Ethiopian People (SWEP) regions. Pop2 constituted dominantly of breeding lines and varieties, implying target selection contributed to the formation of distinct populations. Analysis of molecular variance (AMOVA) revealed a higher genetic variation (93%) within populations than between populations (7%), with low genetic differentiation (PhiPT = 0.07) and poor correlation between genetic and geographical distance (R = 0.02). This implies the presence of gene flow (Nm < 1) and weak geographical structure of accessions. Genetic diversity indices showed the presence of moderate genetic diversity in <i<B. carinata</i< populations with an average genetic diversity value (<i<H<sub<E</sub<</i< = 0.31) and polymorphism information content (PIC = 0.26). The findings of this study provide important and relevant information for future breeding and conservation efforts of <i<B. carinata</i<.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><i<Brassica carinata</i<</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">genetic diversity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">population structure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">single nucleotide polymorphism marker</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Genetics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tileye Feyissa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Teklehaimanot Hailesilassie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Selvaraju Kanagarajan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Li-Hua Zhu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Genes</subfield><subfield code="d">MDPI AG, 2010</subfield><subfield code="g">14(2023), 1757, p 1757</subfield><subfield code="w">(DE-627)614096537</subfield><subfield code="w">(DE-600)2527218-4</subfield><subfield code="x">20734425</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1757, p 1757</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/genes14091757</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/512c9c274045422a86c65dc45ef96ca0</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2073-4425/14/9/1757</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2073-4425</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2023</subfield><subfield code="e">1757, p 1757</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Misteru Tesfaye |
spellingShingle |
Misteru Tesfaye misc QH426-470 misc <i<Brassica carinata</i< misc genetic diversity misc population structure misc single nucleotide polymorphism marker misc Genetics Genetic Diversity and Population Structure in Ethiopian Mustard (<i<Brassica carinata</i< A. Braun) as Revealed by Single Nucleotide Polymorphism Markers |
authorStr |
Misteru Tesfaye |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)614096537 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QH426-470 |
illustrated |
Not Illustrated |
issn |
20734425 |
topic_title |
QH426-470 Genetic Diversity and Population Structure in Ethiopian Mustard (<i<Brassica carinata</i< A. Braun) as Revealed by Single Nucleotide Polymorphism Markers <i<Brassica carinata</i< genetic diversity population structure single nucleotide polymorphism marker |
topic |
misc QH426-470 misc <i<Brassica carinata</i< misc genetic diversity misc population structure misc single nucleotide polymorphism marker misc Genetics |
topic_unstemmed |
misc QH426-470 misc <i<Brassica carinata</i< misc genetic diversity misc population structure misc single nucleotide polymorphism marker misc Genetics |
topic_browse |
misc QH426-470 misc <i<Brassica carinata</i< misc genetic diversity misc population structure misc single nucleotide polymorphism marker misc Genetics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Genes |
hierarchy_parent_id |
614096537 |
hierarchy_top_title |
Genes |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)614096537 (DE-600)2527218-4 |
title |
Genetic Diversity and Population Structure in Ethiopian Mustard (<i<Brassica carinata</i< A. Braun) as Revealed by Single Nucleotide Polymorphism Markers |
ctrlnum |
(DE-627)DOAJ093398034 (DE-599)DOAJ512c9c274045422a86c65dc45ef96ca0 |
title_full |
Genetic Diversity and Population Structure in Ethiopian Mustard (<i<Brassica carinata</i< A. Braun) as Revealed by Single Nucleotide Polymorphism Markers |
author_sort |
Misteru Tesfaye |
journal |
Genes |
journalStr |
Genes |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Misteru Tesfaye Tileye Feyissa Teklehaimanot Hailesilassie Selvaraju Kanagarajan Li-Hua Zhu |
container_volume |
14 |
class |
QH426-470 |
format_se |
Elektronische Aufsätze |
author-letter |
Misteru Tesfaye |
doi_str_mv |
10.3390/genes14091757 |
author2-role |
verfasserin |
title_sort |
genetic diversity and population structure in ethiopian mustard (<i<brassica carinata</i< a. braun) as revealed by single nucleotide polymorphism markers |
callnumber |
QH426-470 |
title_auth |
Genetic Diversity and Population Structure in Ethiopian Mustard (<i<Brassica carinata</i< A. Braun) as Revealed by Single Nucleotide Polymorphism Markers |
abstract |
Ethiopian mustard (<i<Brassica carinata</i< A. Braun) is currently one of the potential oilseeds dedicated to the production for biofuel and other bio-industrial applications. The crop is assumed to be native to Ethiopia where a number of diversified <i<B. carinata</i< germplasms are found and conserved <i<ex situ</i<. However, there is very limited information on the genetic diversity and population structure of the species. This study aimed to investigate the genetic diversity and population structure of <i<B. carinata</i< genotypes of different origins using high-throughput single nucleotide polymorphism (SNP) markers. We used Brassica 90K Illumina Infinium<sup<TM</sup< SNP array for genotyping 90 <i<B. carinata</i< genotypes, and a total of 11,499 informative SNP markers were used for investigating the population structure and genetic diversity. The structure analysis, principal coordinate analysis (PcoA) and neighbor-joining tree analysis clustered the 90 <i<B. carinata</i< genotypes into two distinct subpopulations (Pop1 and Pop2). The majority of accessions (65%) were clustered in Pop1, mainly obtained from Oromia and South West Ethiopian People (SWEP) regions. Pop2 constituted dominantly of breeding lines and varieties, implying target selection contributed to the formation of distinct populations. Analysis of molecular variance (AMOVA) revealed a higher genetic variation (93%) within populations than between populations (7%), with low genetic differentiation (PhiPT = 0.07) and poor correlation between genetic and geographical distance (R = 0.02). This implies the presence of gene flow (Nm < 1) and weak geographical structure of accessions. Genetic diversity indices showed the presence of moderate genetic diversity in <i<B. carinata</i< populations with an average genetic diversity value (<i<H<sub<E</sub<</i< = 0.31) and polymorphism information content (PIC = 0.26). The findings of this study provide important and relevant information for future breeding and conservation efforts of <i<B. carinata</i<. |
abstractGer |
Ethiopian mustard (<i<Brassica carinata</i< A. Braun) is currently one of the potential oilseeds dedicated to the production for biofuel and other bio-industrial applications. The crop is assumed to be native to Ethiopia where a number of diversified <i<B. carinata</i< germplasms are found and conserved <i<ex situ</i<. However, there is very limited information on the genetic diversity and population structure of the species. This study aimed to investigate the genetic diversity and population structure of <i<B. carinata</i< genotypes of different origins using high-throughput single nucleotide polymorphism (SNP) markers. We used Brassica 90K Illumina Infinium<sup<TM</sup< SNP array for genotyping 90 <i<B. carinata</i< genotypes, and a total of 11,499 informative SNP markers were used for investigating the population structure and genetic diversity. The structure analysis, principal coordinate analysis (PcoA) and neighbor-joining tree analysis clustered the 90 <i<B. carinata</i< genotypes into two distinct subpopulations (Pop1 and Pop2). The majority of accessions (65%) were clustered in Pop1, mainly obtained from Oromia and South West Ethiopian People (SWEP) regions. Pop2 constituted dominantly of breeding lines and varieties, implying target selection contributed to the formation of distinct populations. Analysis of molecular variance (AMOVA) revealed a higher genetic variation (93%) within populations than between populations (7%), with low genetic differentiation (PhiPT = 0.07) and poor correlation between genetic and geographical distance (R = 0.02). This implies the presence of gene flow (Nm < 1) and weak geographical structure of accessions. Genetic diversity indices showed the presence of moderate genetic diversity in <i<B. carinata</i< populations with an average genetic diversity value (<i<H<sub<E</sub<</i< = 0.31) and polymorphism information content (PIC = 0.26). The findings of this study provide important and relevant information for future breeding and conservation efforts of <i<B. carinata</i<. |
abstract_unstemmed |
Ethiopian mustard (<i<Brassica carinata</i< A. Braun) is currently one of the potential oilseeds dedicated to the production for biofuel and other bio-industrial applications. The crop is assumed to be native to Ethiopia where a number of diversified <i<B. carinata</i< germplasms are found and conserved <i<ex situ</i<. However, there is very limited information on the genetic diversity and population structure of the species. This study aimed to investigate the genetic diversity and population structure of <i<B. carinata</i< genotypes of different origins using high-throughput single nucleotide polymorphism (SNP) markers. We used Brassica 90K Illumina Infinium<sup<TM</sup< SNP array for genotyping 90 <i<B. carinata</i< genotypes, and a total of 11,499 informative SNP markers were used for investigating the population structure and genetic diversity. The structure analysis, principal coordinate analysis (PcoA) and neighbor-joining tree analysis clustered the 90 <i<B. carinata</i< genotypes into two distinct subpopulations (Pop1 and Pop2). The majority of accessions (65%) were clustered in Pop1, mainly obtained from Oromia and South West Ethiopian People (SWEP) regions. Pop2 constituted dominantly of breeding lines and varieties, implying target selection contributed to the formation of distinct populations. Analysis of molecular variance (AMOVA) revealed a higher genetic variation (93%) within populations than between populations (7%), with low genetic differentiation (PhiPT = 0.07) and poor correlation between genetic and geographical distance (R = 0.02). This implies the presence of gene flow (Nm < 1) and weak geographical structure of accessions. Genetic diversity indices showed the presence of moderate genetic diversity in <i<B. carinata</i< populations with an average genetic diversity value (<i<H<sub<E</sub<</i< = 0.31) and polymorphism information content (PIC = 0.26). The findings of this study provide important and relevant information for future breeding and conservation efforts of <i<B. carinata</i<. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1757, p 1757 |
title_short |
Genetic Diversity and Population Structure in Ethiopian Mustard (<i<Brassica carinata</i< A. Braun) as Revealed by Single Nucleotide Polymorphism Markers |
url |
https://doi.org/10.3390/genes14091757 https://doaj.org/article/512c9c274045422a86c65dc45ef96ca0 https://www.mdpi.com/2073-4425/14/9/1757 https://doaj.org/toc/2073-4425 |
remote_bool |
true |
author2 |
Tileye Feyissa Teklehaimanot Hailesilassie Selvaraju Kanagarajan Li-Hua Zhu |
author2Str |
Tileye Feyissa Teklehaimanot Hailesilassie Selvaraju Kanagarajan Li-Hua Zhu |
ppnlink |
614096537 |
callnumber-subject |
QH - Natural History and Biology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/genes14091757 |
callnumber-a |
QH426-470 |
up_date |
2024-07-03T17:05:11.315Z |
_version_ |
1803578309423923200 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ093398034</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413212538.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/genes14091757</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ093398034</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ512c9c274045422a86c65dc45ef96ca0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH426-470</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Misteru Tesfaye</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Genetic Diversity and Population Structure in Ethiopian Mustard (<i<Brassica carinata</i< A. Braun) as Revealed by Single Nucleotide Polymorphism Markers</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Ethiopian mustard (<i<Brassica carinata</i< A. Braun) is currently one of the potential oilseeds dedicated to the production for biofuel and other bio-industrial applications. The crop is assumed to be native to Ethiopia where a number of diversified <i<B. carinata</i< germplasms are found and conserved <i<ex situ</i<. However, there is very limited information on the genetic diversity and population structure of the species. This study aimed to investigate the genetic diversity and population structure of <i<B. carinata</i< genotypes of different origins using high-throughput single nucleotide polymorphism (SNP) markers. We used Brassica 90K Illumina Infinium<sup<TM</sup< SNP array for genotyping 90 <i<B. carinata</i< genotypes, and a total of 11,499 informative SNP markers were used for investigating the population structure and genetic diversity. The structure analysis, principal coordinate analysis (PcoA) and neighbor-joining tree analysis clustered the 90 <i<B. carinata</i< genotypes into two distinct subpopulations (Pop1 and Pop2). The majority of accessions (65%) were clustered in Pop1, mainly obtained from Oromia and South West Ethiopian People (SWEP) regions. Pop2 constituted dominantly of breeding lines and varieties, implying target selection contributed to the formation of distinct populations. Analysis of molecular variance (AMOVA) revealed a higher genetic variation (93%) within populations than between populations (7%), with low genetic differentiation (PhiPT = 0.07) and poor correlation between genetic and geographical distance (R = 0.02). This implies the presence of gene flow (Nm < 1) and weak geographical structure of accessions. Genetic diversity indices showed the presence of moderate genetic diversity in <i<B. carinata</i< populations with an average genetic diversity value (<i<H<sub<E</sub<</i< = 0.31) and polymorphism information content (PIC = 0.26). The findings of this study provide important and relevant information for future breeding and conservation efforts of <i<B. carinata</i<.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><i<Brassica carinata</i<</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">genetic diversity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">population structure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">single nucleotide polymorphism marker</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Genetics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tileye Feyissa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Teklehaimanot Hailesilassie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Selvaraju Kanagarajan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Li-Hua Zhu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Genes</subfield><subfield code="d">MDPI AG, 2010</subfield><subfield code="g">14(2023), 1757, p 1757</subfield><subfield code="w">(DE-627)614096537</subfield><subfield code="w">(DE-600)2527218-4</subfield><subfield code="x">20734425</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1757, p 1757</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/genes14091757</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/512c9c274045422a86c65dc45ef96ca0</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2073-4425/14/9/1757</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2073-4425</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2023</subfield><subfield code="e">1757, p 1757</subfield></datafield></record></collection>
|
score |
7.401143 |