Robotic Systems and Navigation Techniques in Orthopedics: A Historical Review
Since the da Vinci surgical system was approved by the Food and Drug Administration (FDA) in 2000, the development and deployment of various robot-assisted minimally invasive surgery (MIS) systems have been largely expedited and boomed. With the rapid advancement of robotic techniques in recent deca...
Ausführliche Beschreibung
Autor*in: |
Teng Li [verfasserIn] Armin Badre [verfasserIn] Farshid Alambeigi [verfasserIn] Mahdi Tavakoli [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
computer-assisted orthopedic surgery |
---|
Übergeordnetes Werk: |
In: Applied Sciences - MDPI AG, 2012, 13(2023), 17, p 9768 |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2023 ; number:17, p 9768 |
Links: |
---|
DOI / URN: |
10.3390/app13179768 |
---|
Katalog-ID: |
DOAJ093530072 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ093530072 | ||
003 | DE-627 | ||
005 | 20240413012428.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/app13179768 |2 doi | |
035 | |a (DE-627)DOAJ093530072 | ||
035 | |a (DE-599)DOAJ9bf355a094c942858b01091db51540b6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TA1-2040 | |
050 | 0 | |a QH301-705.5 | |
050 | 0 | |a QC1-999 | |
050 | 0 | |a QD1-999 | |
100 | 0 | |a Teng Li |e verfasserin |4 aut | |
245 | 1 | 0 | |a Robotic Systems and Navigation Techniques in Orthopedics: A Historical Review |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Since the da Vinci surgical system was approved by the Food and Drug Administration (FDA) in 2000, the development and deployment of various robot-assisted minimally invasive surgery (MIS) systems have been largely expedited and boomed. With the rapid advancement of robotic techniques in recent decades, robot-assisted systems have been widely used in various surgeries including orthopedics. These robot-related techniques are transforming the conventional ways to conduct surgical procedures. Robot-assisted orthopedic surgeries have become more and more popular due to their potential benefits of increased accuracy and precision in surgical outcomes, enhanced reproducibility, reduced technical variability, decreased pain, and faster recovery time. In this paper, robotic systems and navigation techniques in typical orthopedic surgeries are reviewed, especially for arthroplasty. From the perspective of robotics and engineering, the systems and techniques are divided into two main categories, i.e., robotic systems (RSs), and computer-aided navigation systems (CANSs). The former is further divided into autonomous RS, hands-on RS, and teleoperated RS. For the latter, three key elements in CANS are introduced, including 3D modeling, registration, and navigation. Lastly, the potential advantages and disadvantages of the RS and CANS are summarized and discussed. Future perspectives on robotics in orthopedics, as well as the challenges, are presented. | ||
650 | 4 | |a robot-assisted surgery | |
650 | 4 | |a orthopedic surgery | |
650 | 4 | |a computer-assisted orthopedic surgery | |
650 | 4 | |a computer-aided navigation system | |
650 | 4 | |a arthroscopic surgery | |
653 | 0 | |a Technology | |
653 | 0 | |a T | |
653 | 0 | |a Engineering (General). Civil engineering (General) | |
653 | 0 | |a Biology (General) | |
653 | 0 | |a Physics | |
653 | 0 | |a Chemistry | |
700 | 0 | |a Armin Badre |e verfasserin |4 aut | |
700 | 0 | |a Farshid Alambeigi |e verfasserin |4 aut | |
700 | 0 | |a Mahdi Tavakoli |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Applied Sciences |d MDPI AG, 2012 |g 13(2023), 17, p 9768 |w (DE-627)737287640 |w (DE-600)2704225-X |x 20763417 |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2023 |g number:17, p 9768 |
856 | 4 | 0 | |u https://doi.org/10.3390/app13179768 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/9bf355a094c942858b01091db51540b6 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2076-3417/13/17/9768 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2076-3417 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 13 |j 2023 |e 17, p 9768 |
author_variant |
t l tl a b ab f a fa m t mt |
---|---|
matchkey_str |
article:20763417:2023----::ooissesnnvgtotcnqeiotoei |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
TA |
publishDate |
2023 |
allfields |
10.3390/app13179768 doi (DE-627)DOAJ093530072 (DE-599)DOAJ9bf355a094c942858b01091db51540b6 DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Teng Li verfasserin aut Robotic Systems and Navigation Techniques in Orthopedics: A Historical Review 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Since the da Vinci surgical system was approved by the Food and Drug Administration (FDA) in 2000, the development and deployment of various robot-assisted minimally invasive surgery (MIS) systems have been largely expedited and boomed. With the rapid advancement of robotic techniques in recent decades, robot-assisted systems have been widely used in various surgeries including orthopedics. These robot-related techniques are transforming the conventional ways to conduct surgical procedures. Robot-assisted orthopedic surgeries have become more and more popular due to their potential benefits of increased accuracy and precision in surgical outcomes, enhanced reproducibility, reduced technical variability, decreased pain, and faster recovery time. In this paper, robotic systems and navigation techniques in typical orthopedic surgeries are reviewed, especially for arthroplasty. From the perspective of robotics and engineering, the systems and techniques are divided into two main categories, i.e., robotic systems (RSs), and computer-aided navigation systems (CANSs). The former is further divided into autonomous RS, hands-on RS, and teleoperated RS. For the latter, three key elements in CANS are introduced, including 3D modeling, registration, and navigation. Lastly, the potential advantages and disadvantages of the RS and CANS are summarized and discussed. Future perspectives on robotics in orthopedics, as well as the challenges, are presented. robot-assisted surgery orthopedic surgery computer-assisted orthopedic surgery computer-aided navigation system arthroscopic surgery Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Armin Badre verfasserin aut Farshid Alambeigi verfasserin aut Mahdi Tavakoli verfasserin aut In Applied Sciences MDPI AG, 2012 13(2023), 17, p 9768 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:13 year:2023 number:17, p 9768 https://doi.org/10.3390/app13179768 kostenfrei https://doaj.org/article/9bf355a094c942858b01091db51540b6 kostenfrei https://www.mdpi.com/2076-3417/13/17/9768 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 17, p 9768 |
spelling |
10.3390/app13179768 doi (DE-627)DOAJ093530072 (DE-599)DOAJ9bf355a094c942858b01091db51540b6 DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Teng Li verfasserin aut Robotic Systems and Navigation Techniques in Orthopedics: A Historical Review 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Since the da Vinci surgical system was approved by the Food and Drug Administration (FDA) in 2000, the development and deployment of various robot-assisted minimally invasive surgery (MIS) systems have been largely expedited and boomed. With the rapid advancement of robotic techniques in recent decades, robot-assisted systems have been widely used in various surgeries including orthopedics. These robot-related techniques are transforming the conventional ways to conduct surgical procedures. Robot-assisted orthopedic surgeries have become more and more popular due to their potential benefits of increased accuracy and precision in surgical outcomes, enhanced reproducibility, reduced technical variability, decreased pain, and faster recovery time. In this paper, robotic systems and navigation techniques in typical orthopedic surgeries are reviewed, especially for arthroplasty. From the perspective of robotics and engineering, the systems and techniques are divided into two main categories, i.e., robotic systems (RSs), and computer-aided navigation systems (CANSs). The former is further divided into autonomous RS, hands-on RS, and teleoperated RS. For the latter, three key elements in CANS are introduced, including 3D modeling, registration, and navigation. Lastly, the potential advantages and disadvantages of the RS and CANS are summarized and discussed. Future perspectives on robotics in orthopedics, as well as the challenges, are presented. robot-assisted surgery orthopedic surgery computer-assisted orthopedic surgery computer-aided navigation system arthroscopic surgery Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Armin Badre verfasserin aut Farshid Alambeigi verfasserin aut Mahdi Tavakoli verfasserin aut In Applied Sciences MDPI AG, 2012 13(2023), 17, p 9768 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:13 year:2023 number:17, p 9768 https://doi.org/10.3390/app13179768 kostenfrei https://doaj.org/article/9bf355a094c942858b01091db51540b6 kostenfrei https://www.mdpi.com/2076-3417/13/17/9768 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 17, p 9768 |
allfields_unstemmed |
10.3390/app13179768 doi (DE-627)DOAJ093530072 (DE-599)DOAJ9bf355a094c942858b01091db51540b6 DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Teng Li verfasserin aut Robotic Systems and Navigation Techniques in Orthopedics: A Historical Review 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Since the da Vinci surgical system was approved by the Food and Drug Administration (FDA) in 2000, the development and deployment of various robot-assisted minimally invasive surgery (MIS) systems have been largely expedited and boomed. With the rapid advancement of robotic techniques in recent decades, robot-assisted systems have been widely used in various surgeries including orthopedics. These robot-related techniques are transforming the conventional ways to conduct surgical procedures. Robot-assisted orthopedic surgeries have become more and more popular due to their potential benefits of increased accuracy and precision in surgical outcomes, enhanced reproducibility, reduced technical variability, decreased pain, and faster recovery time. In this paper, robotic systems and navigation techniques in typical orthopedic surgeries are reviewed, especially for arthroplasty. From the perspective of robotics and engineering, the systems and techniques are divided into two main categories, i.e., robotic systems (RSs), and computer-aided navigation systems (CANSs). The former is further divided into autonomous RS, hands-on RS, and teleoperated RS. For the latter, three key elements in CANS are introduced, including 3D modeling, registration, and navigation. Lastly, the potential advantages and disadvantages of the RS and CANS are summarized and discussed. Future perspectives on robotics in orthopedics, as well as the challenges, are presented. robot-assisted surgery orthopedic surgery computer-assisted orthopedic surgery computer-aided navigation system arthroscopic surgery Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Armin Badre verfasserin aut Farshid Alambeigi verfasserin aut Mahdi Tavakoli verfasserin aut In Applied Sciences MDPI AG, 2012 13(2023), 17, p 9768 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:13 year:2023 number:17, p 9768 https://doi.org/10.3390/app13179768 kostenfrei https://doaj.org/article/9bf355a094c942858b01091db51540b6 kostenfrei https://www.mdpi.com/2076-3417/13/17/9768 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 17, p 9768 |
allfieldsGer |
10.3390/app13179768 doi (DE-627)DOAJ093530072 (DE-599)DOAJ9bf355a094c942858b01091db51540b6 DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Teng Li verfasserin aut Robotic Systems and Navigation Techniques in Orthopedics: A Historical Review 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Since the da Vinci surgical system was approved by the Food and Drug Administration (FDA) in 2000, the development and deployment of various robot-assisted minimally invasive surgery (MIS) systems have been largely expedited and boomed. With the rapid advancement of robotic techniques in recent decades, robot-assisted systems have been widely used in various surgeries including orthopedics. These robot-related techniques are transforming the conventional ways to conduct surgical procedures. Robot-assisted orthopedic surgeries have become more and more popular due to their potential benefits of increased accuracy and precision in surgical outcomes, enhanced reproducibility, reduced technical variability, decreased pain, and faster recovery time. In this paper, robotic systems and navigation techniques in typical orthopedic surgeries are reviewed, especially for arthroplasty. From the perspective of robotics and engineering, the systems and techniques are divided into two main categories, i.e., robotic systems (RSs), and computer-aided navigation systems (CANSs). The former is further divided into autonomous RS, hands-on RS, and teleoperated RS. For the latter, three key elements in CANS are introduced, including 3D modeling, registration, and navigation. Lastly, the potential advantages and disadvantages of the RS and CANS are summarized and discussed. Future perspectives on robotics in orthopedics, as well as the challenges, are presented. robot-assisted surgery orthopedic surgery computer-assisted orthopedic surgery computer-aided navigation system arthroscopic surgery Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Armin Badre verfasserin aut Farshid Alambeigi verfasserin aut Mahdi Tavakoli verfasserin aut In Applied Sciences MDPI AG, 2012 13(2023), 17, p 9768 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:13 year:2023 number:17, p 9768 https://doi.org/10.3390/app13179768 kostenfrei https://doaj.org/article/9bf355a094c942858b01091db51540b6 kostenfrei https://www.mdpi.com/2076-3417/13/17/9768 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 17, p 9768 |
allfieldsSound |
10.3390/app13179768 doi (DE-627)DOAJ093530072 (DE-599)DOAJ9bf355a094c942858b01091db51540b6 DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Teng Li verfasserin aut Robotic Systems and Navigation Techniques in Orthopedics: A Historical Review 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Since the da Vinci surgical system was approved by the Food and Drug Administration (FDA) in 2000, the development and deployment of various robot-assisted minimally invasive surgery (MIS) systems have been largely expedited and boomed. With the rapid advancement of robotic techniques in recent decades, robot-assisted systems have been widely used in various surgeries including orthopedics. These robot-related techniques are transforming the conventional ways to conduct surgical procedures. Robot-assisted orthopedic surgeries have become more and more popular due to their potential benefits of increased accuracy and precision in surgical outcomes, enhanced reproducibility, reduced technical variability, decreased pain, and faster recovery time. In this paper, robotic systems and navigation techniques in typical orthopedic surgeries are reviewed, especially for arthroplasty. From the perspective of robotics and engineering, the systems and techniques are divided into two main categories, i.e., robotic systems (RSs), and computer-aided navigation systems (CANSs). The former is further divided into autonomous RS, hands-on RS, and teleoperated RS. For the latter, three key elements in CANS are introduced, including 3D modeling, registration, and navigation. Lastly, the potential advantages and disadvantages of the RS and CANS are summarized and discussed. Future perspectives on robotics in orthopedics, as well as the challenges, are presented. robot-assisted surgery orthopedic surgery computer-assisted orthopedic surgery computer-aided navigation system arthroscopic surgery Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Armin Badre verfasserin aut Farshid Alambeigi verfasserin aut Mahdi Tavakoli verfasserin aut In Applied Sciences MDPI AG, 2012 13(2023), 17, p 9768 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:13 year:2023 number:17, p 9768 https://doi.org/10.3390/app13179768 kostenfrei https://doaj.org/article/9bf355a094c942858b01091db51540b6 kostenfrei https://www.mdpi.com/2076-3417/13/17/9768 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 17, p 9768 |
language |
English |
source |
In Applied Sciences 13(2023), 17, p 9768 volume:13 year:2023 number:17, p 9768 |
sourceStr |
In Applied Sciences 13(2023), 17, p 9768 volume:13 year:2023 number:17, p 9768 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
robot-assisted surgery orthopedic surgery computer-assisted orthopedic surgery computer-aided navigation system arthroscopic surgery Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry |
isfreeaccess_bool |
true |
container_title |
Applied Sciences |
authorswithroles_txt_mv |
Teng Li @@aut@@ Armin Badre @@aut@@ Farshid Alambeigi @@aut@@ Mahdi Tavakoli @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
737287640 |
id |
DOAJ093530072 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ093530072</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413012428.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/app13179768</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ093530072</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ9bf355a094c942858b01091db51540b6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Teng Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Robotic Systems and Navigation Techniques in Orthopedics: A Historical Review</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Since the da Vinci surgical system was approved by the Food and Drug Administration (FDA) in 2000, the development and deployment of various robot-assisted minimally invasive surgery (MIS) systems have been largely expedited and boomed. With the rapid advancement of robotic techniques in recent decades, robot-assisted systems have been widely used in various surgeries including orthopedics. These robot-related techniques are transforming the conventional ways to conduct surgical procedures. Robot-assisted orthopedic surgeries have become more and more popular due to their potential benefits of increased accuracy and precision in surgical outcomes, enhanced reproducibility, reduced technical variability, decreased pain, and faster recovery time. In this paper, robotic systems and navigation techniques in typical orthopedic surgeries are reviewed, especially for arthroplasty. From the perspective of robotics and engineering, the systems and techniques are divided into two main categories, i.e., robotic systems (RSs), and computer-aided navigation systems (CANSs). The former is further divided into autonomous RS, hands-on RS, and teleoperated RS. For the latter, three key elements in CANS are introduced, including 3D modeling, registration, and navigation. Lastly, the potential advantages and disadvantages of the RS and CANS are summarized and discussed. Future perspectives on robotics in orthopedics, as well as the challenges, are presented.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">robot-assisted surgery</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">orthopedic surgery</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">computer-assisted orthopedic surgery</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">computer-aided navigation system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">arthroscopic surgery</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Armin Badre</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Farshid Alambeigi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mahdi Tavakoli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Applied Sciences</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">13(2023), 17, p 9768</subfield><subfield code="w">(DE-627)737287640</subfield><subfield code="w">(DE-600)2704225-X</subfield><subfield code="x">20763417</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:17, p 9768</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/app13179768</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/9bf355a094c942858b01091db51540b6</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2076-3417/13/17/9768</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2076-3417</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2023</subfield><subfield code="e">17, p 9768</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Teng Li |
spellingShingle |
Teng Li misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc robot-assisted surgery misc orthopedic surgery misc computer-assisted orthopedic surgery misc computer-aided navigation system misc arthroscopic surgery misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry Robotic Systems and Navigation Techniques in Orthopedics: A Historical Review |
authorStr |
Teng Li |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)737287640 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA1-2040 |
illustrated |
Not Illustrated |
issn |
20763417 |
topic_title |
TA1-2040 QH301-705.5 QC1-999 QD1-999 Robotic Systems and Navigation Techniques in Orthopedics: A Historical Review robot-assisted surgery orthopedic surgery computer-assisted orthopedic surgery computer-aided navigation system arthroscopic surgery |
topic |
misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc robot-assisted surgery misc orthopedic surgery misc computer-assisted orthopedic surgery misc computer-aided navigation system misc arthroscopic surgery misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry |
topic_unstemmed |
misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc robot-assisted surgery misc orthopedic surgery misc computer-assisted orthopedic surgery misc computer-aided navigation system misc arthroscopic surgery misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry |
topic_browse |
misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc robot-assisted surgery misc orthopedic surgery misc computer-assisted orthopedic surgery misc computer-aided navigation system misc arthroscopic surgery misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Applied Sciences |
hierarchy_parent_id |
737287640 |
hierarchy_top_title |
Applied Sciences |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)737287640 (DE-600)2704225-X |
title |
Robotic Systems and Navigation Techniques in Orthopedics: A Historical Review |
ctrlnum |
(DE-627)DOAJ093530072 (DE-599)DOAJ9bf355a094c942858b01091db51540b6 |
title_full |
Robotic Systems and Navigation Techniques in Orthopedics: A Historical Review |
author_sort |
Teng Li |
journal |
Applied Sciences |
journalStr |
Applied Sciences |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Teng Li Armin Badre Farshid Alambeigi Mahdi Tavakoli |
container_volume |
13 |
class |
TA1-2040 QH301-705.5 QC1-999 QD1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Teng Li |
doi_str_mv |
10.3390/app13179768 |
author2-role |
verfasserin |
title_sort |
robotic systems and navigation techniques in orthopedics: a historical review |
callnumber |
TA1-2040 |
title_auth |
Robotic Systems and Navigation Techniques in Orthopedics: A Historical Review |
abstract |
Since the da Vinci surgical system was approved by the Food and Drug Administration (FDA) in 2000, the development and deployment of various robot-assisted minimally invasive surgery (MIS) systems have been largely expedited and boomed. With the rapid advancement of robotic techniques in recent decades, robot-assisted systems have been widely used in various surgeries including orthopedics. These robot-related techniques are transforming the conventional ways to conduct surgical procedures. Robot-assisted orthopedic surgeries have become more and more popular due to their potential benefits of increased accuracy and precision in surgical outcomes, enhanced reproducibility, reduced technical variability, decreased pain, and faster recovery time. In this paper, robotic systems and navigation techniques in typical orthopedic surgeries are reviewed, especially for arthroplasty. From the perspective of robotics and engineering, the systems and techniques are divided into two main categories, i.e., robotic systems (RSs), and computer-aided navigation systems (CANSs). The former is further divided into autonomous RS, hands-on RS, and teleoperated RS. For the latter, three key elements in CANS are introduced, including 3D modeling, registration, and navigation. Lastly, the potential advantages and disadvantages of the RS and CANS are summarized and discussed. Future perspectives on robotics in orthopedics, as well as the challenges, are presented. |
abstractGer |
Since the da Vinci surgical system was approved by the Food and Drug Administration (FDA) in 2000, the development and deployment of various robot-assisted minimally invasive surgery (MIS) systems have been largely expedited and boomed. With the rapid advancement of robotic techniques in recent decades, robot-assisted systems have been widely used in various surgeries including orthopedics. These robot-related techniques are transforming the conventional ways to conduct surgical procedures. Robot-assisted orthopedic surgeries have become more and more popular due to their potential benefits of increased accuracy and precision in surgical outcomes, enhanced reproducibility, reduced technical variability, decreased pain, and faster recovery time. In this paper, robotic systems and navigation techniques in typical orthopedic surgeries are reviewed, especially for arthroplasty. From the perspective of robotics and engineering, the systems and techniques are divided into two main categories, i.e., robotic systems (RSs), and computer-aided navigation systems (CANSs). The former is further divided into autonomous RS, hands-on RS, and teleoperated RS. For the latter, three key elements in CANS are introduced, including 3D modeling, registration, and navigation. Lastly, the potential advantages and disadvantages of the RS and CANS are summarized and discussed. Future perspectives on robotics in orthopedics, as well as the challenges, are presented. |
abstract_unstemmed |
Since the da Vinci surgical system was approved by the Food and Drug Administration (FDA) in 2000, the development and deployment of various robot-assisted minimally invasive surgery (MIS) systems have been largely expedited and boomed. With the rapid advancement of robotic techniques in recent decades, robot-assisted systems have been widely used in various surgeries including orthopedics. These robot-related techniques are transforming the conventional ways to conduct surgical procedures. Robot-assisted orthopedic surgeries have become more and more popular due to their potential benefits of increased accuracy and precision in surgical outcomes, enhanced reproducibility, reduced technical variability, decreased pain, and faster recovery time. In this paper, robotic systems and navigation techniques in typical orthopedic surgeries are reviewed, especially for arthroplasty. From the perspective of robotics and engineering, the systems and techniques are divided into two main categories, i.e., robotic systems (RSs), and computer-aided navigation systems (CANSs). The former is further divided into autonomous RS, hands-on RS, and teleoperated RS. For the latter, three key elements in CANS are introduced, including 3D modeling, registration, and navigation. Lastly, the potential advantages and disadvantages of the RS and CANS are summarized and discussed. Future perspectives on robotics in orthopedics, as well as the challenges, are presented. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
17, p 9768 |
title_short |
Robotic Systems and Navigation Techniques in Orthopedics: A Historical Review |
url |
https://doi.org/10.3390/app13179768 https://doaj.org/article/9bf355a094c942858b01091db51540b6 https://www.mdpi.com/2076-3417/13/17/9768 https://doaj.org/toc/2076-3417 |
remote_bool |
true |
author2 |
Armin Badre Farshid Alambeigi Mahdi Tavakoli |
author2Str |
Armin Badre Farshid Alambeigi Mahdi Tavakoli |
ppnlink |
737287640 |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/app13179768 |
callnumber-a |
TA1-2040 |
up_date |
2024-07-03T17:52:18.763Z |
_version_ |
1803581274208600064 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ093530072</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413012428.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/app13179768</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ093530072</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ9bf355a094c942858b01091db51540b6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Teng Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Robotic Systems and Navigation Techniques in Orthopedics: A Historical Review</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Since the da Vinci surgical system was approved by the Food and Drug Administration (FDA) in 2000, the development and deployment of various robot-assisted minimally invasive surgery (MIS) systems have been largely expedited and boomed. With the rapid advancement of robotic techniques in recent decades, robot-assisted systems have been widely used in various surgeries including orthopedics. These robot-related techniques are transforming the conventional ways to conduct surgical procedures. Robot-assisted orthopedic surgeries have become more and more popular due to their potential benefits of increased accuracy and precision in surgical outcomes, enhanced reproducibility, reduced technical variability, decreased pain, and faster recovery time. In this paper, robotic systems and navigation techniques in typical orthopedic surgeries are reviewed, especially for arthroplasty. From the perspective of robotics and engineering, the systems and techniques are divided into two main categories, i.e., robotic systems (RSs), and computer-aided navigation systems (CANSs). The former is further divided into autonomous RS, hands-on RS, and teleoperated RS. For the latter, three key elements in CANS are introduced, including 3D modeling, registration, and navigation. Lastly, the potential advantages and disadvantages of the RS and CANS are summarized and discussed. Future perspectives on robotics in orthopedics, as well as the challenges, are presented.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">robot-assisted surgery</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">orthopedic surgery</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">computer-assisted orthopedic surgery</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">computer-aided navigation system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">arthroscopic surgery</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Armin Badre</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Farshid Alambeigi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mahdi Tavakoli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Applied Sciences</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">13(2023), 17, p 9768</subfield><subfield code="w">(DE-627)737287640</subfield><subfield code="w">(DE-600)2704225-X</subfield><subfield code="x">20763417</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:17, p 9768</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/app13179768</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/9bf355a094c942858b01091db51540b6</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2076-3417/13/17/9768</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2076-3417</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2023</subfield><subfield code="e">17, p 9768</subfield></datafield></record></collection>
|
score |
7.4018154 |