Research on Energy Management of Hydrogen Fuel Cell Bus Based on Deep Reinforcement Learning Considering Velocity Control

In the vehicle-to-everything scenario, the fuel cell bus can accurately obtain the surrounding traffic information, and quickly optimize the energy management problem while controlling its own safe and efficient driving. This paper proposes an energy management strategy (EMS) that considers speed co...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Yang Shen [verfasserIn]

Jiaming Zhou [verfasserIn]

Jinming Zhang [verfasserIn]

Fengyan Yi [verfasserIn]

Guofeng Wang [verfasserIn]

Chaofeng Pan [verfasserIn]

Wei Guo [verfasserIn]

Xing Shu [verfasserIn]

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2023

Schlagwörter:

fuel cell bus

deep reinforcement learning

vehicle velocity control

energy management strategy

Übergeordnetes Werk:

In: Sustainability - MDPI AG, 2009, 15(2023), 16, p 12488

Übergeordnetes Werk:

volume:15 ; year:2023 ; number:16, p 12488

Links:

Link aufrufen
Link aufrufen
Link aufrufen
Journal toc

DOI / URN:

10.3390/su151612488

Katalog-ID:

DOAJ093547870

Nicht das Richtige dabei?

Schreiben Sie uns!