Combined Unplugged and Educational Robotics Training to Promote Computational Thinking and Cognitive Abilities in Preschoolers
Computational thinking (CT) learning activities are increasingly integrated in early-stage school curricula in several countries. Tools used to teach CT in early school years include unplugged coding—i.e., programming without computing devices—and educational robotics (ER)—i.e., giving instructions...
Ausführliche Beschreibung
Autor*in: |
Chiara Montuori [verfasserIn] Gabriele Pozzan [verfasserIn] Costanza Padova [verfasserIn] Lucia Ronconi [verfasserIn] Tullio Vardanega [verfasserIn] Barbara Arfé [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Education Sciences - MDPI AG, 2012, 13(2023), 858, p 858 |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2023 ; number:858, p 858 |
Links: |
---|
DOI / URN: |
10.3390/educsci13090858 |
---|
Katalog-ID: |
DOAJ093423020 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ093423020 | ||
003 | DE-627 | ||
005 | 20240414035426.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/educsci13090858 |2 doi | |
035 | |a (DE-627)DOAJ093423020 | ||
035 | |a (DE-599)DOAJ6888df9347ee42d5afe345d5ceb43849 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Chiara Montuori |e verfasserin |4 aut | |
245 | 1 | 0 | |a Combined Unplugged and Educational Robotics Training to Promote Computational Thinking and Cognitive Abilities in Preschoolers |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Computational thinking (CT) learning activities are increasingly integrated in early-stage school curricula in several countries. Tools used to teach CT in early school years include unplugged coding—i.e., programming without computing devices—and educational robotics (ER)—i.e., giving instructions to a digitally controlled mechanical robot to perform specific actions in a physical environment. Past studies have shown that training coding skills through ER enhances first graders’ executive functions (EFs). Little is known, however, about the effects of ER interventions, alone or combined with un-plugged activities, on preschoolers’ CT and EF skills. In a cluster-randomized controlled trial, we assessed whether improvements in preschoolers’ coding skills, following interventions based on combinations of unplugged coding and ER, transfer to plugged (computer-based) coding abilities and to EFs such as planning, response inhibition, and visuo-spatial skills. Forty-seven preschoolers from four class groups, with no prior exposure to coding, were randomly assigned to an experimental (unplugged coding and ER, two classes) or control (standard school activities, two classes) instructional groups. Four coding tasks, one standardized planning task (Tower of London test), one standardized response inhibition task (NEPSY-II inhibition subtest), and one visuo-spatial standardized task (Primary Mental Ability subtest) were used to assess children’s skills at the pretest (before the intervention) and posttest (after the intervention). To measure retention, the same skills were also assessed for 22 children from the experimental group 3 months from the posttest (follow up). The paper discusses the results of this experimental intervention. The results show significant positive effects of the instructional program on children’s computer-based coding skills and cognitive abilities, particularly visuo-spatial skills. Between pretest and posttest, children in the experimental group improved in coding, z = 3.84, <i<p</i< = 0.000, r = 0.87, and in visuo-spatial skills, z = 3.09, <i<p</i< = 0.002, r = 0.69. The waiting list control group showed improvements in coding skills only after the intervention, at the assessment point T3, z = 2.99, <i<p</i< = 0.003, r = 0.71. These findings show that practice with tangible and unplugged coding during the last year of preschool not only significantly improves children’s skills to solve computer-based coding problems (near-transfer effect), but it may also have some far-transfer effects on cognitive functions, such as visuo-spatial skills. | ||
650 | 4 | |a preschoolers | |
650 | 4 | |a educational robotics | |
650 | 4 | |a unplugged coding | |
650 | 4 | |a computational thinking | |
650 | 4 | |a executive functions | |
650 | 4 | |a visuo-spatial abilities | |
653 | 0 | |a Education | |
653 | 0 | |a L | |
700 | 0 | |a Gabriele Pozzan |e verfasserin |4 aut | |
700 | 0 | |a Costanza Padova |e verfasserin |4 aut | |
700 | 0 | |a Lucia Ronconi |e verfasserin |4 aut | |
700 | 0 | |a Tullio Vardanega |e verfasserin |4 aut | |
700 | 0 | |a Barbara Arfé |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Education Sciences |d MDPI AG, 2012 |g 13(2023), 858, p 858 |w (DE-627)737287543 |w (DE-600)2704213-3 |x 22277102 |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2023 |g number:858, p 858 |
856 | 4 | 0 | |u https://doi.org/10.3390/educsci13090858 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/6888df9347ee42d5afe345d5ceb43849 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2227-7102/13/9/858 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2227-7102 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2086 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 13 |j 2023 |e 858, p 858 |
author_variant |
c m cm g p gp c p cp l r lr t v tv b a ba |
---|---|
matchkey_str |
article:22277102:2023----::obndnlgeaddctoarbtctanntpooeopttoatiknadon |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.3390/educsci13090858 doi (DE-627)DOAJ093423020 (DE-599)DOAJ6888df9347ee42d5afe345d5ceb43849 DE-627 ger DE-627 rakwb eng Chiara Montuori verfasserin aut Combined Unplugged and Educational Robotics Training to Promote Computational Thinking and Cognitive Abilities in Preschoolers 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Computational thinking (CT) learning activities are increasingly integrated in early-stage school curricula in several countries. Tools used to teach CT in early school years include unplugged coding—i.e., programming without computing devices—and educational robotics (ER)—i.e., giving instructions to a digitally controlled mechanical robot to perform specific actions in a physical environment. Past studies have shown that training coding skills through ER enhances first graders’ executive functions (EFs). Little is known, however, about the effects of ER interventions, alone or combined with un-plugged activities, on preschoolers’ CT and EF skills. In a cluster-randomized controlled trial, we assessed whether improvements in preschoolers’ coding skills, following interventions based on combinations of unplugged coding and ER, transfer to plugged (computer-based) coding abilities and to EFs such as planning, response inhibition, and visuo-spatial skills. Forty-seven preschoolers from four class groups, with no prior exposure to coding, were randomly assigned to an experimental (unplugged coding and ER, two classes) or control (standard school activities, two classes) instructional groups. Four coding tasks, one standardized planning task (Tower of London test), one standardized response inhibition task (NEPSY-II inhibition subtest), and one visuo-spatial standardized task (Primary Mental Ability subtest) were used to assess children’s skills at the pretest (before the intervention) and posttest (after the intervention). To measure retention, the same skills were also assessed for 22 children from the experimental group 3 months from the posttest (follow up). The paper discusses the results of this experimental intervention. The results show significant positive effects of the instructional program on children’s computer-based coding skills and cognitive abilities, particularly visuo-spatial skills. Between pretest and posttest, children in the experimental group improved in coding, z = 3.84, <i<p</i< = 0.000, r = 0.87, and in visuo-spatial skills, z = 3.09, <i<p</i< = 0.002, r = 0.69. The waiting list control group showed improvements in coding skills only after the intervention, at the assessment point T3, z = 2.99, <i<p</i< = 0.003, r = 0.71. These findings show that practice with tangible and unplugged coding during the last year of preschool not only significantly improves children’s skills to solve computer-based coding problems (near-transfer effect), but it may also have some far-transfer effects on cognitive functions, such as visuo-spatial skills. preschoolers educational robotics unplugged coding computational thinking executive functions visuo-spatial abilities Education L Gabriele Pozzan verfasserin aut Costanza Padova verfasserin aut Lucia Ronconi verfasserin aut Tullio Vardanega verfasserin aut Barbara Arfé verfasserin aut In Education Sciences MDPI AG, 2012 13(2023), 858, p 858 (DE-627)737287543 (DE-600)2704213-3 22277102 nnns volume:13 year:2023 number:858, p 858 https://doi.org/10.3390/educsci13090858 kostenfrei https://doaj.org/article/6888df9347ee42d5afe345d5ceb43849 kostenfrei https://www.mdpi.com/2227-7102/13/9/858 kostenfrei https://doaj.org/toc/2227-7102 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2086 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 858, p 858 |
spelling |
10.3390/educsci13090858 doi (DE-627)DOAJ093423020 (DE-599)DOAJ6888df9347ee42d5afe345d5ceb43849 DE-627 ger DE-627 rakwb eng Chiara Montuori verfasserin aut Combined Unplugged and Educational Robotics Training to Promote Computational Thinking and Cognitive Abilities in Preschoolers 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Computational thinking (CT) learning activities are increasingly integrated in early-stage school curricula in several countries. Tools used to teach CT in early school years include unplugged coding—i.e., programming without computing devices—and educational robotics (ER)—i.e., giving instructions to a digitally controlled mechanical robot to perform specific actions in a physical environment. Past studies have shown that training coding skills through ER enhances first graders’ executive functions (EFs). Little is known, however, about the effects of ER interventions, alone or combined with un-plugged activities, on preschoolers’ CT and EF skills. In a cluster-randomized controlled trial, we assessed whether improvements in preschoolers’ coding skills, following interventions based on combinations of unplugged coding and ER, transfer to plugged (computer-based) coding abilities and to EFs such as planning, response inhibition, and visuo-spatial skills. Forty-seven preschoolers from four class groups, with no prior exposure to coding, were randomly assigned to an experimental (unplugged coding and ER, two classes) or control (standard school activities, two classes) instructional groups. Four coding tasks, one standardized planning task (Tower of London test), one standardized response inhibition task (NEPSY-II inhibition subtest), and one visuo-spatial standardized task (Primary Mental Ability subtest) were used to assess children’s skills at the pretest (before the intervention) and posttest (after the intervention). To measure retention, the same skills were also assessed for 22 children from the experimental group 3 months from the posttest (follow up). The paper discusses the results of this experimental intervention. The results show significant positive effects of the instructional program on children’s computer-based coding skills and cognitive abilities, particularly visuo-spatial skills. Between pretest and posttest, children in the experimental group improved in coding, z = 3.84, <i<p</i< = 0.000, r = 0.87, and in visuo-spatial skills, z = 3.09, <i<p</i< = 0.002, r = 0.69. The waiting list control group showed improvements in coding skills only after the intervention, at the assessment point T3, z = 2.99, <i<p</i< = 0.003, r = 0.71. These findings show that practice with tangible and unplugged coding during the last year of preschool not only significantly improves children’s skills to solve computer-based coding problems (near-transfer effect), but it may also have some far-transfer effects on cognitive functions, such as visuo-spatial skills. preschoolers educational robotics unplugged coding computational thinking executive functions visuo-spatial abilities Education L Gabriele Pozzan verfasserin aut Costanza Padova verfasserin aut Lucia Ronconi verfasserin aut Tullio Vardanega verfasserin aut Barbara Arfé verfasserin aut In Education Sciences MDPI AG, 2012 13(2023), 858, p 858 (DE-627)737287543 (DE-600)2704213-3 22277102 nnns volume:13 year:2023 number:858, p 858 https://doi.org/10.3390/educsci13090858 kostenfrei https://doaj.org/article/6888df9347ee42d5afe345d5ceb43849 kostenfrei https://www.mdpi.com/2227-7102/13/9/858 kostenfrei https://doaj.org/toc/2227-7102 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2086 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 858, p 858 |
allfields_unstemmed |
10.3390/educsci13090858 doi (DE-627)DOAJ093423020 (DE-599)DOAJ6888df9347ee42d5afe345d5ceb43849 DE-627 ger DE-627 rakwb eng Chiara Montuori verfasserin aut Combined Unplugged and Educational Robotics Training to Promote Computational Thinking and Cognitive Abilities in Preschoolers 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Computational thinking (CT) learning activities are increasingly integrated in early-stage school curricula in several countries. Tools used to teach CT in early school years include unplugged coding—i.e., programming without computing devices—and educational robotics (ER)—i.e., giving instructions to a digitally controlled mechanical robot to perform specific actions in a physical environment. Past studies have shown that training coding skills through ER enhances first graders’ executive functions (EFs). Little is known, however, about the effects of ER interventions, alone or combined with un-plugged activities, on preschoolers’ CT and EF skills. In a cluster-randomized controlled trial, we assessed whether improvements in preschoolers’ coding skills, following interventions based on combinations of unplugged coding and ER, transfer to plugged (computer-based) coding abilities and to EFs such as planning, response inhibition, and visuo-spatial skills. Forty-seven preschoolers from four class groups, with no prior exposure to coding, were randomly assigned to an experimental (unplugged coding and ER, two classes) or control (standard school activities, two classes) instructional groups. Four coding tasks, one standardized planning task (Tower of London test), one standardized response inhibition task (NEPSY-II inhibition subtest), and one visuo-spatial standardized task (Primary Mental Ability subtest) were used to assess children’s skills at the pretest (before the intervention) and posttest (after the intervention). To measure retention, the same skills were also assessed for 22 children from the experimental group 3 months from the posttest (follow up). The paper discusses the results of this experimental intervention. The results show significant positive effects of the instructional program on children’s computer-based coding skills and cognitive abilities, particularly visuo-spatial skills. Between pretest and posttest, children in the experimental group improved in coding, z = 3.84, <i<p</i< = 0.000, r = 0.87, and in visuo-spatial skills, z = 3.09, <i<p</i< = 0.002, r = 0.69. The waiting list control group showed improvements in coding skills only after the intervention, at the assessment point T3, z = 2.99, <i<p</i< = 0.003, r = 0.71. These findings show that practice with tangible and unplugged coding during the last year of preschool not only significantly improves children’s skills to solve computer-based coding problems (near-transfer effect), but it may also have some far-transfer effects on cognitive functions, such as visuo-spatial skills. preschoolers educational robotics unplugged coding computational thinking executive functions visuo-spatial abilities Education L Gabriele Pozzan verfasserin aut Costanza Padova verfasserin aut Lucia Ronconi verfasserin aut Tullio Vardanega verfasserin aut Barbara Arfé verfasserin aut In Education Sciences MDPI AG, 2012 13(2023), 858, p 858 (DE-627)737287543 (DE-600)2704213-3 22277102 nnns volume:13 year:2023 number:858, p 858 https://doi.org/10.3390/educsci13090858 kostenfrei https://doaj.org/article/6888df9347ee42d5afe345d5ceb43849 kostenfrei https://www.mdpi.com/2227-7102/13/9/858 kostenfrei https://doaj.org/toc/2227-7102 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2086 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 858, p 858 |
allfieldsGer |
10.3390/educsci13090858 doi (DE-627)DOAJ093423020 (DE-599)DOAJ6888df9347ee42d5afe345d5ceb43849 DE-627 ger DE-627 rakwb eng Chiara Montuori verfasserin aut Combined Unplugged and Educational Robotics Training to Promote Computational Thinking and Cognitive Abilities in Preschoolers 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Computational thinking (CT) learning activities are increasingly integrated in early-stage school curricula in several countries. Tools used to teach CT in early school years include unplugged coding—i.e., programming without computing devices—and educational robotics (ER)—i.e., giving instructions to a digitally controlled mechanical robot to perform specific actions in a physical environment. Past studies have shown that training coding skills through ER enhances first graders’ executive functions (EFs). Little is known, however, about the effects of ER interventions, alone or combined with un-plugged activities, on preschoolers’ CT and EF skills. In a cluster-randomized controlled trial, we assessed whether improvements in preschoolers’ coding skills, following interventions based on combinations of unplugged coding and ER, transfer to plugged (computer-based) coding abilities and to EFs such as planning, response inhibition, and visuo-spatial skills. Forty-seven preschoolers from four class groups, with no prior exposure to coding, were randomly assigned to an experimental (unplugged coding and ER, two classes) or control (standard school activities, two classes) instructional groups. Four coding tasks, one standardized planning task (Tower of London test), one standardized response inhibition task (NEPSY-II inhibition subtest), and one visuo-spatial standardized task (Primary Mental Ability subtest) were used to assess children’s skills at the pretest (before the intervention) and posttest (after the intervention). To measure retention, the same skills were also assessed for 22 children from the experimental group 3 months from the posttest (follow up). The paper discusses the results of this experimental intervention. The results show significant positive effects of the instructional program on children’s computer-based coding skills and cognitive abilities, particularly visuo-spatial skills. Between pretest and posttest, children in the experimental group improved in coding, z = 3.84, <i<p</i< = 0.000, r = 0.87, and in visuo-spatial skills, z = 3.09, <i<p</i< = 0.002, r = 0.69. The waiting list control group showed improvements in coding skills only after the intervention, at the assessment point T3, z = 2.99, <i<p</i< = 0.003, r = 0.71. These findings show that practice with tangible and unplugged coding during the last year of preschool not only significantly improves children’s skills to solve computer-based coding problems (near-transfer effect), but it may also have some far-transfer effects on cognitive functions, such as visuo-spatial skills. preschoolers educational robotics unplugged coding computational thinking executive functions visuo-spatial abilities Education L Gabriele Pozzan verfasserin aut Costanza Padova verfasserin aut Lucia Ronconi verfasserin aut Tullio Vardanega verfasserin aut Barbara Arfé verfasserin aut In Education Sciences MDPI AG, 2012 13(2023), 858, p 858 (DE-627)737287543 (DE-600)2704213-3 22277102 nnns volume:13 year:2023 number:858, p 858 https://doi.org/10.3390/educsci13090858 kostenfrei https://doaj.org/article/6888df9347ee42d5afe345d5ceb43849 kostenfrei https://www.mdpi.com/2227-7102/13/9/858 kostenfrei https://doaj.org/toc/2227-7102 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2086 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 858, p 858 |
allfieldsSound |
10.3390/educsci13090858 doi (DE-627)DOAJ093423020 (DE-599)DOAJ6888df9347ee42d5afe345d5ceb43849 DE-627 ger DE-627 rakwb eng Chiara Montuori verfasserin aut Combined Unplugged and Educational Robotics Training to Promote Computational Thinking and Cognitive Abilities in Preschoolers 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Computational thinking (CT) learning activities are increasingly integrated in early-stage school curricula in several countries. Tools used to teach CT in early school years include unplugged coding—i.e., programming without computing devices—and educational robotics (ER)—i.e., giving instructions to a digitally controlled mechanical robot to perform specific actions in a physical environment. Past studies have shown that training coding skills through ER enhances first graders’ executive functions (EFs). Little is known, however, about the effects of ER interventions, alone or combined with un-plugged activities, on preschoolers’ CT and EF skills. In a cluster-randomized controlled trial, we assessed whether improvements in preschoolers’ coding skills, following interventions based on combinations of unplugged coding and ER, transfer to plugged (computer-based) coding abilities and to EFs such as planning, response inhibition, and visuo-spatial skills. Forty-seven preschoolers from four class groups, with no prior exposure to coding, were randomly assigned to an experimental (unplugged coding and ER, two classes) or control (standard school activities, two classes) instructional groups. Four coding tasks, one standardized planning task (Tower of London test), one standardized response inhibition task (NEPSY-II inhibition subtest), and one visuo-spatial standardized task (Primary Mental Ability subtest) were used to assess children’s skills at the pretest (before the intervention) and posttest (after the intervention). To measure retention, the same skills were also assessed for 22 children from the experimental group 3 months from the posttest (follow up). The paper discusses the results of this experimental intervention. The results show significant positive effects of the instructional program on children’s computer-based coding skills and cognitive abilities, particularly visuo-spatial skills. Between pretest and posttest, children in the experimental group improved in coding, z = 3.84, <i<p</i< = 0.000, r = 0.87, and in visuo-spatial skills, z = 3.09, <i<p</i< = 0.002, r = 0.69. The waiting list control group showed improvements in coding skills only after the intervention, at the assessment point T3, z = 2.99, <i<p</i< = 0.003, r = 0.71. These findings show that practice with tangible and unplugged coding during the last year of preschool not only significantly improves children’s skills to solve computer-based coding problems (near-transfer effect), but it may also have some far-transfer effects on cognitive functions, such as visuo-spatial skills. preschoolers educational robotics unplugged coding computational thinking executive functions visuo-spatial abilities Education L Gabriele Pozzan verfasserin aut Costanza Padova verfasserin aut Lucia Ronconi verfasserin aut Tullio Vardanega verfasserin aut Barbara Arfé verfasserin aut In Education Sciences MDPI AG, 2012 13(2023), 858, p 858 (DE-627)737287543 (DE-600)2704213-3 22277102 nnns volume:13 year:2023 number:858, p 858 https://doi.org/10.3390/educsci13090858 kostenfrei https://doaj.org/article/6888df9347ee42d5afe345d5ceb43849 kostenfrei https://www.mdpi.com/2227-7102/13/9/858 kostenfrei https://doaj.org/toc/2227-7102 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2086 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 858, p 858 |
language |
English |
source |
In Education Sciences 13(2023), 858, p 858 volume:13 year:2023 number:858, p 858 |
sourceStr |
In Education Sciences 13(2023), 858, p 858 volume:13 year:2023 number:858, p 858 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
preschoolers educational robotics unplugged coding computational thinking executive functions visuo-spatial abilities Education L |
isfreeaccess_bool |
true |
container_title |
Education Sciences |
authorswithroles_txt_mv |
Chiara Montuori @@aut@@ Gabriele Pozzan @@aut@@ Costanza Padova @@aut@@ Lucia Ronconi @@aut@@ Tullio Vardanega @@aut@@ Barbara Arfé @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
737287543 |
id |
DOAJ093423020 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ093423020</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414035426.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/educsci13090858</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ093423020</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ6888df9347ee42d5afe345d5ceb43849</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Chiara Montuori</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Combined Unplugged and Educational Robotics Training to Promote Computational Thinking and Cognitive Abilities in Preschoolers</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Computational thinking (CT) learning activities are increasingly integrated in early-stage school curricula in several countries. Tools used to teach CT in early school years include unplugged coding—i.e., programming without computing devices—and educational robotics (ER)—i.e., giving instructions to a digitally controlled mechanical robot to perform specific actions in a physical environment. Past studies have shown that training coding skills through ER enhances first graders’ executive functions (EFs). Little is known, however, about the effects of ER interventions, alone or combined with un-plugged activities, on preschoolers’ CT and EF skills. In a cluster-randomized controlled trial, we assessed whether improvements in preschoolers’ coding skills, following interventions based on combinations of unplugged coding and ER, transfer to plugged (computer-based) coding abilities and to EFs such as planning, response inhibition, and visuo-spatial skills. Forty-seven preschoolers from four class groups, with no prior exposure to coding, were randomly assigned to an experimental (unplugged coding and ER, two classes) or control (standard school activities, two classes) instructional groups. Four coding tasks, one standardized planning task (Tower of London test), one standardized response inhibition task (NEPSY-II inhibition subtest), and one visuo-spatial standardized task (Primary Mental Ability subtest) were used to assess children’s skills at the pretest (before the intervention) and posttest (after the intervention). To measure retention, the same skills were also assessed for 22 children from the experimental group 3 months from the posttest (follow up). The paper discusses the results of this experimental intervention. The results show significant positive effects of the instructional program on children’s computer-based coding skills and cognitive abilities, particularly visuo-spatial skills. Between pretest and posttest, children in the experimental group improved in coding, z = 3.84, <i<p</i< = 0.000, r = 0.87, and in visuo-spatial skills, z = 3.09, <i<p</i< = 0.002, r = 0.69. The waiting list control group showed improvements in coding skills only after the intervention, at the assessment point T3, z = 2.99, <i<p</i< = 0.003, r = 0.71. These findings show that practice with tangible and unplugged coding during the last year of preschool not only significantly improves children’s skills to solve computer-based coding problems (near-transfer effect), but it may also have some far-transfer effects on cognitive functions, such as visuo-spatial skills.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">preschoolers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">educational robotics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">unplugged coding</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">computational thinking</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">executive functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">visuo-spatial abilities</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Education</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">L</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gabriele Pozzan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Costanza Padova</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lucia Ronconi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tullio Vardanega</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Barbara Arfé</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Education Sciences</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">13(2023), 858, p 858</subfield><subfield code="w">(DE-627)737287543</subfield><subfield code="w">(DE-600)2704213-3</subfield><subfield code="x">22277102</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:858, p 858</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/educsci13090858</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/6888df9347ee42d5afe345d5ceb43849</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2227-7102/13/9/858</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2227-7102</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2023</subfield><subfield code="e">858, p 858</subfield></datafield></record></collection>
|
author |
Chiara Montuori |
spellingShingle |
Chiara Montuori misc preschoolers misc educational robotics misc unplugged coding misc computational thinking misc executive functions misc visuo-spatial abilities misc Education misc L Combined Unplugged and Educational Robotics Training to Promote Computational Thinking and Cognitive Abilities in Preschoolers |
authorStr |
Chiara Montuori |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)737287543 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
22277102 |
topic_title |
Combined Unplugged and Educational Robotics Training to Promote Computational Thinking and Cognitive Abilities in Preschoolers preschoolers educational robotics unplugged coding computational thinking executive functions visuo-spatial abilities |
topic |
misc preschoolers misc educational robotics misc unplugged coding misc computational thinking misc executive functions misc visuo-spatial abilities misc Education misc L |
topic_unstemmed |
misc preschoolers misc educational robotics misc unplugged coding misc computational thinking misc executive functions misc visuo-spatial abilities misc Education misc L |
topic_browse |
misc preschoolers misc educational robotics misc unplugged coding misc computational thinking misc executive functions misc visuo-spatial abilities misc Education misc L |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Education Sciences |
hierarchy_parent_id |
737287543 |
hierarchy_top_title |
Education Sciences |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)737287543 (DE-600)2704213-3 |
title |
Combined Unplugged and Educational Robotics Training to Promote Computational Thinking and Cognitive Abilities in Preschoolers |
ctrlnum |
(DE-627)DOAJ093423020 (DE-599)DOAJ6888df9347ee42d5afe345d5ceb43849 |
title_full |
Combined Unplugged and Educational Robotics Training to Promote Computational Thinking and Cognitive Abilities in Preschoolers |
author_sort |
Chiara Montuori |
journal |
Education Sciences |
journalStr |
Education Sciences |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Chiara Montuori Gabriele Pozzan Costanza Padova Lucia Ronconi Tullio Vardanega Barbara Arfé |
container_volume |
13 |
format_se |
Elektronische Aufsätze |
author-letter |
Chiara Montuori |
doi_str_mv |
10.3390/educsci13090858 |
author2-role |
verfasserin |
title_sort |
combined unplugged and educational robotics training to promote computational thinking and cognitive abilities in preschoolers |
title_auth |
Combined Unplugged and Educational Robotics Training to Promote Computational Thinking and Cognitive Abilities in Preschoolers |
abstract |
Computational thinking (CT) learning activities are increasingly integrated in early-stage school curricula in several countries. Tools used to teach CT in early school years include unplugged coding—i.e., programming without computing devices—and educational robotics (ER)—i.e., giving instructions to a digitally controlled mechanical robot to perform specific actions in a physical environment. Past studies have shown that training coding skills through ER enhances first graders’ executive functions (EFs). Little is known, however, about the effects of ER interventions, alone or combined with un-plugged activities, on preschoolers’ CT and EF skills. In a cluster-randomized controlled trial, we assessed whether improvements in preschoolers’ coding skills, following interventions based on combinations of unplugged coding and ER, transfer to plugged (computer-based) coding abilities and to EFs such as planning, response inhibition, and visuo-spatial skills. Forty-seven preschoolers from four class groups, with no prior exposure to coding, were randomly assigned to an experimental (unplugged coding and ER, two classes) or control (standard school activities, two classes) instructional groups. Four coding tasks, one standardized planning task (Tower of London test), one standardized response inhibition task (NEPSY-II inhibition subtest), and one visuo-spatial standardized task (Primary Mental Ability subtest) were used to assess children’s skills at the pretest (before the intervention) and posttest (after the intervention). To measure retention, the same skills were also assessed for 22 children from the experimental group 3 months from the posttest (follow up). The paper discusses the results of this experimental intervention. The results show significant positive effects of the instructional program on children’s computer-based coding skills and cognitive abilities, particularly visuo-spatial skills. Between pretest and posttest, children in the experimental group improved in coding, z = 3.84, <i<p</i< = 0.000, r = 0.87, and in visuo-spatial skills, z = 3.09, <i<p</i< = 0.002, r = 0.69. The waiting list control group showed improvements in coding skills only after the intervention, at the assessment point T3, z = 2.99, <i<p</i< = 0.003, r = 0.71. These findings show that practice with tangible and unplugged coding during the last year of preschool not only significantly improves children’s skills to solve computer-based coding problems (near-transfer effect), but it may also have some far-transfer effects on cognitive functions, such as visuo-spatial skills. |
abstractGer |
Computational thinking (CT) learning activities are increasingly integrated in early-stage school curricula in several countries. Tools used to teach CT in early school years include unplugged coding—i.e., programming without computing devices—and educational robotics (ER)—i.e., giving instructions to a digitally controlled mechanical robot to perform specific actions in a physical environment. Past studies have shown that training coding skills through ER enhances first graders’ executive functions (EFs). Little is known, however, about the effects of ER interventions, alone or combined with un-plugged activities, on preschoolers’ CT and EF skills. In a cluster-randomized controlled trial, we assessed whether improvements in preschoolers’ coding skills, following interventions based on combinations of unplugged coding and ER, transfer to plugged (computer-based) coding abilities and to EFs such as planning, response inhibition, and visuo-spatial skills. Forty-seven preschoolers from four class groups, with no prior exposure to coding, were randomly assigned to an experimental (unplugged coding and ER, two classes) or control (standard school activities, two classes) instructional groups. Four coding tasks, one standardized planning task (Tower of London test), one standardized response inhibition task (NEPSY-II inhibition subtest), and one visuo-spatial standardized task (Primary Mental Ability subtest) were used to assess children’s skills at the pretest (before the intervention) and posttest (after the intervention). To measure retention, the same skills were also assessed for 22 children from the experimental group 3 months from the posttest (follow up). The paper discusses the results of this experimental intervention. The results show significant positive effects of the instructional program on children’s computer-based coding skills and cognitive abilities, particularly visuo-spatial skills. Between pretest and posttest, children in the experimental group improved in coding, z = 3.84, <i<p</i< = 0.000, r = 0.87, and in visuo-spatial skills, z = 3.09, <i<p</i< = 0.002, r = 0.69. The waiting list control group showed improvements in coding skills only after the intervention, at the assessment point T3, z = 2.99, <i<p</i< = 0.003, r = 0.71. These findings show that practice with tangible and unplugged coding during the last year of preschool not only significantly improves children’s skills to solve computer-based coding problems (near-transfer effect), but it may also have some far-transfer effects on cognitive functions, such as visuo-spatial skills. |
abstract_unstemmed |
Computational thinking (CT) learning activities are increasingly integrated in early-stage school curricula in several countries. Tools used to teach CT in early school years include unplugged coding—i.e., programming without computing devices—and educational robotics (ER)—i.e., giving instructions to a digitally controlled mechanical robot to perform specific actions in a physical environment. Past studies have shown that training coding skills through ER enhances first graders’ executive functions (EFs). Little is known, however, about the effects of ER interventions, alone or combined with un-plugged activities, on preschoolers’ CT and EF skills. In a cluster-randomized controlled trial, we assessed whether improvements in preschoolers’ coding skills, following interventions based on combinations of unplugged coding and ER, transfer to plugged (computer-based) coding abilities and to EFs such as planning, response inhibition, and visuo-spatial skills. Forty-seven preschoolers from four class groups, with no prior exposure to coding, were randomly assigned to an experimental (unplugged coding and ER, two classes) or control (standard school activities, two classes) instructional groups. Four coding tasks, one standardized planning task (Tower of London test), one standardized response inhibition task (NEPSY-II inhibition subtest), and one visuo-spatial standardized task (Primary Mental Ability subtest) were used to assess children’s skills at the pretest (before the intervention) and posttest (after the intervention). To measure retention, the same skills were also assessed for 22 children from the experimental group 3 months from the posttest (follow up). The paper discusses the results of this experimental intervention. The results show significant positive effects of the instructional program on children’s computer-based coding skills and cognitive abilities, particularly visuo-spatial skills. Between pretest and posttest, children in the experimental group improved in coding, z = 3.84, <i<p</i< = 0.000, r = 0.87, and in visuo-spatial skills, z = 3.09, <i<p</i< = 0.002, r = 0.69. The waiting list control group showed improvements in coding skills only after the intervention, at the assessment point T3, z = 2.99, <i<p</i< = 0.003, r = 0.71. These findings show that practice with tangible and unplugged coding during the last year of preschool not only significantly improves children’s skills to solve computer-based coding problems (near-transfer effect), but it may also have some far-transfer effects on cognitive functions, such as visuo-spatial skills. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2086 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
858, p 858 |
title_short |
Combined Unplugged and Educational Robotics Training to Promote Computational Thinking and Cognitive Abilities in Preschoolers |
url |
https://doi.org/10.3390/educsci13090858 https://doaj.org/article/6888df9347ee42d5afe345d5ceb43849 https://www.mdpi.com/2227-7102/13/9/858 https://doaj.org/toc/2227-7102 |
remote_bool |
true |
author2 |
Gabriele Pozzan Costanza Padova Lucia Ronconi Tullio Vardanega Barbara Arfé |
author2Str |
Gabriele Pozzan Costanza Padova Lucia Ronconi Tullio Vardanega Barbara Arfé |
ppnlink |
737287543 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/educsci13090858 |
up_date |
2024-07-03T17:13:27.390Z |
_version_ |
1803578829593116672 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ093423020</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414035426.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/educsci13090858</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ093423020</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ6888df9347ee42d5afe345d5ceb43849</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Chiara Montuori</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Combined Unplugged and Educational Robotics Training to Promote Computational Thinking and Cognitive Abilities in Preschoolers</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Computational thinking (CT) learning activities are increasingly integrated in early-stage school curricula in several countries. Tools used to teach CT in early school years include unplugged coding—i.e., programming without computing devices—and educational robotics (ER)—i.e., giving instructions to a digitally controlled mechanical robot to perform specific actions in a physical environment. Past studies have shown that training coding skills through ER enhances first graders’ executive functions (EFs). Little is known, however, about the effects of ER interventions, alone or combined with un-plugged activities, on preschoolers’ CT and EF skills. In a cluster-randomized controlled trial, we assessed whether improvements in preschoolers’ coding skills, following interventions based on combinations of unplugged coding and ER, transfer to plugged (computer-based) coding abilities and to EFs such as planning, response inhibition, and visuo-spatial skills. Forty-seven preschoolers from four class groups, with no prior exposure to coding, were randomly assigned to an experimental (unplugged coding and ER, two classes) or control (standard school activities, two classes) instructional groups. Four coding tasks, one standardized planning task (Tower of London test), one standardized response inhibition task (NEPSY-II inhibition subtest), and one visuo-spatial standardized task (Primary Mental Ability subtest) were used to assess children’s skills at the pretest (before the intervention) and posttest (after the intervention). To measure retention, the same skills were also assessed for 22 children from the experimental group 3 months from the posttest (follow up). The paper discusses the results of this experimental intervention. The results show significant positive effects of the instructional program on children’s computer-based coding skills and cognitive abilities, particularly visuo-spatial skills. Between pretest and posttest, children in the experimental group improved in coding, z = 3.84, <i<p</i< = 0.000, r = 0.87, and in visuo-spatial skills, z = 3.09, <i<p</i< = 0.002, r = 0.69. The waiting list control group showed improvements in coding skills only after the intervention, at the assessment point T3, z = 2.99, <i<p</i< = 0.003, r = 0.71. These findings show that practice with tangible and unplugged coding during the last year of preschool not only significantly improves children’s skills to solve computer-based coding problems (near-transfer effect), but it may also have some far-transfer effects on cognitive functions, such as visuo-spatial skills.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">preschoolers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">educational robotics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">unplugged coding</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">computational thinking</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">executive functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">visuo-spatial abilities</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Education</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">L</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gabriele Pozzan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Costanza Padova</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lucia Ronconi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tullio Vardanega</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Barbara Arfé</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Education Sciences</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">13(2023), 858, p 858</subfield><subfield code="w">(DE-627)737287543</subfield><subfield code="w">(DE-600)2704213-3</subfield><subfield code="x">22277102</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:858, p 858</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/educsci13090858</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/6888df9347ee42d5afe345d5ceb43849</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2227-7102/13/9/858</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2227-7102</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2023</subfield><subfield code="e">858, p 858</subfield></datafield></record></collection>
|
score |
7.4007034 |