<i<Suaeda salsa</i< NRT1.1 Is Involved in the Regulation of Tolerance to Salt Stress in Transgenic <i<Arabidopsis</i<
Like other abiotic stresses, salt stress has become a major factor that restricts the growth, distribution and yield of crops. Research has shown that increasing the nitrogen content in soil can improve the salt tolerance of plants and nitrate transporter (NRT) is the primary nitrogen transporter in...
Ausführliche Beschreibung
Autor*in: |
Yi Xiong [verfasserIn] Saisai Wang [verfasserIn] Cuijie Cui [verfasserIn] Xiaoyan Wu [verfasserIn] Jianbo Zhu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: International Journal of Molecular Sciences - MDPI AG, 2003, 24(2023), 16, p 12761 |
---|---|
Übergeordnetes Werk: |
volume:24 ; year:2023 ; number:16, p 12761 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.3390/ijms241612761 |
---|
Katalog-ID: |
DOAJ093605374 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ093605374 | ||
003 | DE-627 | ||
005 | 20240413013639.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/ijms241612761 |2 doi | |
035 | |a (DE-627)DOAJ093605374 | ||
035 | |a (DE-599)DOAJ3c684a53d1a247068db805f3d0ed7b98 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QH301-705.5 | |
050 | 0 | |a QD1-999 | |
100 | 0 | |a Yi Xiong |e verfasserin |4 aut | |
245 | 1 | 0 | |a <i<Suaeda salsa</i< NRT1.1 Is Involved in the Regulation of Tolerance to Salt Stress in Transgenic <i<Arabidopsis</i< |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Like other abiotic stresses, salt stress has become a major factor that restricts the growth, distribution and yield of crops. Research has shown that increasing the nitrogen content in soil can improve the salt tolerance of plants and nitrate transporter (NRT) is the primary nitrogen transporter in plants. <i<Suaeda salsa</i< (L.) Pall is a strong halophyte that can grow normally at a salt concentration of 200 mM. The salt stress transcriptome database of <i<S. salsa</i< was found to contain four putative genes that were homologous to NRT, including <i<SsNRT1.1A</i<, <i<SsNRT1.1B</i<, <i<SsNRT1.1C</i< and <i<SsNRT1.1D</i<. The cDNA of <i<SsNRT1.1s</i< was predicted to contain open reading frames of 1791, 1782, 1755 and 1746 bp, respectively. Sequence alignment and structural analysis showed that the SsNRT1.1 amino acids were inducible by salt and have conserved MFS and PTR2 domains. Subcellular localization showed they are on the endoplasmic reticulum. Overexpression of <i<SsNRT1.1</i< genes in transgenic <i<Arabidopsis</i< improves its salt tolerance and <i<SsNRT1.1C</i< was more effective than others. We constructed a salt-stressed yeast cDNA library and used yeast two-hybrid and BiFC technology to find out that SsHINT1 and SsNRT1.1C have a protein interaction relationship. Overexpression of <i<SsHINT1</i< in transgenic <i<Arabidopsis</i< also improves salt tolerance and the expressions of Na<sup<+</sup< and K<sup<+</sup< were increased and reduced, respectively. But the K<sup<+</sup</Liratio was up-regulated 11.1-fold compared with the wild type. Thus, these results provide evidence that SsNRT1.1C through protein interactions with SsHINT1 increases the K<sup<+</sup</Na<sup<+</sup< ratio to improve salt tolerance and this signaling may be controlled by the salt overly sensitive (SOS) pathway. | ||
650 | 4 | |a <i<SsNRT1.1C</i< | |
650 | 4 | |a <i<Suaeda salsa</i< (L.) Pall. | |
650 | 4 | |a SsHINT1 | |
650 | 4 | |a salt tolerance | |
650 | 4 | |a K<sup<+</sup</Na<sup<+</sup< | |
653 | 0 | |a Biology (General) | |
653 | 0 | |a Chemistry | |
700 | 0 | |a Saisai Wang |e verfasserin |4 aut | |
700 | 0 | |a Cuijie Cui |e verfasserin |4 aut | |
700 | 0 | |a Xiaoyan Wu |e verfasserin |4 aut | |
700 | 0 | |a Jianbo Zhu |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t International Journal of Molecular Sciences |d MDPI AG, 2003 |g 24(2023), 16, p 12761 |w (DE-627)316340715 |w (DE-600)2019364-6 |x 14220067 |7 nnns |
773 | 1 | 8 | |g volume:24 |g year:2023 |g number:16, p 12761 |
856 | 4 | 0 | |u https://doi.org/10.3390/ijms241612761 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/3c684a53d1a247068db805f3d0ed7b98 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/1422-0067/24/16/12761 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1661-6596 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1422-0067 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 24 |j 2023 |e 16, p 12761 |
author_variant |
y x yx s w sw c c cc x w xw j z jz |
---|---|
matchkey_str |
article:14220067:2023----::sadslant1snovdnhrgltootlrneoattes |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
QH |
publishDate |
2023 |
allfields |
10.3390/ijms241612761 doi (DE-627)DOAJ093605374 (DE-599)DOAJ3c684a53d1a247068db805f3d0ed7b98 DE-627 ger DE-627 rakwb eng QH301-705.5 QD1-999 Yi Xiong verfasserin aut <i<Suaeda salsa</i< NRT1.1 Is Involved in the Regulation of Tolerance to Salt Stress in Transgenic <i<Arabidopsis</i< 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Like other abiotic stresses, salt stress has become a major factor that restricts the growth, distribution and yield of crops. Research has shown that increasing the nitrogen content in soil can improve the salt tolerance of plants and nitrate transporter (NRT) is the primary nitrogen transporter in plants. <i<Suaeda salsa</i< (L.) Pall is a strong halophyte that can grow normally at a salt concentration of 200 mM. The salt stress transcriptome database of <i<S. salsa</i< was found to contain four putative genes that were homologous to NRT, including <i<SsNRT1.1A</i<, <i<SsNRT1.1B</i<, <i<SsNRT1.1C</i< and <i<SsNRT1.1D</i<. The cDNA of <i<SsNRT1.1s</i< was predicted to contain open reading frames of 1791, 1782, 1755 and 1746 bp, respectively. Sequence alignment and structural analysis showed that the SsNRT1.1 amino acids were inducible by salt and have conserved MFS and PTR2 domains. Subcellular localization showed they are on the endoplasmic reticulum. Overexpression of <i<SsNRT1.1</i< genes in transgenic <i<Arabidopsis</i< improves its salt tolerance and <i<SsNRT1.1C</i< was more effective than others. We constructed a salt-stressed yeast cDNA library and used yeast two-hybrid and BiFC technology to find out that SsHINT1 and SsNRT1.1C have a protein interaction relationship. Overexpression of <i<SsHINT1</i< in transgenic <i<Arabidopsis</i< also improves salt tolerance and the expressions of Na<sup<+</sup< and K<sup<+</sup< were increased and reduced, respectively. But the K<sup<+</sup</Liratio was up-regulated 11.1-fold compared with the wild type. Thus, these results provide evidence that SsNRT1.1C through protein interactions with SsHINT1 increases the K<sup<+</sup</Na<sup<+</sup< ratio to improve salt tolerance and this signaling may be controlled by the salt overly sensitive (SOS) pathway. <i<SsNRT1.1C</i< <i<Suaeda salsa</i< (L.) Pall. SsHINT1 salt tolerance K<sup<+</sup</Na<sup<+</sup< Biology (General) Chemistry Saisai Wang verfasserin aut Cuijie Cui verfasserin aut Xiaoyan Wu verfasserin aut Jianbo Zhu verfasserin aut In International Journal of Molecular Sciences MDPI AG, 2003 24(2023), 16, p 12761 (DE-627)316340715 (DE-600)2019364-6 14220067 nnns volume:24 year:2023 number:16, p 12761 https://doi.org/10.3390/ijms241612761 kostenfrei https://doaj.org/article/3c684a53d1a247068db805f3d0ed7b98 kostenfrei https://www.mdpi.com/1422-0067/24/16/12761 kostenfrei https://doaj.org/toc/1661-6596 Journal toc kostenfrei https://doaj.org/toc/1422-0067 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 24 2023 16, p 12761 |
spelling |
10.3390/ijms241612761 doi (DE-627)DOAJ093605374 (DE-599)DOAJ3c684a53d1a247068db805f3d0ed7b98 DE-627 ger DE-627 rakwb eng QH301-705.5 QD1-999 Yi Xiong verfasserin aut <i<Suaeda salsa</i< NRT1.1 Is Involved in the Regulation of Tolerance to Salt Stress in Transgenic <i<Arabidopsis</i< 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Like other abiotic stresses, salt stress has become a major factor that restricts the growth, distribution and yield of crops. Research has shown that increasing the nitrogen content in soil can improve the salt tolerance of plants and nitrate transporter (NRT) is the primary nitrogen transporter in plants. <i<Suaeda salsa</i< (L.) Pall is a strong halophyte that can grow normally at a salt concentration of 200 mM. The salt stress transcriptome database of <i<S. salsa</i< was found to contain four putative genes that were homologous to NRT, including <i<SsNRT1.1A</i<, <i<SsNRT1.1B</i<, <i<SsNRT1.1C</i< and <i<SsNRT1.1D</i<. The cDNA of <i<SsNRT1.1s</i< was predicted to contain open reading frames of 1791, 1782, 1755 and 1746 bp, respectively. Sequence alignment and structural analysis showed that the SsNRT1.1 amino acids were inducible by salt and have conserved MFS and PTR2 domains. Subcellular localization showed they are on the endoplasmic reticulum. Overexpression of <i<SsNRT1.1</i< genes in transgenic <i<Arabidopsis</i< improves its salt tolerance and <i<SsNRT1.1C</i< was more effective than others. We constructed a salt-stressed yeast cDNA library and used yeast two-hybrid and BiFC technology to find out that SsHINT1 and SsNRT1.1C have a protein interaction relationship. Overexpression of <i<SsHINT1</i< in transgenic <i<Arabidopsis</i< also improves salt tolerance and the expressions of Na<sup<+</sup< and K<sup<+</sup< were increased and reduced, respectively. But the K<sup<+</sup</Liratio was up-regulated 11.1-fold compared with the wild type. Thus, these results provide evidence that SsNRT1.1C through protein interactions with SsHINT1 increases the K<sup<+</sup</Na<sup<+</sup< ratio to improve salt tolerance and this signaling may be controlled by the salt overly sensitive (SOS) pathway. <i<SsNRT1.1C</i< <i<Suaeda salsa</i< (L.) Pall. SsHINT1 salt tolerance K<sup<+</sup</Na<sup<+</sup< Biology (General) Chemistry Saisai Wang verfasserin aut Cuijie Cui verfasserin aut Xiaoyan Wu verfasserin aut Jianbo Zhu verfasserin aut In International Journal of Molecular Sciences MDPI AG, 2003 24(2023), 16, p 12761 (DE-627)316340715 (DE-600)2019364-6 14220067 nnns volume:24 year:2023 number:16, p 12761 https://doi.org/10.3390/ijms241612761 kostenfrei https://doaj.org/article/3c684a53d1a247068db805f3d0ed7b98 kostenfrei https://www.mdpi.com/1422-0067/24/16/12761 kostenfrei https://doaj.org/toc/1661-6596 Journal toc kostenfrei https://doaj.org/toc/1422-0067 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 24 2023 16, p 12761 |
allfields_unstemmed |
10.3390/ijms241612761 doi (DE-627)DOAJ093605374 (DE-599)DOAJ3c684a53d1a247068db805f3d0ed7b98 DE-627 ger DE-627 rakwb eng QH301-705.5 QD1-999 Yi Xiong verfasserin aut <i<Suaeda salsa</i< NRT1.1 Is Involved in the Regulation of Tolerance to Salt Stress in Transgenic <i<Arabidopsis</i< 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Like other abiotic stresses, salt stress has become a major factor that restricts the growth, distribution and yield of crops. Research has shown that increasing the nitrogen content in soil can improve the salt tolerance of plants and nitrate transporter (NRT) is the primary nitrogen transporter in plants. <i<Suaeda salsa</i< (L.) Pall is a strong halophyte that can grow normally at a salt concentration of 200 mM. The salt stress transcriptome database of <i<S. salsa</i< was found to contain four putative genes that were homologous to NRT, including <i<SsNRT1.1A</i<, <i<SsNRT1.1B</i<, <i<SsNRT1.1C</i< and <i<SsNRT1.1D</i<. The cDNA of <i<SsNRT1.1s</i< was predicted to contain open reading frames of 1791, 1782, 1755 and 1746 bp, respectively. Sequence alignment and structural analysis showed that the SsNRT1.1 amino acids were inducible by salt and have conserved MFS and PTR2 domains. Subcellular localization showed they are on the endoplasmic reticulum. Overexpression of <i<SsNRT1.1</i< genes in transgenic <i<Arabidopsis</i< improves its salt tolerance and <i<SsNRT1.1C</i< was more effective than others. We constructed a salt-stressed yeast cDNA library and used yeast two-hybrid and BiFC technology to find out that SsHINT1 and SsNRT1.1C have a protein interaction relationship. Overexpression of <i<SsHINT1</i< in transgenic <i<Arabidopsis</i< also improves salt tolerance and the expressions of Na<sup<+</sup< and K<sup<+</sup< were increased and reduced, respectively. But the K<sup<+</sup</Liratio was up-regulated 11.1-fold compared with the wild type. Thus, these results provide evidence that SsNRT1.1C through protein interactions with SsHINT1 increases the K<sup<+</sup</Na<sup<+</sup< ratio to improve salt tolerance and this signaling may be controlled by the salt overly sensitive (SOS) pathway. <i<SsNRT1.1C</i< <i<Suaeda salsa</i< (L.) Pall. SsHINT1 salt tolerance K<sup<+</sup</Na<sup<+</sup< Biology (General) Chemistry Saisai Wang verfasserin aut Cuijie Cui verfasserin aut Xiaoyan Wu verfasserin aut Jianbo Zhu verfasserin aut In International Journal of Molecular Sciences MDPI AG, 2003 24(2023), 16, p 12761 (DE-627)316340715 (DE-600)2019364-6 14220067 nnns volume:24 year:2023 number:16, p 12761 https://doi.org/10.3390/ijms241612761 kostenfrei https://doaj.org/article/3c684a53d1a247068db805f3d0ed7b98 kostenfrei https://www.mdpi.com/1422-0067/24/16/12761 kostenfrei https://doaj.org/toc/1661-6596 Journal toc kostenfrei https://doaj.org/toc/1422-0067 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 24 2023 16, p 12761 |
allfieldsGer |
10.3390/ijms241612761 doi (DE-627)DOAJ093605374 (DE-599)DOAJ3c684a53d1a247068db805f3d0ed7b98 DE-627 ger DE-627 rakwb eng QH301-705.5 QD1-999 Yi Xiong verfasserin aut <i<Suaeda salsa</i< NRT1.1 Is Involved in the Regulation of Tolerance to Salt Stress in Transgenic <i<Arabidopsis</i< 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Like other abiotic stresses, salt stress has become a major factor that restricts the growth, distribution and yield of crops. Research has shown that increasing the nitrogen content in soil can improve the salt tolerance of plants and nitrate transporter (NRT) is the primary nitrogen transporter in plants. <i<Suaeda salsa</i< (L.) Pall is a strong halophyte that can grow normally at a salt concentration of 200 mM. The salt stress transcriptome database of <i<S. salsa</i< was found to contain four putative genes that were homologous to NRT, including <i<SsNRT1.1A</i<, <i<SsNRT1.1B</i<, <i<SsNRT1.1C</i< and <i<SsNRT1.1D</i<. The cDNA of <i<SsNRT1.1s</i< was predicted to contain open reading frames of 1791, 1782, 1755 and 1746 bp, respectively. Sequence alignment and structural analysis showed that the SsNRT1.1 amino acids were inducible by salt and have conserved MFS and PTR2 domains. Subcellular localization showed they are on the endoplasmic reticulum. Overexpression of <i<SsNRT1.1</i< genes in transgenic <i<Arabidopsis</i< improves its salt tolerance and <i<SsNRT1.1C</i< was more effective than others. We constructed a salt-stressed yeast cDNA library and used yeast two-hybrid and BiFC technology to find out that SsHINT1 and SsNRT1.1C have a protein interaction relationship. Overexpression of <i<SsHINT1</i< in transgenic <i<Arabidopsis</i< also improves salt tolerance and the expressions of Na<sup<+</sup< and K<sup<+</sup< were increased and reduced, respectively. But the K<sup<+</sup</Liratio was up-regulated 11.1-fold compared with the wild type. Thus, these results provide evidence that SsNRT1.1C through protein interactions with SsHINT1 increases the K<sup<+</sup</Na<sup<+</sup< ratio to improve salt tolerance and this signaling may be controlled by the salt overly sensitive (SOS) pathway. <i<SsNRT1.1C</i< <i<Suaeda salsa</i< (L.) Pall. SsHINT1 salt tolerance K<sup<+</sup</Na<sup<+</sup< Biology (General) Chemistry Saisai Wang verfasserin aut Cuijie Cui verfasserin aut Xiaoyan Wu verfasserin aut Jianbo Zhu verfasserin aut In International Journal of Molecular Sciences MDPI AG, 2003 24(2023), 16, p 12761 (DE-627)316340715 (DE-600)2019364-6 14220067 nnns volume:24 year:2023 number:16, p 12761 https://doi.org/10.3390/ijms241612761 kostenfrei https://doaj.org/article/3c684a53d1a247068db805f3d0ed7b98 kostenfrei https://www.mdpi.com/1422-0067/24/16/12761 kostenfrei https://doaj.org/toc/1661-6596 Journal toc kostenfrei https://doaj.org/toc/1422-0067 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 24 2023 16, p 12761 |
allfieldsSound |
10.3390/ijms241612761 doi (DE-627)DOAJ093605374 (DE-599)DOAJ3c684a53d1a247068db805f3d0ed7b98 DE-627 ger DE-627 rakwb eng QH301-705.5 QD1-999 Yi Xiong verfasserin aut <i<Suaeda salsa</i< NRT1.1 Is Involved in the Regulation of Tolerance to Salt Stress in Transgenic <i<Arabidopsis</i< 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Like other abiotic stresses, salt stress has become a major factor that restricts the growth, distribution and yield of crops. Research has shown that increasing the nitrogen content in soil can improve the salt tolerance of plants and nitrate transporter (NRT) is the primary nitrogen transporter in plants. <i<Suaeda salsa</i< (L.) Pall is a strong halophyte that can grow normally at a salt concentration of 200 mM. The salt stress transcriptome database of <i<S. salsa</i< was found to contain four putative genes that were homologous to NRT, including <i<SsNRT1.1A</i<, <i<SsNRT1.1B</i<, <i<SsNRT1.1C</i< and <i<SsNRT1.1D</i<. The cDNA of <i<SsNRT1.1s</i< was predicted to contain open reading frames of 1791, 1782, 1755 and 1746 bp, respectively. Sequence alignment and structural analysis showed that the SsNRT1.1 amino acids were inducible by salt and have conserved MFS and PTR2 domains. Subcellular localization showed they are on the endoplasmic reticulum. Overexpression of <i<SsNRT1.1</i< genes in transgenic <i<Arabidopsis</i< improves its salt tolerance and <i<SsNRT1.1C</i< was more effective than others. We constructed a salt-stressed yeast cDNA library and used yeast two-hybrid and BiFC technology to find out that SsHINT1 and SsNRT1.1C have a protein interaction relationship. Overexpression of <i<SsHINT1</i< in transgenic <i<Arabidopsis</i< also improves salt tolerance and the expressions of Na<sup<+</sup< and K<sup<+</sup< were increased and reduced, respectively. But the K<sup<+</sup</Liratio was up-regulated 11.1-fold compared with the wild type. Thus, these results provide evidence that SsNRT1.1C through protein interactions with SsHINT1 increases the K<sup<+</sup</Na<sup<+</sup< ratio to improve salt tolerance and this signaling may be controlled by the salt overly sensitive (SOS) pathway. <i<SsNRT1.1C</i< <i<Suaeda salsa</i< (L.) Pall. SsHINT1 salt tolerance K<sup<+</sup</Na<sup<+</sup< Biology (General) Chemistry Saisai Wang verfasserin aut Cuijie Cui verfasserin aut Xiaoyan Wu verfasserin aut Jianbo Zhu verfasserin aut In International Journal of Molecular Sciences MDPI AG, 2003 24(2023), 16, p 12761 (DE-627)316340715 (DE-600)2019364-6 14220067 nnns volume:24 year:2023 number:16, p 12761 https://doi.org/10.3390/ijms241612761 kostenfrei https://doaj.org/article/3c684a53d1a247068db805f3d0ed7b98 kostenfrei https://www.mdpi.com/1422-0067/24/16/12761 kostenfrei https://doaj.org/toc/1661-6596 Journal toc kostenfrei https://doaj.org/toc/1422-0067 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 24 2023 16, p 12761 |
language |
English |
source |
In International Journal of Molecular Sciences 24(2023), 16, p 12761 volume:24 year:2023 number:16, p 12761 |
sourceStr |
In International Journal of Molecular Sciences 24(2023), 16, p 12761 volume:24 year:2023 number:16, p 12761 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
<i<SsNRT1.1C</i< <i<Suaeda salsa</i< (L.) Pall. SsHINT1 salt tolerance K<sup<+</sup</Na<sup<+</sup< Biology (General) Chemistry |
isfreeaccess_bool |
true |
container_title |
International Journal of Molecular Sciences |
authorswithroles_txt_mv |
Yi Xiong @@aut@@ Saisai Wang @@aut@@ Cuijie Cui @@aut@@ Xiaoyan Wu @@aut@@ Jianbo Zhu @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
316340715 |
id |
DOAJ093605374 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ093605374</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413013639.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/ijms241612761</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ093605374</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ3c684a53d1a247068db805f3d0ed7b98</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yi Xiong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a"><i<Suaeda salsa</i< NRT1.1 Is Involved in the Regulation of Tolerance to Salt Stress in Transgenic <i<Arabidopsis</i<</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Like other abiotic stresses, salt stress has become a major factor that restricts the growth, distribution and yield of crops. Research has shown that increasing the nitrogen content in soil can improve the salt tolerance of plants and nitrate transporter (NRT) is the primary nitrogen transporter in plants. <i<Suaeda salsa</i< (L.) Pall is a strong halophyte that can grow normally at a salt concentration of 200 mM. The salt stress transcriptome database of <i<S. salsa</i< was found to contain four putative genes that were homologous to NRT, including <i<SsNRT1.1A</i<, <i<SsNRT1.1B</i<, <i<SsNRT1.1C</i< and <i<SsNRT1.1D</i<. The cDNA of <i<SsNRT1.1s</i< was predicted to contain open reading frames of 1791, 1782, 1755 and 1746 bp, respectively. Sequence alignment and structural analysis showed that the SsNRT1.1 amino acids were inducible by salt and have conserved MFS and PTR2 domains. Subcellular localization showed they are on the endoplasmic reticulum. Overexpression of <i<SsNRT1.1</i< genes in transgenic <i<Arabidopsis</i< improves its salt tolerance and <i<SsNRT1.1C</i< was more effective than others. We constructed a salt-stressed yeast cDNA library and used yeast two-hybrid and BiFC technology to find out that SsHINT1 and SsNRT1.1C have a protein interaction relationship. Overexpression of <i<SsHINT1</i< in transgenic <i<Arabidopsis</i< also improves salt tolerance and the expressions of Na<sup<+</sup< and K<sup<+</sup< were increased and reduced, respectively. But the K<sup<+</sup</Liratio was up-regulated 11.1-fold compared with the wild type. Thus, these results provide evidence that SsNRT1.1C through protein interactions with SsHINT1 increases the K<sup<+</sup</Na<sup<+</sup< ratio to improve salt tolerance and this signaling may be controlled by the salt overly sensitive (SOS) pathway.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><i<SsNRT1.1C</i<</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><i<Suaeda salsa</i< (L.) Pall.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SsHINT1</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">salt tolerance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">K<sup<+</sup</Na<sup<+</sup<</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Saisai Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Cuijie Cui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaoyan Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jianbo Zhu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">International Journal of Molecular Sciences</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">24(2023), 16, p 12761</subfield><subfield code="w">(DE-627)316340715</subfield><subfield code="w">(DE-600)2019364-6</subfield><subfield code="x">14220067</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:24</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:16, p 12761</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/ijms241612761</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/3c684a53d1a247068db805f3d0ed7b98</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1422-0067/24/16/12761</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1661-6596</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1422-0067</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">24</subfield><subfield code="j">2023</subfield><subfield code="e">16, p 12761</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Yi Xiong |
spellingShingle |
Yi Xiong misc QH301-705.5 misc QD1-999 misc <i<SsNRT1.1C</i< misc <i<Suaeda salsa</i< (L.) Pall. misc SsHINT1 misc salt tolerance misc K<sup<+</sup</Na<sup<+</sup< misc Biology (General) misc Chemistry <i<Suaeda salsa</i< NRT1.1 Is Involved in the Regulation of Tolerance to Salt Stress in Transgenic <i<Arabidopsis</i< |
authorStr |
Yi Xiong |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)316340715 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QH301-705 |
illustrated |
Not Illustrated |
issn |
14220067 |
topic_title |
QH301-705.5 QD1-999 <i<Suaeda salsa</i< NRT1.1 Is Involved in the Regulation of Tolerance to Salt Stress in Transgenic <i<Arabidopsis</i< <i<SsNRT1.1C</i< <i<Suaeda salsa</i< (L.) Pall SsHINT1 salt tolerance K<sup<+</sup</Na<sup<+</sup< |
topic |
misc QH301-705.5 misc QD1-999 misc <i<SsNRT1.1C</i< misc <i<Suaeda salsa</i< (L.) Pall. misc SsHINT1 misc salt tolerance misc K<sup<+</sup</Na<sup<+</sup< misc Biology (General) misc Chemistry |
topic_unstemmed |
misc QH301-705.5 misc QD1-999 misc <i<SsNRT1.1C</i< misc <i<Suaeda salsa</i< (L.) Pall. misc SsHINT1 misc salt tolerance misc K<sup<+</sup</Na<sup<+</sup< misc Biology (General) misc Chemistry |
topic_browse |
misc QH301-705.5 misc QD1-999 misc <i<SsNRT1.1C</i< misc <i<Suaeda salsa</i< (L.) Pall. misc SsHINT1 misc salt tolerance misc K<sup<+</sup</Na<sup<+</sup< misc Biology (General) misc Chemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International Journal of Molecular Sciences |
hierarchy_parent_id |
316340715 |
hierarchy_top_title |
International Journal of Molecular Sciences |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)316340715 (DE-600)2019364-6 |
title |
<i<Suaeda salsa</i< NRT1.1 Is Involved in the Regulation of Tolerance to Salt Stress in Transgenic <i<Arabidopsis</i< |
ctrlnum |
(DE-627)DOAJ093605374 (DE-599)DOAJ3c684a53d1a247068db805f3d0ed7b98 |
title_full |
<i<Suaeda salsa</i< NRT1.1 Is Involved in the Regulation of Tolerance to Salt Stress in Transgenic <i<Arabidopsis</i< |
author_sort |
Yi Xiong |
journal |
International Journal of Molecular Sciences |
journalStr |
International Journal of Molecular Sciences |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Yi Xiong Saisai Wang Cuijie Cui Xiaoyan Wu Jianbo Zhu |
container_volume |
24 |
class |
QH301-705.5 QD1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Yi Xiong |
doi_str_mv |
10.3390/ijms241612761 |
author2-role |
verfasserin |
title_sort |
<i<suaeda salsa</i< nrt1.1 is involved in the regulation of tolerance to salt stress in transgenic <i<arabidopsis</i< |
callnumber |
QH301-705.5 |
title_auth |
<i<Suaeda salsa</i< NRT1.1 Is Involved in the Regulation of Tolerance to Salt Stress in Transgenic <i<Arabidopsis</i< |
abstract |
Like other abiotic stresses, salt stress has become a major factor that restricts the growth, distribution and yield of crops. Research has shown that increasing the nitrogen content in soil can improve the salt tolerance of plants and nitrate transporter (NRT) is the primary nitrogen transporter in plants. <i<Suaeda salsa</i< (L.) Pall is a strong halophyte that can grow normally at a salt concentration of 200 mM. The salt stress transcriptome database of <i<S. salsa</i< was found to contain four putative genes that were homologous to NRT, including <i<SsNRT1.1A</i<, <i<SsNRT1.1B</i<, <i<SsNRT1.1C</i< and <i<SsNRT1.1D</i<. The cDNA of <i<SsNRT1.1s</i< was predicted to contain open reading frames of 1791, 1782, 1755 and 1746 bp, respectively. Sequence alignment and structural analysis showed that the SsNRT1.1 amino acids were inducible by salt and have conserved MFS and PTR2 domains. Subcellular localization showed they are on the endoplasmic reticulum. Overexpression of <i<SsNRT1.1</i< genes in transgenic <i<Arabidopsis</i< improves its salt tolerance and <i<SsNRT1.1C</i< was more effective than others. We constructed a salt-stressed yeast cDNA library and used yeast two-hybrid and BiFC technology to find out that SsHINT1 and SsNRT1.1C have a protein interaction relationship. Overexpression of <i<SsHINT1</i< in transgenic <i<Arabidopsis</i< also improves salt tolerance and the expressions of Na<sup<+</sup< and K<sup<+</sup< were increased and reduced, respectively. But the K<sup<+</sup</Liratio was up-regulated 11.1-fold compared with the wild type. Thus, these results provide evidence that SsNRT1.1C through protein interactions with SsHINT1 increases the K<sup<+</sup</Na<sup<+</sup< ratio to improve salt tolerance and this signaling may be controlled by the salt overly sensitive (SOS) pathway. |
abstractGer |
Like other abiotic stresses, salt stress has become a major factor that restricts the growth, distribution and yield of crops. Research has shown that increasing the nitrogen content in soil can improve the salt tolerance of plants and nitrate transporter (NRT) is the primary nitrogen transporter in plants. <i<Suaeda salsa</i< (L.) Pall is a strong halophyte that can grow normally at a salt concentration of 200 mM. The salt stress transcriptome database of <i<S. salsa</i< was found to contain four putative genes that were homologous to NRT, including <i<SsNRT1.1A</i<, <i<SsNRT1.1B</i<, <i<SsNRT1.1C</i< and <i<SsNRT1.1D</i<. The cDNA of <i<SsNRT1.1s</i< was predicted to contain open reading frames of 1791, 1782, 1755 and 1746 bp, respectively. Sequence alignment and structural analysis showed that the SsNRT1.1 amino acids were inducible by salt and have conserved MFS and PTR2 domains. Subcellular localization showed they are on the endoplasmic reticulum. Overexpression of <i<SsNRT1.1</i< genes in transgenic <i<Arabidopsis</i< improves its salt tolerance and <i<SsNRT1.1C</i< was more effective than others. We constructed a salt-stressed yeast cDNA library and used yeast two-hybrid and BiFC technology to find out that SsHINT1 and SsNRT1.1C have a protein interaction relationship. Overexpression of <i<SsHINT1</i< in transgenic <i<Arabidopsis</i< also improves salt tolerance and the expressions of Na<sup<+</sup< and K<sup<+</sup< were increased and reduced, respectively. But the K<sup<+</sup</Liratio was up-regulated 11.1-fold compared with the wild type. Thus, these results provide evidence that SsNRT1.1C through protein interactions with SsHINT1 increases the K<sup<+</sup</Na<sup<+</sup< ratio to improve salt tolerance and this signaling may be controlled by the salt overly sensitive (SOS) pathway. |
abstract_unstemmed |
Like other abiotic stresses, salt stress has become a major factor that restricts the growth, distribution and yield of crops. Research has shown that increasing the nitrogen content in soil can improve the salt tolerance of plants and nitrate transporter (NRT) is the primary nitrogen transporter in plants. <i<Suaeda salsa</i< (L.) Pall is a strong halophyte that can grow normally at a salt concentration of 200 mM. The salt stress transcriptome database of <i<S. salsa</i< was found to contain four putative genes that were homologous to NRT, including <i<SsNRT1.1A</i<, <i<SsNRT1.1B</i<, <i<SsNRT1.1C</i< and <i<SsNRT1.1D</i<. The cDNA of <i<SsNRT1.1s</i< was predicted to contain open reading frames of 1791, 1782, 1755 and 1746 bp, respectively. Sequence alignment and structural analysis showed that the SsNRT1.1 amino acids were inducible by salt and have conserved MFS and PTR2 domains. Subcellular localization showed they are on the endoplasmic reticulum. Overexpression of <i<SsNRT1.1</i< genes in transgenic <i<Arabidopsis</i< improves its salt tolerance and <i<SsNRT1.1C</i< was more effective than others. We constructed a salt-stressed yeast cDNA library and used yeast two-hybrid and BiFC technology to find out that SsHINT1 and SsNRT1.1C have a protein interaction relationship. Overexpression of <i<SsHINT1</i< in transgenic <i<Arabidopsis</i< also improves salt tolerance and the expressions of Na<sup<+</sup< and K<sup<+</sup< were increased and reduced, respectively. But the K<sup<+</sup</Liratio was up-regulated 11.1-fold compared with the wild type. Thus, these results provide evidence that SsNRT1.1C through protein interactions with SsHINT1 increases the K<sup<+</sup</Na<sup<+</sup< ratio to improve salt tolerance and this signaling may be controlled by the salt overly sensitive (SOS) pathway. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
16, p 12761 |
title_short |
<i<Suaeda salsa</i< NRT1.1 Is Involved in the Regulation of Tolerance to Salt Stress in Transgenic <i<Arabidopsis</i< |
url |
https://doi.org/10.3390/ijms241612761 https://doaj.org/article/3c684a53d1a247068db805f3d0ed7b98 https://www.mdpi.com/1422-0067/24/16/12761 https://doaj.org/toc/1661-6596 https://doaj.org/toc/1422-0067 |
remote_bool |
true |
author2 |
Saisai Wang Cuijie Cui Xiaoyan Wu Jianbo Zhu |
author2Str |
Saisai Wang Cuijie Cui Xiaoyan Wu Jianbo Zhu |
ppnlink |
316340715 |
callnumber-subject |
QH - Natural History and Biology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/ijms241612761 |
callnumber-a |
QH301-705.5 |
up_date |
2024-07-03T18:19:41.783Z |
_version_ |
1803582997044133888 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ093605374</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413013639.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/ijms241612761</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ093605374</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ3c684a53d1a247068db805f3d0ed7b98</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yi Xiong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a"><i<Suaeda salsa</i< NRT1.1 Is Involved in the Regulation of Tolerance to Salt Stress in Transgenic <i<Arabidopsis</i<</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Like other abiotic stresses, salt stress has become a major factor that restricts the growth, distribution and yield of crops. Research has shown that increasing the nitrogen content in soil can improve the salt tolerance of plants and nitrate transporter (NRT) is the primary nitrogen transporter in plants. <i<Suaeda salsa</i< (L.) Pall is a strong halophyte that can grow normally at a salt concentration of 200 mM. The salt stress transcriptome database of <i<S. salsa</i< was found to contain four putative genes that were homologous to NRT, including <i<SsNRT1.1A</i<, <i<SsNRT1.1B</i<, <i<SsNRT1.1C</i< and <i<SsNRT1.1D</i<. The cDNA of <i<SsNRT1.1s</i< was predicted to contain open reading frames of 1791, 1782, 1755 and 1746 bp, respectively. Sequence alignment and structural analysis showed that the SsNRT1.1 amino acids were inducible by salt and have conserved MFS and PTR2 domains. Subcellular localization showed they are on the endoplasmic reticulum. Overexpression of <i<SsNRT1.1</i< genes in transgenic <i<Arabidopsis</i< improves its salt tolerance and <i<SsNRT1.1C</i< was more effective than others. We constructed a salt-stressed yeast cDNA library and used yeast two-hybrid and BiFC technology to find out that SsHINT1 and SsNRT1.1C have a protein interaction relationship. Overexpression of <i<SsHINT1</i< in transgenic <i<Arabidopsis</i< also improves salt tolerance and the expressions of Na<sup<+</sup< and K<sup<+</sup< were increased and reduced, respectively. But the K<sup<+</sup</Liratio was up-regulated 11.1-fold compared with the wild type. Thus, these results provide evidence that SsNRT1.1C through protein interactions with SsHINT1 increases the K<sup<+</sup</Na<sup<+</sup< ratio to improve salt tolerance and this signaling may be controlled by the salt overly sensitive (SOS) pathway.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><i<SsNRT1.1C</i<</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><i<Suaeda salsa</i< (L.) Pall.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SsHINT1</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">salt tolerance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">K<sup<+</sup</Na<sup<+</sup<</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Saisai Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Cuijie Cui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaoyan Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jianbo Zhu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">International Journal of Molecular Sciences</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">24(2023), 16, p 12761</subfield><subfield code="w">(DE-627)316340715</subfield><subfield code="w">(DE-600)2019364-6</subfield><subfield code="x">14220067</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:24</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:16, p 12761</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/ijms241612761</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/3c684a53d1a247068db805f3d0ed7b98</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1422-0067/24/16/12761</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1661-6596</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1422-0067</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">24</subfield><subfield code="j">2023</subfield><subfield code="e">16, p 12761</subfield></datafield></record></collection>
|
score |
7.401515 |