Decision Rules for Renewable Energy Utilization Using Rough Set Theory
Rough Set (RS) theory is used for data analysis and decision making where decision-making rules can be derived through attribute reduction and feature selection. Energy shortage is an issue for governments, and solar energy systems have become an important source of renewable energy. Rough sets may...
Ausführliche Beschreibung
Autor*in: |
Chuying Huang [verfasserIn] Chun-Che Huang [verfasserIn] Din-Nan Chen [verfasserIn] Yuju Wang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Axioms - MDPI AG, 2012, 12(2023), 811, p 811 |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2023 ; number:811, p 811 |
Links: |
---|
DOI / URN: |
10.3390/axioms12090811 |
---|
Katalog-ID: |
DOAJ093456875 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ093456875 | ||
003 | DE-627 | ||
005 | 20240414035943.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/axioms12090811 |2 doi | |
035 | |a (DE-627)DOAJ093456875 | ||
035 | |a (DE-599)DOAJa9fdb2e320754d54ab9ce2dfe31d21b3 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QA1-939 | |
100 | 0 | |a Chuying Huang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Decision Rules for Renewable Energy Utilization Using Rough Set Theory |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Rough Set (RS) theory is used for data analysis and decision making where decision-making rules can be derived through attribute reduction and feature selection. Energy shortage is an issue for governments, and solar energy systems have become an important source of renewable energy. Rough sets may be used to summarize and compare rule sets for different periods. In this study, the analysis of rules is an element of decision support that allows organizations to make better informed decisions. However, changes to decision rules require adjustment and analysis, and analysis is inhibited by changes in rules. With this consideration, a solution approach is proposed. The results show that not only can decision costs be reduced, but policymakers can also make it easier for the public to understand the incentives of green energy programs and the use of solar panels. The application process is simplified for the implementation of sustainable energy policies. | ||
650 | 4 | |a Rough Set Theory | |
650 | 4 | |a decision making | |
650 | 4 | |a atribute reduction | |
650 | 4 | |a decision support | |
650 | 4 | |a sustainable | |
650 | 4 | |a feature selection | |
653 | 0 | |a Mathematics | |
700 | 0 | |a Chun-Che Huang |e verfasserin |4 aut | |
700 | 0 | |a Din-Nan Chen |e verfasserin |4 aut | |
700 | 0 | |a Yuju Wang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Axioms |d MDPI AG, 2012 |g 12(2023), 811, p 811 |w (DE-627)718622030 |w (DE-600)2661511-3 |x 20751680 |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2023 |g number:811, p 811 |
856 | 4 | 0 | |u https://doi.org/10.3390/axioms12090811 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/a9fdb2e320754d54ab9ce2dfe31d21b3 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2075-1680/12/9/811 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2075-1680 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 12 |j 2023 |e 811, p 811 |
author_variant |
c h ch c c h cch d n c dnc y w yw |
---|---|
matchkey_str |
article:20751680:2023----::eiinuefreealeeguiiains |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
QA |
publishDate |
2023 |
allfields |
10.3390/axioms12090811 doi (DE-627)DOAJ093456875 (DE-599)DOAJa9fdb2e320754d54ab9ce2dfe31d21b3 DE-627 ger DE-627 rakwb eng QA1-939 Chuying Huang verfasserin aut Decision Rules for Renewable Energy Utilization Using Rough Set Theory 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Rough Set (RS) theory is used for data analysis and decision making where decision-making rules can be derived through attribute reduction and feature selection. Energy shortage is an issue for governments, and solar energy systems have become an important source of renewable energy. Rough sets may be used to summarize and compare rule sets for different periods. In this study, the analysis of rules is an element of decision support that allows organizations to make better informed decisions. However, changes to decision rules require adjustment and analysis, and analysis is inhibited by changes in rules. With this consideration, a solution approach is proposed. The results show that not only can decision costs be reduced, but policymakers can also make it easier for the public to understand the incentives of green energy programs and the use of solar panels. The application process is simplified for the implementation of sustainable energy policies. Rough Set Theory decision making atribute reduction decision support sustainable feature selection Mathematics Chun-Che Huang verfasserin aut Din-Nan Chen verfasserin aut Yuju Wang verfasserin aut In Axioms MDPI AG, 2012 12(2023), 811, p 811 (DE-627)718622030 (DE-600)2661511-3 20751680 nnns volume:12 year:2023 number:811, p 811 https://doi.org/10.3390/axioms12090811 kostenfrei https://doaj.org/article/a9fdb2e320754d54ab9ce2dfe31d21b3 kostenfrei https://www.mdpi.com/2075-1680/12/9/811 kostenfrei https://doaj.org/toc/2075-1680 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2023 811, p 811 |
spelling |
10.3390/axioms12090811 doi (DE-627)DOAJ093456875 (DE-599)DOAJa9fdb2e320754d54ab9ce2dfe31d21b3 DE-627 ger DE-627 rakwb eng QA1-939 Chuying Huang verfasserin aut Decision Rules for Renewable Energy Utilization Using Rough Set Theory 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Rough Set (RS) theory is used for data analysis and decision making where decision-making rules can be derived through attribute reduction and feature selection. Energy shortage is an issue for governments, and solar energy systems have become an important source of renewable energy. Rough sets may be used to summarize and compare rule sets for different periods. In this study, the analysis of rules is an element of decision support that allows organizations to make better informed decisions. However, changes to decision rules require adjustment and analysis, and analysis is inhibited by changes in rules. With this consideration, a solution approach is proposed. The results show that not only can decision costs be reduced, but policymakers can also make it easier for the public to understand the incentives of green energy programs and the use of solar panels. The application process is simplified for the implementation of sustainable energy policies. Rough Set Theory decision making atribute reduction decision support sustainable feature selection Mathematics Chun-Che Huang verfasserin aut Din-Nan Chen verfasserin aut Yuju Wang verfasserin aut In Axioms MDPI AG, 2012 12(2023), 811, p 811 (DE-627)718622030 (DE-600)2661511-3 20751680 nnns volume:12 year:2023 number:811, p 811 https://doi.org/10.3390/axioms12090811 kostenfrei https://doaj.org/article/a9fdb2e320754d54ab9ce2dfe31d21b3 kostenfrei https://www.mdpi.com/2075-1680/12/9/811 kostenfrei https://doaj.org/toc/2075-1680 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2023 811, p 811 |
allfields_unstemmed |
10.3390/axioms12090811 doi (DE-627)DOAJ093456875 (DE-599)DOAJa9fdb2e320754d54ab9ce2dfe31d21b3 DE-627 ger DE-627 rakwb eng QA1-939 Chuying Huang verfasserin aut Decision Rules for Renewable Energy Utilization Using Rough Set Theory 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Rough Set (RS) theory is used for data analysis and decision making where decision-making rules can be derived through attribute reduction and feature selection. Energy shortage is an issue for governments, and solar energy systems have become an important source of renewable energy. Rough sets may be used to summarize and compare rule sets for different periods. In this study, the analysis of rules is an element of decision support that allows organizations to make better informed decisions. However, changes to decision rules require adjustment and analysis, and analysis is inhibited by changes in rules. With this consideration, a solution approach is proposed. The results show that not only can decision costs be reduced, but policymakers can also make it easier for the public to understand the incentives of green energy programs and the use of solar panels. The application process is simplified for the implementation of sustainable energy policies. Rough Set Theory decision making atribute reduction decision support sustainable feature selection Mathematics Chun-Che Huang verfasserin aut Din-Nan Chen verfasserin aut Yuju Wang verfasserin aut In Axioms MDPI AG, 2012 12(2023), 811, p 811 (DE-627)718622030 (DE-600)2661511-3 20751680 nnns volume:12 year:2023 number:811, p 811 https://doi.org/10.3390/axioms12090811 kostenfrei https://doaj.org/article/a9fdb2e320754d54ab9ce2dfe31d21b3 kostenfrei https://www.mdpi.com/2075-1680/12/9/811 kostenfrei https://doaj.org/toc/2075-1680 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2023 811, p 811 |
allfieldsGer |
10.3390/axioms12090811 doi (DE-627)DOAJ093456875 (DE-599)DOAJa9fdb2e320754d54ab9ce2dfe31d21b3 DE-627 ger DE-627 rakwb eng QA1-939 Chuying Huang verfasserin aut Decision Rules for Renewable Energy Utilization Using Rough Set Theory 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Rough Set (RS) theory is used for data analysis and decision making where decision-making rules can be derived through attribute reduction and feature selection. Energy shortage is an issue for governments, and solar energy systems have become an important source of renewable energy. Rough sets may be used to summarize and compare rule sets for different periods. In this study, the analysis of rules is an element of decision support that allows organizations to make better informed decisions. However, changes to decision rules require adjustment and analysis, and analysis is inhibited by changes in rules. With this consideration, a solution approach is proposed. The results show that not only can decision costs be reduced, but policymakers can also make it easier for the public to understand the incentives of green energy programs and the use of solar panels. The application process is simplified for the implementation of sustainable energy policies. Rough Set Theory decision making atribute reduction decision support sustainable feature selection Mathematics Chun-Che Huang verfasserin aut Din-Nan Chen verfasserin aut Yuju Wang verfasserin aut In Axioms MDPI AG, 2012 12(2023), 811, p 811 (DE-627)718622030 (DE-600)2661511-3 20751680 nnns volume:12 year:2023 number:811, p 811 https://doi.org/10.3390/axioms12090811 kostenfrei https://doaj.org/article/a9fdb2e320754d54ab9ce2dfe31d21b3 kostenfrei https://www.mdpi.com/2075-1680/12/9/811 kostenfrei https://doaj.org/toc/2075-1680 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2023 811, p 811 |
allfieldsSound |
10.3390/axioms12090811 doi (DE-627)DOAJ093456875 (DE-599)DOAJa9fdb2e320754d54ab9ce2dfe31d21b3 DE-627 ger DE-627 rakwb eng QA1-939 Chuying Huang verfasserin aut Decision Rules for Renewable Energy Utilization Using Rough Set Theory 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Rough Set (RS) theory is used for data analysis and decision making where decision-making rules can be derived through attribute reduction and feature selection. Energy shortage is an issue for governments, and solar energy systems have become an important source of renewable energy. Rough sets may be used to summarize and compare rule sets for different periods. In this study, the analysis of rules is an element of decision support that allows organizations to make better informed decisions. However, changes to decision rules require adjustment and analysis, and analysis is inhibited by changes in rules. With this consideration, a solution approach is proposed. The results show that not only can decision costs be reduced, but policymakers can also make it easier for the public to understand the incentives of green energy programs and the use of solar panels. The application process is simplified for the implementation of sustainable energy policies. Rough Set Theory decision making atribute reduction decision support sustainable feature selection Mathematics Chun-Che Huang verfasserin aut Din-Nan Chen verfasserin aut Yuju Wang verfasserin aut In Axioms MDPI AG, 2012 12(2023), 811, p 811 (DE-627)718622030 (DE-600)2661511-3 20751680 nnns volume:12 year:2023 number:811, p 811 https://doi.org/10.3390/axioms12090811 kostenfrei https://doaj.org/article/a9fdb2e320754d54ab9ce2dfe31d21b3 kostenfrei https://www.mdpi.com/2075-1680/12/9/811 kostenfrei https://doaj.org/toc/2075-1680 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2023 811, p 811 |
language |
English |
source |
In Axioms 12(2023), 811, p 811 volume:12 year:2023 number:811, p 811 |
sourceStr |
In Axioms 12(2023), 811, p 811 volume:12 year:2023 number:811, p 811 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Rough Set Theory decision making atribute reduction decision support sustainable feature selection Mathematics |
isfreeaccess_bool |
true |
container_title |
Axioms |
authorswithroles_txt_mv |
Chuying Huang @@aut@@ Chun-Che Huang @@aut@@ Din-Nan Chen @@aut@@ Yuju Wang @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
718622030 |
id |
DOAJ093456875 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ093456875</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414035943.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/axioms12090811</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ093456875</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJa9fdb2e320754d54ab9ce2dfe31d21b3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Chuying Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Decision Rules for Renewable Energy Utilization Using Rough Set Theory</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Rough Set (RS) theory is used for data analysis and decision making where decision-making rules can be derived through attribute reduction and feature selection. Energy shortage is an issue for governments, and solar energy systems have become an important source of renewable energy. Rough sets may be used to summarize and compare rule sets for different periods. In this study, the analysis of rules is an element of decision support that allows organizations to make better informed decisions. However, changes to decision rules require adjustment and analysis, and analysis is inhibited by changes in rules. With this consideration, a solution approach is proposed. The results show that not only can decision costs be reduced, but policymakers can also make it easier for the public to understand the incentives of green energy programs and the use of solar panels. The application process is simplified for the implementation of sustainable energy policies.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rough Set Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">decision making</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">atribute reduction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">decision support</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sustainable</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">feature selection</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chun-Che Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Din-Nan Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yuju Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Axioms</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">12(2023), 811, p 811</subfield><subfield code="w">(DE-627)718622030</subfield><subfield code="w">(DE-600)2661511-3</subfield><subfield code="x">20751680</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:811, p 811</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/axioms12090811</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/a9fdb2e320754d54ab9ce2dfe31d21b3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2075-1680/12/9/811</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2075-1680</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2023</subfield><subfield code="e">811, p 811</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Chuying Huang |
spellingShingle |
Chuying Huang misc QA1-939 misc Rough Set Theory misc decision making misc atribute reduction misc decision support misc sustainable misc feature selection misc Mathematics Decision Rules for Renewable Energy Utilization Using Rough Set Theory |
authorStr |
Chuying Huang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)718622030 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QA1-939 |
illustrated |
Not Illustrated |
issn |
20751680 |
topic_title |
QA1-939 Decision Rules for Renewable Energy Utilization Using Rough Set Theory Rough Set Theory decision making atribute reduction decision support sustainable feature selection |
topic |
misc QA1-939 misc Rough Set Theory misc decision making misc atribute reduction misc decision support misc sustainable misc feature selection misc Mathematics |
topic_unstemmed |
misc QA1-939 misc Rough Set Theory misc decision making misc atribute reduction misc decision support misc sustainable misc feature selection misc Mathematics |
topic_browse |
misc QA1-939 misc Rough Set Theory misc decision making misc atribute reduction misc decision support misc sustainable misc feature selection misc Mathematics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Axioms |
hierarchy_parent_id |
718622030 |
hierarchy_top_title |
Axioms |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)718622030 (DE-600)2661511-3 |
title |
Decision Rules for Renewable Energy Utilization Using Rough Set Theory |
ctrlnum |
(DE-627)DOAJ093456875 (DE-599)DOAJa9fdb2e320754d54ab9ce2dfe31d21b3 |
title_full |
Decision Rules for Renewable Energy Utilization Using Rough Set Theory |
author_sort |
Chuying Huang |
journal |
Axioms |
journalStr |
Axioms |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Chuying Huang Chun-Che Huang Din-Nan Chen Yuju Wang |
container_volume |
12 |
class |
QA1-939 |
format_se |
Elektronische Aufsätze |
author-letter |
Chuying Huang |
doi_str_mv |
10.3390/axioms12090811 |
author2-role |
verfasserin |
title_sort |
decision rules for renewable energy utilization using rough set theory |
callnumber |
QA1-939 |
title_auth |
Decision Rules for Renewable Energy Utilization Using Rough Set Theory |
abstract |
Rough Set (RS) theory is used for data analysis and decision making where decision-making rules can be derived through attribute reduction and feature selection. Energy shortage is an issue for governments, and solar energy systems have become an important source of renewable energy. Rough sets may be used to summarize and compare rule sets for different periods. In this study, the analysis of rules is an element of decision support that allows organizations to make better informed decisions. However, changes to decision rules require adjustment and analysis, and analysis is inhibited by changes in rules. With this consideration, a solution approach is proposed. The results show that not only can decision costs be reduced, but policymakers can also make it easier for the public to understand the incentives of green energy programs and the use of solar panels. The application process is simplified for the implementation of sustainable energy policies. |
abstractGer |
Rough Set (RS) theory is used for data analysis and decision making where decision-making rules can be derived through attribute reduction and feature selection. Energy shortage is an issue for governments, and solar energy systems have become an important source of renewable energy. Rough sets may be used to summarize and compare rule sets for different periods. In this study, the analysis of rules is an element of decision support that allows organizations to make better informed decisions. However, changes to decision rules require adjustment and analysis, and analysis is inhibited by changes in rules. With this consideration, a solution approach is proposed. The results show that not only can decision costs be reduced, but policymakers can also make it easier for the public to understand the incentives of green energy programs and the use of solar panels. The application process is simplified for the implementation of sustainable energy policies. |
abstract_unstemmed |
Rough Set (RS) theory is used for data analysis and decision making where decision-making rules can be derived through attribute reduction and feature selection. Energy shortage is an issue for governments, and solar energy systems have become an important source of renewable energy. Rough sets may be used to summarize and compare rule sets for different periods. In this study, the analysis of rules is an element of decision support that allows organizations to make better informed decisions. However, changes to decision rules require adjustment and analysis, and analysis is inhibited by changes in rules. With this consideration, a solution approach is proposed. The results show that not only can decision costs be reduced, but policymakers can also make it easier for the public to understand the incentives of green energy programs and the use of solar panels. The application process is simplified for the implementation of sustainable energy policies. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
811, p 811 |
title_short |
Decision Rules for Renewable Energy Utilization Using Rough Set Theory |
url |
https://doi.org/10.3390/axioms12090811 https://doaj.org/article/a9fdb2e320754d54ab9ce2dfe31d21b3 https://www.mdpi.com/2075-1680/12/9/811 https://doaj.org/toc/2075-1680 |
remote_bool |
true |
author2 |
Chun-Che Huang Din-Nan Chen Yuju Wang |
author2Str |
Chun-Che Huang Din-Nan Chen Yuju Wang |
ppnlink |
718622030 |
callnumber-subject |
QA - Mathematics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/axioms12090811 |
callnumber-a |
QA1-939 |
up_date |
2024-07-03T17:26:08.729Z |
_version_ |
1803579627909677056 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ093456875</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414035943.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/axioms12090811</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ093456875</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJa9fdb2e320754d54ab9ce2dfe31d21b3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Chuying Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Decision Rules for Renewable Energy Utilization Using Rough Set Theory</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Rough Set (RS) theory is used for data analysis and decision making where decision-making rules can be derived through attribute reduction and feature selection. Energy shortage is an issue for governments, and solar energy systems have become an important source of renewable energy. Rough sets may be used to summarize and compare rule sets for different periods. In this study, the analysis of rules is an element of decision support that allows organizations to make better informed decisions. However, changes to decision rules require adjustment and analysis, and analysis is inhibited by changes in rules. With this consideration, a solution approach is proposed. The results show that not only can decision costs be reduced, but policymakers can also make it easier for the public to understand the incentives of green energy programs and the use of solar panels. The application process is simplified for the implementation of sustainable energy policies.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rough Set Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">decision making</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">atribute reduction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">decision support</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sustainable</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">feature selection</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chun-Che Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Din-Nan Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yuju Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Axioms</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">12(2023), 811, p 811</subfield><subfield code="w">(DE-627)718622030</subfield><subfield code="w">(DE-600)2661511-3</subfield><subfield code="x">20751680</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:811, p 811</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/axioms12090811</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/a9fdb2e320754d54ab9ce2dfe31d21b3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2075-1680/12/9/811</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2075-1680</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2023</subfield><subfield code="e">811, p 811</subfield></datafield></record></collection>
|
score |
7.4007006 |