Identification and Analysis of Sex-Biased MicroRNAs in Human Diseases
It is well known that significant differences exist between males and females in both physiology and disease. Thus, it is important to identify and analyze sex-biased miRNAs. However, previous studies investigating sex differences in miRNA expression have predominantly focused on healthy individuals...
Ausführliche Beschreibung
Autor*in: |
Bitao Zhong [verfasserIn] Chunmei Cui [verfasserIn] Qinghua Cui [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Genes - MDPI AG, 2010, 14(2023), 1688, p 1688 |
---|---|
Übergeordnetes Werk: |
volume:14 ; year:2023 ; number:1688, p 1688 |
Links: |
---|
DOI / URN: |
10.3390/genes14091688 |
---|
Katalog-ID: |
DOAJ093398786 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ093398786 | ||
003 | DE-627 | ||
005 | 20240413212545.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/genes14091688 |2 doi | |
035 | |a (DE-627)DOAJ093398786 | ||
035 | |a (DE-599)DOAJcded4ca579a846b287c6dc86795f3cbe | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QH426-470 | |
100 | 0 | |a Bitao Zhong |e verfasserin |4 aut | |
245 | 1 | 0 | |a Identification and Analysis of Sex-Biased MicroRNAs in Human Diseases |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a It is well known that significant differences exist between males and females in both physiology and disease. Thus, it is important to identify and analyze sex-biased miRNAs. However, previous studies investigating sex differences in miRNA expression have predominantly focused on healthy individuals or restricted their analysis to a single disease. Therefore, it is necessary to comprehensively identify and analyze the sex-biased miRNAs in diseases. For this purpose, in this study, we first identified the miRNAs showing sex-biased expression between males and females in diseases based on a number of miRNA expression datasets. Then, we performed a bioinformatics analysis for these sex-biased miRNAs. Notably, our findings revealed that women exhibit a greater number of conserved miRNAs that are highly expressed compared to men, and these miRNAs are implicated in a broader spectrum of diseases. Additionally, we explored the enriched transcription factors, functions, and diseases associated with these sex-biased miRNAs using the miRNA set enrichment analysis tool TAM 2.0. The insights gained from this study could carry implications for endeavors such as precision medicine and possibly pave the way for more targeted and tailored approaches to disease management. | ||
650 | 4 | |a microRNA | |
650 | 4 | |a sex-biased expression | |
650 | 4 | |a bioinformatic analysis | |
653 | 0 | |a Genetics | |
700 | 0 | |a Chunmei Cui |e verfasserin |4 aut | |
700 | 0 | |a Qinghua Cui |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Genes |d MDPI AG, 2010 |g 14(2023), 1688, p 1688 |w (DE-627)614096537 |w (DE-600)2527218-4 |x 20734425 |7 nnns |
773 | 1 | 8 | |g volume:14 |g year:2023 |g number:1688, p 1688 |
856 | 4 | 0 | |u https://doi.org/10.3390/genes14091688 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/cded4ca579a846b287c6dc86795f3cbe |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2073-4425/14/9/1688 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2073-4425 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 14 |j 2023 |e 1688, p 1688 |
author_variant |
b z bz c c cc q c qc |
---|---|
matchkey_str |
article:20734425:2023----::dniiainnaayiosxisdirra |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
QH |
publishDate |
2023 |
allfields |
10.3390/genes14091688 doi (DE-627)DOAJ093398786 (DE-599)DOAJcded4ca579a846b287c6dc86795f3cbe DE-627 ger DE-627 rakwb eng QH426-470 Bitao Zhong verfasserin aut Identification and Analysis of Sex-Biased MicroRNAs in Human Diseases 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier It is well known that significant differences exist between males and females in both physiology and disease. Thus, it is important to identify and analyze sex-biased miRNAs. However, previous studies investigating sex differences in miRNA expression have predominantly focused on healthy individuals or restricted their analysis to a single disease. Therefore, it is necessary to comprehensively identify and analyze the sex-biased miRNAs in diseases. For this purpose, in this study, we first identified the miRNAs showing sex-biased expression between males and females in diseases based on a number of miRNA expression datasets. Then, we performed a bioinformatics analysis for these sex-biased miRNAs. Notably, our findings revealed that women exhibit a greater number of conserved miRNAs that are highly expressed compared to men, and these miRNAs are implicated in a broader spectrum of diseases. Additionally, we explored the enriched transcription factors, functions, and diseases associated with these sex-biased miRNAs using the miRNA set enrichment analysis tool TAM 2.0. The insights gained from this study could carry implications for endeavors such as precision medicine and possibly pave the way for more targeted and tailored approaches to disease management. microRNA sex-biased expression bioinformatic analysis Genetics Chunmei Cui verfasserin aut Qinghua Cui verfasserin aut In Genes MDPI AG, 2010 14(2023), 1688, p 1688 (DE-627)614096537 (DE-600)2527218-4 20734425 nnns volume:14 year:2023 number:1688, p 1688 https://doi.org/10.3390/genes14091688 kostenfrei https://doaj.org/article/cded4ca579a846b287c6dc86795f3cbe kostenfrei https://www.mdpi.com/2073-4425/14/9/1688 kostenfrei https://doaj.org/toc/2073-4425 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2023 1688, p 1688 |
spelling |
10.3390/genes14091688 doi (DE-627)DOAJ093398786 (DE-599)DOAJcded4ca579a846b287c6dc86795f3cbe DE-627 ger DE-627 rakwb eng QH426-470 Bitao Zhong verfasserin aut Identification and Analysis of Sex-Biased MicroRNAs in Human Diseases 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier It is well known that significant differences exist between males and females in both physiology and disease. Thus, it is important to identify and analyze sex-biased miRNAs. However, previous studies investigating sex differences in miRNA expression have predominantly focused on healthy individuals or restricted their analysis to a single disease. Therefore, it is necessary to comprehensively identify and analyze the sex-biased miRNAs in diseases. For this purpose, in this study, we first identified the miRNAs showing sex-biased expression between males and females in diseases based on a number of miRNA expression datasets. Then, we performed a bioinformatics analysis for these sex-biased miRNAs. Notably, our findings revealed that women exhibit a greater number of conserved miRNAs that are highly expressed compared to men, and these miRNAs are implicated in a broader spectrum of diseases. Additionally, we explored the enriched transcription factors, functions, and diseases associated with these sex-biased miRNAs using the miRNA set enrichment analysis tool TAM 2.0. The insights gained from this study could carry implications for endeavors such as precision medicine and possibly pave the way for more targeted and tailored approaches to disease management. microRNA sex-biased expression bioinformatic analysis Genetics Chunmei Cui verfasserin aut Qinghua Cui verfasserin aut In Genes MDPI AG, 2010 14(2023), 1688, p 1688 (DE-627)614096537 (DE-600)2527218-4 20734425 nnns volume:14 year:2023 number:1688, p 1688 https://doi.org/10.3390/genes14091688 kostenfrei https://doaj.org/article/cded4ca579a846b287c6dc86795f3cbe kostenfrei https://www.mdpi.com/2073-4425/14/9/1688 kostenfrei https://doaj.org/toc/2073-4425 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2023 1688, p 1688 |
allfields_unstemmed |
10.3390/genes14091688 doi (DE-627)DOAJ093398786 (DE-599)DOAJcded4ca579a846b287c6dc86795f3cbe DE-627 ger DE-627 rakwb eng QH426-470 Bitao Zhong verfasserin aut Identification and Analysis of Sex-Biased MicroRNAs in Human Diseases 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier It is well known that significant differences exist between males and females in both physiology and disease. Thus, it is important to identify and analyze sex-biased miRNAs. However, previous studies investigating sex differences in miRNA expression have predominantly focused on healthy individuals or restricted their analysis to a single disease. Therefore, it is necessary to comprehensively identify and analyze the sex-biased miRNAs in diseases. For this purpose, in this study, we first identified the miRNAs showing sex-biased expression between males and females in diseases based on a number of miRNA expression datasets. Then, we performed a bioinformatics analysis for these sex-biased miRNAs. Notably, our findings revealed that women exhibit a greater number of conserved miRNAs that are highly expressed compared to men, and these miRNAs are implicated in a broader spectrum of diseases. Additionally, we explored the enriched transcription factors, functions, and diseases associated with these sex-biased miRNAs using the miRNA set enrichment analysis tool TAM 2.0. The insights gained from this study could carry implications for endeavors such as precision medicine and possibly pave the way for more targeted and tailored approaches to disease management. microRNA sex-biased expression bioinformatic analysis Genetics Chunmei Cui verfasserin aut Qinghua Cui verfasserin aut In Genes MDPI AG, 2010 14(2023), 1688, p 1688 (DE-627)614096537 (DE-600)2527218-4 20734425 nnns volume:14 year:2023 number:1688, p 1688 https://doi.org/10.3390/genes14091688 kostenfrei https://doaj.org/article/cded4ca579a846b287c6dc86795f3cbe kostenfrei https://www.mdpi.com/2073-4425/14/9/1688 kostenfrei https://doaj.org/toc/2073-4425 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2023 1688, p 1688 |
allfieldsGer |
10.3390/genes14091688 doi (DE-627)DOAJ093398786 (DE-599)DOAJcded4ca579a846b287c6dc86795f3cbe DE-627 ger DE-627 rakwb eng QH426-470 Bitao Zhong verfasserin aut Identification and Analysis of Sex-Biased MicroRNAs in Human Diseases 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier It is well known that significant differences exist between males and females in both physiology and disease. Thus, it is important to identify and analyze sex-biased miRNAs. However, previous studies investigating sex differences in miRNA expression have predominantly focused on healthy individuals or restricted their analysis to a single disease. Therefore, it is necessary to comprehensively identify and analyze the sex-biased miRNAs in diseases. For this purpose, in this study, we first identified the miRNAs showing sex-biased expression between males and females in diseases based on a number of miRNA expression datasets. Then, we performed a bioinformatics analysis for these sex-biased miRNAs. Notably, our findings revealed that women exhibit a greater number of conserved miRNAs that are highly expressed compared to men, and these miRNAs are implicated in a broader spectrum of diseases. Additionally, we explored the enriched transcription factors, functions, and diseases associated with these sex-biased miRNAs using the miRNA set enrichment analysis tool TAM 2.0. The insights gained from this study could carry implications for endeavors such as precision medicine and possibly pave the way for more targeted and tailored approaches to disease management. microRNA sex-biased expression bioinformatic analysis Genetics Chunmei Cui verfasserin aut Qinghua Cui verfasserin aut In Genes MDPI AG, 2010 14(2023), 1688, p 1688 (DE-627)614096537 (DE-600)2527218-4 20734425 nnns volume:14 year:2023 number:1688, p 1688 https://doi.org/10.3390/genes14091688 kostenfrei https://doaj.org/article/cded4ca579a846b287c6dc86795f3cbe kostenfrei https://www.mdpi.com/2073-4425/14/9/1688 kostenfrei https://doaj.org/toc/2073-4425 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2023 1688, p 1688 |
allfieldsSound |
10.3390/genes14091688 doi (DE-627)DOAJ093398786 (DE-599)DOAJcded4ca579a846b287c6dc86795f3cbe DE-627 ger DE-627 rakwb eng QH426-470 Bitao Zhong verfasserin aut Identification and Analysis of Sex-Biased MicroRNAs in Human Diseases 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier It is well known that significant differences exist between males and females in both physiology and disease. Thus, it is important to identify and analyze sex-biased miRNAs. However, previous studies investigating sex differences in miRNA expression have predominantly focused on healthy individuals or restricted their analysis to a single disease. Therefore, it is necessary to comprehensively identify and analyze the sex-biased miRNAs in diseases. For this purpose, in this study, we first identified the miRNAs showing sex-biased expression between males and females in diseases based on a number of miRNA expression datasets. Then, we performed a bioinformatics analysis for these sex-biased miRNAs. Notably, our findings revealed that women exhibit a greater number of conserved miRNAs that are highly expressed compared to men, and these miRNAs are implicated in a broader spectrum of diseases. Additionally, we explored the enriched transcription factors, functions, and diseases associated with these sex-biased miRNAs using the miRNA set enrichment analysis tool TAM 2.0. The insights gained from this study could carry implications for endeavors such as precision medicine and possibly pave the way for more targeted and tailored approaches to disease management. microRNA sex-biased expression bioinformatic analysis Genetics Chunmei Cui verfasserin aut Qinghua Cui verfasserin aut In Genes MDPI AG, 2010 14(2023), 1688, p 1688 (DE-627)614096537 (DE-600)2527218-4 20734425 nnns volume:14 year:2023 number:1688, p 1688 https://doi.org/10.3390/genes14091688 kostenfrei https://doaj.org/article/cded4ca579a846b287c6dc86795f3cbe kostenfrei https://www.mdpi.com/2073-4425/14/9/1688 kostenfrei https://doaj.org/toc/2073-4425 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2023 1688, p 1688 |
language |
English |
source |
In Genes 14(2023), 1688, p 1688 volume:14 year:2023 number:1688, p 1688 |
sourceStr |
In Genes 14(2023), 1688, p 1688 volume:14 year:2023 number:1688, p 1688 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
microRNA sex-biased expression bioinformatic analysis Genetics |
isfreeaccess_bool |
true |
container_title |
Genes |
authorswithroles_txt_mv |
Bitao Zhong @@aut@@ Chunmei Cui @@aut@@ Qinghua Cui @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
614096537 |
id |
DOAJ093398786 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ093398786</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413212545.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/genes14091688</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ093398786</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJcded4ca579a846b287c6dc86795f3cbe</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH426-470</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Bitao Zhong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Identification and Analysis of Sex-Biased MicroRNAs in Human Diseases</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">It is well known that significant differences exist between males and females in both physiology and disease. Thus, it is important to identify and analyze sex-biased miRNAs. However, previous studies investigating sex differences in miRNA expression have predominantly focused on healthy individuals or restricted their analysis to a single disease. Therefore, it is necessary to comprehensively identify and analyze the sex-biased miRNAs in diseases. For this purpose, in this study, we first identified the miRNAs showing sex-biased expression between males and females in diseases based on a number of miRNA expression datasets. Then, we performed a bioinformatics analysis for these sex-biased miRNAs. Notably, our findings revealed that women exhibit a greater number of conserved miRNAs that are highly expressed compared to men, and these miRNAs are implicated in a broader spectrum of diseases. Additionally, we explored the enriched transcription factors, functions, and diseases associated with these sex-biased miRNAs using the miRNA set enrichment analysis tool TAM 2.0. The insights gained from this study could carry implications for endeavors such as precision medicine and possibly pave the way for more targeted and tailored approaches to disease management.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">microRNA</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sex-biased expression</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bioinformatic analysis</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Genetics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chunmei Cui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qinghua Cui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Genes</subfield><subfield code="d">MDPI AG, 2010</subfield><subfield code="g">14(2023), 1688, p 1688</subfield><subfield code="w">(DE-627)614096537</subfield><subfield code="w">(DE-600)2527218-4</subfield><subfield code="x">20734425</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1688, p 1688</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/genes14091688</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/cded4ca579a846b287c6dc86795f3cbe</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2073-4425/14/9/1688</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2073-4425</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2023</subfield><subfield code="e">1688, p 1688</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Bitao Zhong |
spellingShingle |
Bitao Zhong misc QH426-470 misc microRNA misc sex-biased expression misc bioinformatic analysis misc Genetics Identification and Analysis of Sex-Biased MicroRNAs in Human Diseases |
authorStr |
Bitao Zhong |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)614096537 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QH426-470 |
illustrated |
Not Illustrated |
issn |
20734425 |
topic_title |
QH426-470 Identification and Analysis of Sex-Biased MicroRNAs in Human Diseases microRNA sex-biased expression bioinformatic analysis |
topic |
misc QH426-470 misc microRNA misc sex-biased expression misc bioinformatic analysis misc Genetics |
topic_unstemmed |
misc QH426-470 misc microRNA misc sex-biased expression misc bioinformatic analysis misc Genetics |
topic_browse |
misc QH426-470 misc microRNA misc sex-biased expression misc bioinformatic analysis misc Genetics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Genes |
hierarchy_parent_id |
614096537 |
hierarchy_top_title |
Genes |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)614096537 (DE-600)2527218-4 |
title |
Identification and Analysis of Sex-Biased MicroRNAs in Human Diseases |
ctrlnum |
(DE-627)DOAJ093398786 (DE-599)DOAJcded4ca579a846b287c6dc86795f3cbe |
title_full |
Identification and Analysis of Sex-Biased MicroRNAs in Human Diseases |
author_sort |
Bitao Zhong |
journal |
Genes |
journalStr |
Genes |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Bitao Zhong Chunmei Cui Qinghua Cui |
container_volume |
14 |
class |
QH426-470 |
format_se |
Elektronische Aufsätze |
author-letter |
Bitao Zhong |
doi_str_mv |
10.3390/genes14091688 |
author2-role |
verfasserin |
title_sort |
identification and analysis of sex-biased micrornas in human diseases |
callnumber |
QH426-470 |
title_auth |
Identification and Analysis of Sex-Biased MicroRNAs in Human Diseases |
abstract |
It is well known that significant differences exist between males and females in both physiology and disease. Thus, it is important to identify and analyze sex-biased miRNAs. However, previous studies investigating sex differences in miRNA expression have predominantly focused on healthy individuals or restricted their analysis to a single disease. Therefore, it is necessary to comprehensively identify and analyze the sex-biased miRNAs in diseases. For this purpose, in this study, we first identified the miRNAs showing sex-biased expression between males and females in diseases based on a number of miRNA expression datasets. Then, we performed a bioinformatics analysis for these sex-biased miRNAs. Notably, our findings revealed that women exhibit a greater number of conserved miRNAs that are highly expressed compared to men, and these miRNAs are implicated in a broader spectrum of diseases. Additionally, we explored the enriched transcription factors, functions, and diseases associated with these sex-biased miRNAs using the miRNA set enrichment analysis tool TAM 2.0. The insights gained from this study could carry implications for endeavors such as precision medicine and possibly pave the way for more targeted and tailored approaches to disease management. |
abstractGer |
It is well known that significant differences exist between males and females in both physiology and disease. Thus, it is important to identify and analyze sex-biased miRNAs. However, previous studies investigating sex differences in miRNA expression have predominantly focused on healthy individuals or restricted their analysis to a single disease. Therefore, it is necessary to comprehensively identify and analyze the sex-biased miRNAs in diseases. For this purpose, in this study, we first identified the miRNAs showing sex-biased expression between males and females in diseases based on a number of miRNA expression datasets. Then, we performed a bioinformatics analysis for these sex-biased miRNAs. Notably, our findings revealed that women exhibit a greater number of conserved miRNAs that are highly expressed compared to men, and these miRNAs are implicated in a broader spectrum of diseases. Additionally, we explored the enriched transcription factors, functions, and diseases associated with these sex-biased miRNAs using the miRNA set enrichment analysis tool TAM 2.0. The insights gained from this study could carry implications for endeavors such as precision medicine and possibly pave the way for more targeted and tailored approaches to disease management. |
abstract_unstemmed |
It is well known that significant differences exist between males and females in both physiology and disease. Thus, it is important to identify and analyze sex-biased miRNAs. However, previous studies investigating sex differences in miRNA expression have predominantly focused on healthy individuals or restricted their analysis to a single disease. Therefore, it is necessary to comprehensively identify and analyze the sex-biased miRNAs in diseases. For this purpose, in this study, we first identified the miRNAs showing sex-biased expression between males and females in diseases based on a number of miRNA expression datasets. Then, we performed a bioinformatics analysis for these sex-biased miRNAs. Notably, our findings revealed that women exhibit a greater number of conserved miRNAs that are highly expressed compared to men, and these miRNAs are implicated in a broader spectrum of diseases. Additionally, we explored the enriched transcription factors, functions, and diseases associated with these sex-biased miRNAs using the miRNA set enrichment analysis tool TAM 2.0. The insights gained from this study could carry implications for endeavors such as precision medicine and possibly pave the way for more targeted and tailored approaches to disease management. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1688, p 1688 |
title_short |
Identification and Analysis of Sex-Biased MicroRNAs in Human Diseases |
url |
https://doi.org/10.3390/genes14091688 https://doaj.org/article/cded4ca579a846b287c6dc86795f3cbe https://www.mdpi.com/2073-4425/14/9/1688 https://doaj.org/toc/2073-4425 |
remote_bool |
true |
author2 |
Chunmei Cui Qinghua Cui |
author2Str |
Chunmei Cui Qinghua Cui |
ppnlink |
614096537 |
callnumber-subject |
QH - Natural History and Biology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/genes14091688 |
callnumber-a |
QH426-470 |
up_date |
2024-07-03T17:05:27.837Z |
_version_ |
1803578326742204416 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ093398786</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413212545.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/genes14091688</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ093398786</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJcded4ca579a846b287c6dc86795f3cbe</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH426-470</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Bitao Zhong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Identification and Analysis of Sex-Biased MicroRNAs in Human Diseases</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">It is well known that significant differences exist between males and females in both physiology and disease. Thus, it is important to identify and analyze sex-biased miRNAs. However, previous studies investigating sex differences in miRNA expression have predominantly focused on healthy individuals or restricted their analysis to a single disease. Therefore, it is necessary to comprehensively identify and analyze the sex-biased miRNAs in diseases. For this purpose, in this study, we first identified the miRNAs showing sex-biased expression between males and females in diseases based on a number of miRNA expression datasets. Then, we performed a bioinformatics analysis for these sex-biased miRNAs. Notably, our findings revealed that women exhibit a greater number of conserved miRNAs that are highly expressed compared to men, and these miRNAs are implicated in a broader spectrum of diseases. Additionally, we explored the enriched transcription factors, functions, and diseases associated with these sex-biased miRNAs using the miRNA set enrichment analysis tool TAM 2.0. The insights gained from this study could carry implications for endeavors such as precision medicine and possibly pave the way for more targeted and tailored approaches to disease management.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">microRNA</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sex-biased expression</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bioinformatic analysis</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Genetics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chunmei Cui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qinghua Cui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Genes</subfield><subfield code="d">MDPI AG, 2010</subfield><subfield code="g">14(2023), 1688, p 1688</subfield><subfield code="w">(DE-627)614096537</subfield><subfield code="w">(DE-600)2527218-4</subfield><subfield code="x">20734425</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1688, p 1688</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/genes14091688</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/cded4ca579a846b287c6dc86795f3cbe</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2073-4425/14/9/1688</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2073-4425</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2023</subfield><subfield code="e">1688, p 1688</subfield></datafield></record></collection>
|
score |
7.400342 |