Hierarchical Decentralized Federated Learning Framework with Adaptive Clustering: Bloom-Filter-Based Companions Choice for Learning Non-IID Data in IoV
The accelerating progress of the Internet of Vehicles (IoV) has put forward a higher demand for distributed model training and data sharing in vehicular networks. Traditional centralized approaches are no longer applicable in the face of drivers’ concerns about data privacy, while Decentralized Fede...
Ausführliche Beschreibung
Autor*in: |
Siyuan Liu [verfasserIn] Zhiqiang Liu [verfasserIn] Zhiwei Xu [verfasserIn] Wenjing Liu [verfasserIn] Jie Tian [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
hierarchical decentralized federated learning |
---|
Übergeordnetes Werk: |
In: Electronics - MDPI AG, 2013, 12(2023), 3811, p 3811 |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2023 ; number:3811, p 3811 |
Links: |
---|
DOI / URN: |
10.3390/electronics12183811 |
---|
Katalog-ID: |
DOAJ09342079X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ09342079X | ||
003 | DE-627 | ||
005 | 20240414035408.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/electronics12183811 |2 doi | |
035 | |a (DE-627)DOAJ09342079X | ||
035 | |a (DE-599)DOAJ778f29dd98494573b154cbc23a2ba4cd | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK7800-8360 | |
100 | 0 | |a Siyuan Liu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Hierarchical Decentralized Federated Learning Framework with Adaptive Clustering: Bloom-Filter-Based Companions Choice for Learning Non-IID Data in IoV |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The accelerating progress of the Internet of Vehicles (IoV) has put forward a higher demand for distributed model training and data sharing in vehicular networks. Traditional centralized approaches are no longer applicable in the face of drivers’ concerns about data privacy, while Decentralized Federated Learning (DFL) provides new possibilities to address this issue. However, DFL still faces challenges regarding the non-IID data of passing vehicles. To tackle this challenge, a novel DFL framework, Hierarchical Decentralized Federated Learning (H-DFL), is proposed to achieve qualified distributed training among vehicles by considering data complementarity. We include vehicles, base stations, and data center servers in this framework. Firstly, a novel vehicle-clustering paradigm is designed to group passing vehicles based on the Bloom-filter-based compact representation of data complementarity. In this way, vehicles train their models based on local data, exchange model parameters in each group, and achieve a qualified local model without the interference of imbalanced data. On a higher level, a local model trained by each group is submitted to the data center to obtain a model covering global features. Base stations maintain the local models of different groups and judge whether the local models need to be updated according to the global model. The experimental results based on real-world data demonstrate that H-DFL dose not only reduces communication latency with different participants but also addresses the challenges of non-IID data in vehicles. | ||
650 | 4 | |a Internet of Vehicles | |
650 | 4 | |a hierarchical decentralized federated learning | |
650 | 4 | |a in-network compact representation | |
650 | 4 | |a vehicle clustering | |
653 | 0 | |a Electronics | |
700 | 0 | |a Zhiqiang Liu |e verfasserin |4 aut | |
700 | 0 | |a Zhiwei Xu |e verfasserin |4 aut | |
700 | 0 | |a Wenjing Liu |e verfasserin |4 aut | |
700 | 0 | |a Jie Tian |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Electronics |d MDPI AG, 2013 |g 12(2023), 3811, p 3811 |w (DE-627)718626478 |w (DE-600)2662127-7 |x 20799292 |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2023 |g number:3811, p 3811 |
856 | 4 | 0 | |u https://doi.org/10.3390/electronics12183811 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/778f29dd98494573b154cbc23a2ba4cd |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2079-9292/12/18/3811 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2079-9292 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 12 |j 2023 |e 3811, p 3811 |
author_variant |
s l sl z l zl z x zx w l wl j t jt |
---|---|
matchkey_str |
article:20799292:2023----::irrhcleetaiefdrtderigrmwrwtaatvcutrnbomitraecmai |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
TK |
publishDate |
2023 |
allfields |
10.3390/electronics12183811 doi (DE-627)DOAJ09342079X (DE-599)DOAJ778f29dd98494573b154cbc23a2ba4cd DE-627 ger DE-627 rakwb eng TK7800-8360 Siyuan Liu verfasserin aut Hierarchical Decentralized Federated Learning Framework with Adaptive Clustering: Bloom-Filter-Based Companions Choice for Learning Non-IID Data in IoV 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The accelerating progress of the Internet of Vehicles (IoV) has put forward a higher demand for distributed model training and data sharing in vehicular networks. Traditional centralized approaches are no longer applicable in the face of drivers’ concerns about data privacy, while Decentralized Federated Learning (DFL) provides new possibilities to address this issue. However, DFL still faces challenges regarding the non-IID data of passing vehicles. To tackle this challenge, a novel DFL framework, Hierarchical Decentralized Federated Learning (H-DFL), is proposed to achieve qualified distributed training among vehicles by considering data complementarity. We include vehicles, base stations, and data center servers in this framework. Firstly, a novel vehicle-clustering paradigm is designed to group passing vehicles based on the Bloom-filter-based compact representation of data complementarity. In this way, vehicles train their models based on local data, exchange model parameters in each group, and achieve a qualified local model without the interference of imbalanced data. On a higher level, a local model trained by each group is submitted to the data center to obtain a model covering global features. Base stations maintain the local models of different groups and judge whether the local models need to be updated according to the global model. The experimental results based on real-world data demonstrate that H-DFL dose not only reduces communication latency with different participants but also addresses the challenges of non-IID data in vehicles. Internet of Vehicles hierarchical decentralized federated learning in-network compact representation vehicle clustering Electronics Zhiqiang Liu verfasserin aut Zhiwei Xu verfasserin aut Wenjing Liu verfasserin aut Jie Tian verfasserin aut In Electronics MDPI AG, 2013 12(2023), 3811, p 3811 (DE-627)718626478 (DE-600)2662127-7 20799292 nnns volume:12 year:2023 number:3811, p 3811 https://doi.org/10.3390/electronics12183811 kostenfrei https://doaj.org/article/778f29dd98494573b154cbc23a2ba4cd kostenfrei https://www.mdpi.com/2079-9292/12/18/3811 kostenfrei https://doaj.org/toc/2079-9292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2023 3811, p 3811 |
spelling |
10.3390/electronics12183811 doi (DE-627)DOAJ09342079X (DE-599)DOAJ778f29dd98494573b154cbc23a2ba4cd DE-627 ger DE-627 rakwb eng TK7800-8360 Siyuan Liu verfasserin aut Hierarchical Decentralized Federated Learning Framework with Adaptive Clustering: Bloom-Filter-Based Companions Choice for Learning Non-IID Data in IoV 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The accelerating progress of the Internet of Vehicles (IoV) has put forward a higher demand for distributed model training and data sharing in vehicular networks. Traditional centralized approaches are no longer applicable in the face of drivers’ concerns about data privacy, while Decentralized Federated Learning (DFL) provides new possibilities to address this issue. However, DFL still faces challenges regarding the non-IID data of passing vehicles. To tackle this challenge, a novel DFL framework, Hierarchical Decentralized Federated Learning (H-DFL), is proposed to achieve qualified distributed training among vehicles by considering data complementarity. We include vehicles, base stations, and data center servers in this framework. Firstly, a novel vehicle-clustering paradigm is designed to group passing vehicles based on the Bloom-filter-based compact representation of data complementarity. In this way, vehicles train their models based on local data, exchange model parameters in each group, and achieve a qualified local model without the interference of imbalanced data. On a higher level, a local model trained by each group is submitted to the data center to obtain a model covering global features. Base stations maintain the local models of different groups and judge whether the local models need to be updated according to the global model. The experimental results based on real-world data demonstrate that H-DFL dose not only reduces communication latency with different participants but also addresses the challenges of non-IID data in vehicles. Internet of Vehicles hierarchical decentralized federated learning in-network compact representation vehicle clustering Electronics Zhiqiang Liu verfasserin aut Zhiwei Xu verfasserin aut Wenjing Liu verfasserin aut Jie Tian verfasserin aut In Electronics MDPI AG, 2013 12(2023), 3811, p 3811 (DE-627)718626478 (DE-600)2662127-7 20799292 nnns volume:12 year:2023 number:3811, p 3811 https://doi.org/10.3390/electronics12183811 kostenfrei https://doaj.org/article/778f29dd98494573b154cbc23a2ba4cd kostenfrei https://www.mdpi.com/2079-9292/12/18/3811 kostenfrei https://doaj.org/toc/2079-9292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2023 3811, p 3811 |
allfields_unstemmed |
10.3390/electronics12183811 doi (DE-627)DOAJ09342079X (DE-599)DOAJ778f29dd98494573b154cbc23a2ba4cd DE-627 ger DE-627 rakwb eng TK7800-8360 Siyuan Liu verfasserin aut Hierarchical Decentralized Federated Learning Framework with Adaptive Clustering: Bloom-Filter-Based Companions Choice for Learning Non-IID Data in IoV 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The accelerating progress of the Internet of Vehicles (IoV) has put forward a higher demand for distributed model training and data sharing in vehicular networks. Traditional centralized approaches are no longer applicable in the face of drivers’ concerns about data privacy, while Decentralized Federated Learning (DFL) provides new possibilities to address this issue. However, DFL still faces challenges regarding the non-IID data of passing vehicles. To tackle this challenge, a novel DFL framework, Hierarchical Decentralized Federated Learning (H-DFL), is proposed to achieve qualified distributed training among vehicles by considering data complementarity. We include vehicles, base stations, and data center servers in this framework. Firstly, a novel vehicle-clustering paradigm is designed to group passing vehicles based on the Bloom-filter-based compact representation of data complementarity. In this way, vehicles train their models based on local data, exchange model parameters in each group, and achieve a qualified local model without the interference of imbalanced data. On a higher level, a local model trained by each group is submitted to the data center to obtain a model covering global features. Base stations maintain the local models of different groups and judge whether the local models need to be updated according to the global model. The experimental results based on real-world data demonstrate that H-DFL dose not only reduces communication latency with different participants but also addresses the challenges of non-IID data in vehicles. Internet of Vehicles hierarchical decentralized federated learning in-network compact representation vehicle clustering Electronics Zhiqiang Liu verfasserin aut Zhiwei Xu verfasserin aut Wenjing Liu verfasserin aut Jie Tian verfasserin aut In Electronics MDPI AG, 2013 12(2023), 3811, p 3811 (DE-627)718626478 (DE-600)2662127-7 20799292 nnns volume:12 year:2023 number:3811, p 3811 https://doi.org/10.3390/electronics12183811 kostenfrei https://doaj.org/article/778f29dd98494573b154cbc23a2ba4cd kostenfrei https://www.mdpi.com/2079-9292/12/18/3811 kostenfrei https://doaj.org/toc/2079-9292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2023 3811, p 3811 |
allfieldsGer |
10.3390/electronics12183811 doi (DE-627)DOAJ09342079X (DE-599)DOAJ778f29dd98494573b154cbc23a2ba4cd DE-627 ger DE-627 rakwb eng TK7800-8360 Siyuan Liu verfasserin aut Hierarchical Decentralized Federated Learning Framework with Adaptive Clustering: Bloom-Filter-Based Companions Choice for Learning Non-IID Data in IoV 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The accelerating progress of the Internet of Vehicles (IoV) has put forward a higher demand for distributed model training and data sharing in vehicular networks. Traditional centralized approaches are no longer applicable in the face of drivers’ concerns about data privacy, while Decentralized Federated Learning (DFL) provides new possibilities to address this issue. However, DFL still faces challenges regarding the non-IID data of passing vehicles. To tackle this challenge, a novel DFL framework, Hierarchical Decentralized Federated Learning (H-DFL), is proposed to achieve qualified distributed training among vehicles by considering data complementarity. We include vehicles, base stations, and data center servers in this framework. Firstly, a novel vehicle-clustering paradigm is designed to group passing vehicles based on the Bloom-filter-based compact representation of data complementarity. In this way, vehicles train their models based on local data, exchange model parameters in each group, and achieve a qualified local model without the interference of imbalanced data. On a higher level, a local model trained by each group is submitted to the data center to obtain a model covering global features. Base stations maintain the local models of different groups and judge whether the local models need to be updated according to the global model. The experimental results based on real-world data demonstrate that H-DFL dose not only reduces communication latency with different participants but also addresses the challenges of non-IID data in vehicles. Internet of Vehicles hierarchical decentralized federated learning in-network compact representation vehicle clustering Electronics Zhiqiang Liu verfasserin aut Zhiwei Xu verfasserin aut Wenjing Liu verfasserin aut Jie Tian verfasserin aut In Electronics MDPI AG, 2013 12(2023), 3811, p 3811 (DE-627)718626478 (DE-600)2662127-7 20799292 nnns volume:12 year:2023 number:3811, p 3811 https://doi.org/10.3390/electronics12183811 kostenfrei https://doaj.org/article/778f29dd98494573b154cbc23a2ba4cd kostenfrei https://www.mdpi.com/2079-9292/12/18/3811 kostenfrei https://doaj.org/toc/2079-9292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2023 3811, p 3811 |
allfieldsSound |
10.3390/electronics12183811 doi (DE-627)DOAJ09342079X (DE-599)DOAJ778f29dd98494573b154cbc23a2ba4cd DE-627 ger DE-627 rakwb eng TK7800-8360 Siyuan Liu verfasserin aut Hierarchical Decentralized Federated Learning Framework with Adaptive Clustering: Bloom-Filter-Based Companions Choice for Learning Non-IID Data in IoV 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The accelerating progress of the Internet of Vehicles (IoV) has put forward a higher demand for distributed model training and data sharing in vehicular networks. Traditional centralized approaches are no longer applicable in the face of drivers’ concerns about data privacy, while Decentralized Federated Learning (DFL) provides new possibilities to address this issue. However, DFL still faces challenges regarding the non-IID data of passing vehicles. To tackle this challenge, a novel DFL framework, Hierarchical Decentralized Federated Learning (H-DFL), is proposed to achieve qualified distributed training among vehicles by considering data complementarity. We include vehicles, base stations, and data center servers in this framework. Firstly, a novel vehicle-clustering paradigm is designed to group passing vehicles based on the Bloom-filter-based compact representation of data complementarity. In this way, vehicles train their models based on local data, exchange model parameters in each group, and achieve a qualified local model without the interference of imbalanced data. On a higher level, a local model trained by each group is submitted to the data center to obtain a model covering global features. Base stations maintain the local models of different groups and judge whether the local models need to be updated according to the global model. The experimental results based on real-world data demonstrate that H-DFL dose not only reduces communication latency with different participants but also addresses the challenges of non-IID data in vehicles. Internet of Vehicles hierarchical decentralized federated learning in-network compact representation vehicle clustering Electronics Zhiqiang Liu verfasserin aut Zhiwei Xu verfasserin aut Wenjing Liu verfasserin aut Jie Tian verfasserin aut In Electronics MDPI AG, 2013 12(2023), 3811, p 3811 (DE-627)718626478 (DE-600)2662127-7 20799292 nnns volume:12 year:2023 number:3811, p 3811 https://doi.org/10.3390/electronics12183811 kostenfrei https://doaj.org/article/778f29dd98494573b154cbc23a2ba4cd kostenfrei https://www.mdpi.com/2079-9292/12/18/3811 kostenfrei https://doaj.org/toc/2079-9292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2023 3811, p 3811 |
language |
English |
source |
In Electronics 12(2023), 3811, p 3811 volume:12 year:2023 number:3811, p 3811 |
sourceStr |
In Electronics 12(2023), 3811, p 3811 volume:12 year:2023 number:3811, p 3811 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Internet of Vehicles hierarchical decentralized federated learning in-network compact representation vehicle clustering Electronics |
isfreeaccess_bool |
true |
container_title |
Electronics |
authorswithroles_txt_mv |
Siyuan Liu @@aut@@ Zhiqiang Liu @@aut@@ Zhiwei Xu @@aut@@ Wenjing Liu @@aut@@ Jie Tian @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
718626478 |
id |
DOAJ09342079X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ09342079X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414035408.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/electronics12183811</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ09342079X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ778f29dd98494573b154cbc23a2ba4cd</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK7800-8360</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Siyuan Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hierarchical Decentralized Federated Learning Framework with Adaptive Clustering: Bloom-Filter-Based Companions Choice for Learning Non-IID Data in IoV</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The accelerating progress of the Internet of Vehicles (IoV) has put forward a higher demand for distributed model training and data sharing in vehicular networks. Traditional centralized approaches are no longer applicable in the face of drivers’ concerns about data privacy, while Decentralized Federated Learning (DFL) provides new possibilities to address this issue. However, DFL still faces challenges regarding the non-IID data of passing vehicles. To tackle this challenge, a novel DFL framework, Hierarchical Decentralized Federated Learning (H-DFL), is proposed to achieve qualified distributed training among vehicles by considering data complementarity. We include vehicles, base stations, and data center servers in this framework. Firstly, a novel vehicle-clustering paradigm is designed to group passing vehicles based on the Bloom-filter-based compact representation of data complementarity. In this way, vehicles train their models based on local data, exchange model parameters in each group, and achieve a qualified local model without the interference of imbalanced data. On a higher level, a local model trained by each group is submitted to the data center to obtain a model covering global features. Base stations maintain the local models of different groups and judge whether the local models need to be updated according to the global model. The experimental results based on real-world data demonstrate that H-DFL dose not only reduces communication latency with different participants but also addresses the challenges of non-IID data in vehicles.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Internet of Vehicles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hierarchical decentralized federated learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">in-network compact representation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">vehicle clustering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhiqiang Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhiwei Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wenjing Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jie Tian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Electronics</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">12(2023), 3811, p 3811</subfield><subfield code="w">(DE-627)718626478</subfield><subfield code="w">(DE-600)2662127-7</subfield><subfield code="x">20799292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:3811, p 3811</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/electronics12183811</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/778f29dd98494573b154cbc23a2ba4cd</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2079-9292/12/18/3811</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2079-9292</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2023</subfield><subfield code="e">3811, p 3811</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Siyuan Liu |
spellingShingle |
Siyuan Liu misc TK7800-8360 misc Internet of Vehicles misc hierarchical decentralized federated learning misc in-network compact representation misc vehicle clustering misc Electronics Hierarchical Decentralized Federated Learning Framework with Adaptive Clustering: Bloom-Filter-Based Companions Choice for Learning Non-IID Data in IoV |
authorStr |
Siyuan Liu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)718626478 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK7800-8360 |
illustrated |
Not Illustrated |
issn |
20799292 |
topic_title |
TK7800-8360 Hierarchical Decentralized Federated Learning Framework with Adaptive Clustering: Bloom-Filter-Based Companions Choice for Learning Non-IID Data in IoV Internet of Vehicles hierarchical decentralized federated learning in-network compact representation vehicle clustering |
topic |
misc TK7800-8360 misc Internet of Vehicles misc hierarchical decentralized federated learning misc in-network compact representation misc vehicle clustering misc Electronics |
topic_unstemmed |
misc TK7800-8360 misc Internet of Vehicles misc hierarchical decentralized federated learning misc in-network compact representation misc vehicle clustering misc Electronics |
topic_browse |
misc TK7800-8360 misc Internet of Vehicles misc hierarchical decentralized federated learning misc in-network compact representation misc vehicle clustering misc Electronics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Electronics |
hierarchy_parent_id |
718626478 |
hierarchy_top_title |
Electronics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)718626478 (DE-600)2662127-7 |
title |
Hierarchical Decentralized Federated Learning Framework with Adaptive Clustering: Bloom-Filter-Based Companions Choice for Learning Non-IID Data in IoV |
ctrlnum |
(DE-627)DOAJ09342079X (DE-599)DOAJ778f29dd98494573b154cbc23a2ba4cd |
title_full |
Hierarchical Decentralized Federated Learning Framework with Adaptive Clustering: Bloom-Filter-Based Companions Choice for Learning Non-IID Data in IoV |
author_sort |
Siyuan Liu |
journal |
Electronics |
journalStr |
Electronics |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Siyuan Liu Zhiqiang Liu Zhiwei Xu Wenjing Liu Jie Tian |
container_volume |
12 |
class |
TK7800-8360 |
format_se |
Elektronische Aufsätze |
author-letter |
Siyuan Liu |
doi_str_mv |
10.3390/electronics12183811 |
author2-role |
verfasserin |
title_sort |
hierarchical decentralized federated learning framework with adaptive clustering: bloom-filter-based companions choice for learning non-iid data in iov |
callnumber |
TK7800-8360 |
title_auth |
Hierarchical Decentralized Federated Learning Framework with Adaptive Clustering: Bloom-Filter-Based Companions Choice for Learning Non-IID Data in IoV |
abstract |
The accelerating progress of the Internet of Vehicles (IoV) has put forward a higher demand for distributed model training and data sharing in vehicular networks. Traditional centralized approaches are no longer applicable in the face of drivers’ concerns about data privacy, while Decentralized Federated Learning (DFL) provides new possibilities to address this issue. However, DFL still faces challenges regarding the non-IID data of passing vehicles. To tackle this challenge, a novel DFL framework, Hierarchical Decentralized Federated Learning (H-DFL), is proposed to achieve qualified distributed training among vehicles by considering data complementarity. We include vehicles, base stations, and data center servers in this framework. Firstly, a novel vehicle-clustering paradigm is designed to group passing vehicles based on the Bloom-filter-based compact representation of data complementarity. In this way, vehicles train their models based on local data, exchange model parameters in each group, and achieve a qualified local model without the interference of imbalanced data. On a higher level, a local model trained by each group is submitted to the data center to obtain a model covering global features. Base stations maintain the local models of different groups and judge whether the local models need to be updated according to the global model. The experimental results based on real-world data demonstrate that H-DFL dose not only reduces communication latency with different participants but also addresses the challenges of non-IID data in vehicles. |
abstractGer |
The accelerating progress of the Internet of Vehicles (IoV) has put forward a higher demand for distributed model training and data sharing in vehicular networks. Traditional centralized approaches are no longer applicable in the face of drivers’ concerns about data privacy, while Decentralized Federated Learning (DFL) provides new possibilities to address this issue. However, DFL still faces challenges regarding the non-IID data of passing vehicles. To tackle this challenge, a novel DFL framework, Hierarchical Decentralized Federated Learning (H-DFL), is proposed to achieve qualified distributed training among vehicles by considering data complementarity. We include vehicles, base stations, and data center servers in this framework. Firstly, a novel vehicle-clustering paradigm is designed to group passing vehicles based on the Bloom-filter-based compact representation of data complementarity. In this way, vehicles train their models based on local data, exchange model parameters in each group, and achieve a qualified local model without the interference of imbalanced data. On a higher level, a local model trained by each group is submitted to the data center to obtain a model covering global features. Base stations maintain the local models of different groups and judge whether the local models need to be updated according to the global model. The experimental results based on real-world data demonstrate that H-DFL dose not only reduces communication latency with different participants but also addresses the challenges of non-IID data in vehicles. |
abstract_unstemmed |
The accelerating progress of the Internet of Vehicles (IoV) has put forward a higher demand for distributed model training and data sharing in vehicular networks. Traditional centralized approaches are no longer applicable in the face of drivers’ concerns about data privacy, while Decentralized Federated Learning (DFL) provides new possibilities to address this issue. However, DFL still faces challenges regarding the non-IID data of passing vehicles. To tackle this challenge, a novel DFL framework, Hierarchical Decentralized Federated Learning (H-DFL), is proposed to achieve qualified distributed training among vehicles by considering data complementarity. We include vehicles, base stations, and data center servers in this framework. Firstly, a novel vehicle-clustering paradigm is designed to group passing vehicles based on the Bloom-filter-based compact representation of data complementarity. In this way, vehicles train their models based on local data, exchange model parameters in each group, and achieve a qualified local model without the interference of imbalanced data. On a higher level, a local model trained by each group is submitted to the data center to obtain a model covering global features. Base stations maintain the local models of different groups and judge whether the local models need to be updated according to the global model. The experimental results based on real-world data demonstrate that H-DFL dose not only reduces communication latency with different participants but also addresses the challenges of non-IID data in vehicles. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
3811, p 3811 |
title_short |
Hierarchical Decentralized Federated Learning Framework with Adaptive Clustering: Bloom-Filter-Based Companions Choice for Learning Non-IID Data in IoV |
url |
https://doi.org/10.3390/electronics12183811 https://doaj.org/article/778f29dd98494573b154cbc23a2ba4cd https://www.mdpi.com/2079-9292/12/18/3811 https://doaj.org/toc/2079-9292 |
remote_bool |
true |
author2 |
Zhiqiang Liu Zhiwei Xu Wenjing Liu Jie Tian |
author2Str |
Zhiqiang Liu Zhiwei Xu Wenjing Liu Jie Tian |
ppnlink |
718626478 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/electronics12183811 |
callnumber-a |
TK7800-8360 |
up_date |
2024-07-03T17:12:43.071Z |
_version_ |
1803578783114985472 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ09342079X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414035408.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/electronics12183811</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ09342079X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ778f29dd98494573b154cbc23a2ba4cd</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK7800-8360</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Siyuan Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hierarchical Decentralized Federated Learning Framework with Adaptive Clustering: Bloom-Filter-Based Companions Choice for Learning Non-IID Data in IoV</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The accelerating progress of the Internet of Vehicles (IoV) has put forward a higher demand for distributed model training and data sharing in vehicular networks. Traditional centralized approaches are no longer applicable in the face of drivers’ concerns about data privacy, while Decentralized Federated Learning (DFL) provides new possibilities to address this issue. However, DFL still faces challenges regarding the non-IID data of passing vehicles. To tackle this challenge, a novel DFL framework, Hierarchical Decentralized Federated Learning (H-DFL), is proposed to achieve qualified distributed training among vehicles by considering data complementarity. We include vehicles, base stations, and data center servers in this framework. Firstly, a novel vehicle-clustering paradigm is designed to group passing vehicles based on the Bloom-filter-based compact representation of data complementarity. In this way, vehicles train their models based on local data, exchange model parameters in each group, and achieve a qualified local model without the interference of imbalanced data. On a higher level, a local model trained by each group is submitted to the data center to obtain a model covering global features. Base stations maintain the local models of different groups and judge whether the local models need to be updated according to the global model. The experimental results based on real-world data demonstrate that H-DFL dose not only reduces communication latency with different participants but also addresses the challenges of non-IID data in vehicles.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Internet of Vehicles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hierarchical decentralized federated learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">in-network compact representation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">vehicle clustering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhiqiang Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhiwei Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wenjing Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jie Tian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Electronics</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">12(2023), 3811, p 3811</subfield><subfield code="w">(DE-627)718626478</subfield><subfield code="w">(DE-600)2662127-7</subfield><subfield code="x">20799292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:3811, p 3811</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/electronics12183811</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/778f29dd98494573b154cbc23a2ba4cd</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2079-9292/12/18/3811</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2079-9292</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2023</subfield><subfield code="e">3811, p 3811</subfield></datafield></record></collection>
|
score |
7.4021015 |