Next-Generation Sequencing for Screening Analysis of Cystic Fibrosis: Spectrum and Novel Variants in a South–Central Italian Cohort
The incidence of cystic fibrosis (CF) and the spectrum of cystic fibrosis transmembrane conductance regulator (CFTR) gene variants differ among geographic regions. Differences in CF carrier distribution are also reported among Italian regions. We described the spectrum of the CFTR variants observed...
Ausführliche Beschreibung
Autor*in: |
Elisa De Paolis [verfasserIn] Bruno Tilocca [verfasserIn] Carla Lombardi [verfasserIn] Maria De Bonis [verfasserIn] Paola Concolino [verfasserIn] Maria Elisabetta Onori [verfasserIn] Claudio Ricciardi Tenore [verfasserIn] Alessia Perrucci [verfasserIn] Paola Roncada [verfasserIn] Ettore Capoluongo [verfasserIn] Andrea Urbani [verfasserIn] Angelo Minucci [verfasserIn] Concetta Santonocito [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Genes - MDPI AG, 2010, 14(2023), 8, p 1608 |
---|---|
Übergeordnetes Werk: |
volume:14 ; year:2023 ; number:8, p 1608 |
Links: |
---|
DOI / URN: |
10.3390/genes14081608 |
---|
Katalog-ID: |
DOAJ093612508 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ093612508 | ||
003 | DE-627 | ||
005 | 20240413013750.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/genes14081608 |2 doi | |
035 | |a (DE-627)DOAJ093612508 | ||
035 | |a (DE-599)DOAJb80db389161a41c1bdfb57522d4bc8cc | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QH426-470 | |
100 | 0 | |a Elisa De Paolis |e verfasserin |4 aut | |
245 | 1 | 0 | |a Next-Generation Sequencing for Screening Analysis of Cystic Fibrosis: Spectrum and Novel Variants in a South–Central Italian Cohort |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The incidence of cystic fibrosis (CF) and the spectrum of cystic fibrosis transmembrane conductance regulator (CFTR) gene variants differ among geographic regions. Differences in CF carrier distribution are also reported among Italian regions. We described the spectrum of the CFTR variants observed in a large group of subjects belonging from central–southern Italy. We also provide a predictive evaluation of the novel variants identified. CFTR screening was performed in a south–central Italian cohort of 770 subjects. We adopted a next-generation sequencing (NGS) approach using the Devyser CFTR NGS kit on the Illumina MiSeq System coupled with Amplicon Suite data analysis. Bioinformatics evaluation of the impact of novel variants was described. Overall, the presence of at least one alternative allele in the CFTR gene was recorded for 23% of the subjects, with a carrier frequency of CF pathogenic variants of 1:12. The largest sub-group corresponded to the heterozygous carriers of a variant with a conflicting interpretation of pathogenicity. The common CFTR p.(Phe508del) pathogenic variants were identified in 37% of mutated subjects. Bioinformatics prediction supported a potential damaging effect for the three novel <i<CFTR</i< variants identified: p.(Leu1187Phe), p.(Pro22Thr), and <i<c.744-3C < G</i<. NGS applied to CF screening had the benefit of: effectively identifying asymptomatic carriers. It lies in a wide overview of CFTR variants and gives a comprehensive picture of the carrier prevalence. The identification of a high number of unclassified variants may represent a challenge whilst at the same time being of interest and relevance for clinicians. | ||
650 | 4 | |a cystic fibrosis | |
650 | 4 | |a cystic fibrosis transmembrane conductance regulator gene | |
650 | 4 | |a CFTR | |
650 | 4 | |a next-generation sequencing | |
650 | 4 | |a cystic fibrosis carriers | |
653 | 0 | |a Genetics | |
700 | 0 | |a Bruno Tilocca |e verfasserin |4 aut | |
700 | 0 | |a Carla Lombardi |e verfasserin |4 aut | |
700 | 0 | |a Maria De Bonis |e verfasserin |4 aut | |
700 | 0 | |a Paola Concolino |e verfasserin |4 aut | |
700 | 0 | |a Maria Elisabetta Onori |e verfasserin |4 aut | |
700 | 0 | |a Claudio Ricciardi Tenore |e verfasserin |4 aut | |
700 | 0 | |a Alessia Perrucci |e verfasserin |4 aut | |
700 | 0 | |a Paola Roncada |e verfasserin |4 aut | |
700 | 0 | |a Ettore Capoluongo |e verfasserin |4 aut | |
700 | 0 | |a Andrea Urbani |e verfasserin |4 aut | |
700 | 0 | |a Angelo Minucci |e verfasserin |4 aut | |
700 | 0 | |a Concetta Santonocito |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Genes |d MDPI AG, 2010 |g 14(2023), 8, p 1608 |w (DE-627)614096537 |w (DE-600)2527218-4 |x 20734425 |7 nnns |
773 | 1 | 8 | |g volume:14 |g year:2023 |g number:8, p 1608 |
856 | 4 | 0 | |u https://doi.org/10.3390/genes14081608 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/b80db389161a41c1bdfb57522d4bc8cc |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2073-4425/14/8/1608 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2073-4425 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 14 |j 2023 |e 8, p 1608 |
author_variant |
e d p edp b t bt c l cl m d b mdb p c pc m e o meo c r t crt a p ap p r pr e c ec a u au a m am c s cs |
---|---|
matchkey_str |
article:20734425:2023----::eteeaineunigosreignlssfytcirsspcrmnnvlains |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
QH |
publishDate |
2023 |
allfields |
10.3390/genes14081608 doi (DE-627)DOAJ093612508 (DE-599)DOAJb80db389161a41c1bdfb57522d4bc8cc DE-627 ger DE-627 rakwb eng QH426-470 Elisa De Paolis verfasserin aut Next-Generation Sequencing for Screening Analysis of Cystic Fibrosis: Spectrum and Novel Variants in a South–Central Italian Cohort 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The incidence of cystic fibrosis (CF) and the spectrum of cystic fibrosis transmembrane conductance regulator (CFTR) gene variants differ among geographic regions. Differences in CF carrier distribution are also reported among Italian regions. We described the spectrum of the CFTR variants observed in a large group of subjects belonging from central–southern Italy. We also provide a predictive evaluation of the novel variants identified. CFTR screening was performed in a south–central Italian cohort of 770 subjects. We adopted a next-generation sequencing (NGS) approach using the Devyser CFTR NGS kit on the Illumina MiSeq System coupled with Amplicon Suite data analysis. Bioinformatics evaluation of the impact of novel variants was described. Overall, the presence of at least one alternative allele in the CFTR gene was recorded for 23% of the subjects, with a carrier frequency of CF pathogenic variants of 1:12. The largest sub-group corresponded to the heterozygous carriers of a variant with a conflicting interpretation of pathogenicity. The common CFTR p.(Phe508del) pathogenic variants were identified in 37% of mutated subjects. Bioinformatics prediction supported a potential damaging effect for the three novel <i<CFTR</i< variants identified: p.(Leu1187Phe), p.(Pro22Thr), and <i<c.744-3C < G</i<. NGS applied to CF screening had the benefit of: effectively identifying asymptomatic carriers. It lies in a wide overview of CFTR variants and gives a comprehensive picture of the carrier prevalence. The identification of a high number of unclassified variants may represent a challenge whilst at the same time being of interest and relevance for clinicians. cystic fibrosis cystic fibrosis transmembrane conductance regulator gene CFTR next-generation sequencing cystic fibrosis carriers Genetics Bruno Tilocca verfasserin aut Carla Lombardi verfasserin aut Maria De Bonis verfasserin aut Paola Concolino verfasserin aut Maria Elisabetta Onori verfasserin aut Claudio Ricciardi Tenore verfasserin aut Alessia Perrucci verfasserin aut Paola Roncada verfasserin aut Ettore Capoluongo verfasserin aut Andrea Urbani verfasserin aut Angelo Minucci verfasserin aut Concetta Santonocito verfasserin aut In Genes MDPI AG, 2010 14(2023), 8, p 1608 (DE-627)614096537 (DE-600)2527218-4 20734425 nnns volume:14 year:2023 number:8, p 1608 https://doi.org/10.3390/genes14081608 kostenfrei https://doaj.org/article/b80db389161a41c1bdfb57522d4bc8cc kostenfrei https://www.mdpi.com/2073-4425/14/8/1608 kostenfrei https://doaj.org/toc/2073-4425 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2023 8, p 1608 |
spelling |
10.3390/genes14081608 doi (DE-627)DOAJ093612508 (DE-599)DOAJb80db389161a41c1bdfb57522d4bc8cc DE-627 ger DE-627 rakwb eng QH426-470 Elisa De Paolis verfasserin aut Next-Generation Sequencing for Screening Analysis of Cystic Fibrosis: Spectrum and Novel Variants in a South–Central Italian Cohort 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The incidence of cystic fibrosis (CF) and the spectrum of cystic fibrosis transmembrane conductance regulator (CFTR) gene variants differ among geographic regions. Differences in CF carrier distribution are also reported among Italian regions. We described the spectrum of the CFTR variants observed in a large group of subjects belonging from central–southern Italy. We also provide a predictive evaluation of the novel variants identified. CFTR screening was performed in a south–central Italian cohort of 770 subjects. We adopted a next-generation sequencing (NGS) approach using the Devyser CFTR NGS kit on the Illumina MiSeq System coupled with Amplicon Suite data analysis. Bioinformatics evaluation of the impact of novel variants was described. Overall, the presence of at least one alternative allele in the CFTR gene was recorded for 23% of the subjects, with a carrier frequency of CF pathogenic variants of 1:12. The largest sub-group corresponded to the heterozygous carriers of a variant with a conflicting interpretation of pathogenicity. The common CFTR p.(Phe508del) pathogenic variants were identified in 37% of mutated subjects. Bioinformatics prediction supported a potential damaging effect for the three novel <i<CFTR</i< variants identified: p.(Leu1187Phe), p.(Pro22Thr), and <i<c.744-3C < G</i<. NGS applied to CF screening had the benefit of: effectively identifying asymptomatic carriers. It lies in a wide overview of CFTR variants and gives a comprehensive picture of the carrier prevalence. The identification of a high number of unclassified variants may represent a challenge whilst at the same time being of interest and relevance for clinicians. cystic fibrosis cystic fibrosis transmembrane conductance regulator gene CFTR next-generation sequencing cystic fibrosis carriers Genetics Bruno Tilocca verfasserin aut Carla Lombardi verfasserin aut Maria De Bonis verfasserin aut Paola Concolino verfasserin aut Maria Elisabetta Onori verfasserin aut Claudio Ricciardi Tenore verfasserin aut Alessia Perrucci verfasserin aut Paola Roncada verfasserin aut Ettore Capoluongo verfasserin aut Andrea Urbani verfasserin aut Angelo Minucci verfasserin aut Concetta Santonocito verfasserin aut In Genes MDPI AG, 2010 14(2023), 8, p 1608 (DE-627)614096537 (DE-600)2527218-4 20734425 nnns volume:14 year:2023 number:8, p 1608 https://doi.org/10.3390/genes14081608 kostenfrei https://doaj.org/article/b80db389161a41c1bdfb57522d4bc8cc kostenfrei https://www.mdpi.com/2073-4425/14/8/1608 kostenfrei https://doaj.org/toc/2073-4425 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2023 8, p 1608 |
allfields_unstemmed |
10.3390/genes14081608 doi (DE-627)DOAJ093612508 (DE-599)DOAJb80db389161a41c1bdfb57522d4bc8cc DE-627 ger DE-627 rakwb eng QH426-470 Elisa De Paolis verfasserin aut Next-Generation Sequencing for Screening Analysis of Cystic Fibrosis: Spectrum and Novel Variants in a South–Central Italian Cohort 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The incidence of cystic fibrosis (CF) and the spectrum of cystic fibrosis transmembrane conductance regulator (CFTR) gene variants differ among geographic regions. Differences in CF carrier distribution are also reported among Italian regions. We described the spectrum of the CFTR variants observed in a large group of subjects belonging from central–southern Italy. We also provide a predictive evaluation of the novel variants identified. CFTR screening was performed in a south–central Italian cohort of 770 subjects. We adopted a next-generation sequencing (NGS) approach using the Devyser CFTR NGS kit on the Illumina MiSeq System coupled with Amplicon Suite data analysis. Bioinformatics evaluation of the impact of novel variants was described. Overall, the presence of at least one alternative allele in the CFTR gene was recorded for 23% of the subjects, with a carrier frequency of CF pathogenic variants of 1:12. The largest sub-group corresponded to the heterozygous carriers of a variant with a conflicting interpretation of pathogenicity. The common CFTR p.(Phe508del) pathogenic variants were identified in 37% of mutated subjects. Bioinformatics prediction supported a potential damaging effect for the three novel <i<CFTR</i< variants identified: p.(Leu1187Phe), p.(Pro22Thr), and <i<c.744-3C < G</i<. NGS applied to CF screening had the benefit of: effectively identifying asymptomatic carriers. It lies in a wide overview of CFTR variants and gives a comprehensive picture of the carrier prevalence. The identification of a high number of unclassified variants may represent a challenge whilst at the same time being of interest and relevance for clinicians. cystic fibrosis cystic fibrosis transmembrane conductance regulator gene CFTR next-generation sequencing cystic fibrosis carriers Genetics Bruno Tilocca verfasserin aut Carla Lombardi verfasserin aut Maria De Bonis verfasserin aut Paola Concolino verfasserin aut Maria Elisabetta Onori verfasserin aut Claudio Ricciardi Tenore verfasserin aut Alessia Perrucci verfasserin aut Paola Roncada verfasserin aut Ettore Capoluongo verfasserin aut Andrea Urbani verfasserin aut Angelo Minucci verfasserin aut Concetta Santonocito verfasserin aut In Genes MDPI AG, 2010 14(2023), 8, p 1608 (DE-627)614096537 (DE-600)2527218-4 20734425 nnns volume:14 year:2023 number:8, p 1608 https://doi.org/10.3390/genes14081608 kostenfrei https://doaj.org/article/b80db389161a41c1bdfb57522d4bc8cc kostenfrei https://www.mdpi.com/2073-4425/14/8/1608 kostenfrei https://doaj.org/toc/2073-4425 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2023 8, p 1608 |
allfieldsGer |
10.3390/genes14081608 doi (DE-627)DOAJ093612508 (DE-599)DOAJb80db389161a41c1bdfb57522d4bc8cc DE-627 ger DE-627 rakwb eng QH426-470 Elisa De Paolis verfasserin aut Next-Generation Sequencing for Screening Analysis of Cystic Fibrosis: Spectrum and Novel Variants in a South–Central Italian Cohort 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The incidence of cystic fibrosis (CF) and the spectrum of cystic fibrosis transmembrane conductance regulator (CFTR) gene variants differ among geographic regions. Differences in CF carrier distribution are also reported among Italian regions. We described the spectrum of the CFTR variants observed in a large group of subjects belonging from central–southern Italy. We also provide a predictive evaluation of the novel variants identified. CFTR screening was performed in a south–central Italian cohort of 770 subjects. We adopted a next-generation sequencing (NGS) approach using the Devyser CFTR NGS kit on the Illumina MiSeq System coupled with Amplicon Suite data analysis. Bioinformatics evaluation of the impact of novel variants was described. Overall, the presence of at least one alternative allele in the CFTR gene was recorded for 23% of the subjects, with a carrier frequency of CF pathogenic variants of 1:12. The largest sub-group corresponded to the heterozygous carriers of a variant with a conflicting interpretation of pathogenicity. The common CFTR p.(Phe508del) pathogenic variants were identified in 37% of mutated subjects. Bioinformatics prediction supported a potential damaging effect for the three novel <i<CFTR</i< variants identified: p.(Leu1187Phe), p.(Pro22Thr), and <i<c.744-3C < G</i<. NGS applied to CF screening had the benefit of: effectively identifying asymptomatic carriers. It lies in a wide overview of CFTR variants and gives a comprehensive picture of the carrier prevalence. The identification of a high number of unclassified variants may represent a challenge whilst at the same time being of interest and relevance for clinicians. cystic fibrosis cystic fibrosis transmembrane conductance regulator gene CFTR next-generation sequencing cystic fibrosis carriers Genetics Bruno Tilocca verfasserin aut Carla Lombardi verfasserin aut Maria De Bonis verfasserin aut Paola Concolino verfasserin aut Maria Elisabetta Onori verfasserin aut Claudio Ricciardi Tenore verfasserin aut Alessia Perrucci verfasserin aut Paola Roncada verfasserin aut Ettore Capoluongo verfasserin aut Andrea Urbani verfasserin aut Angelo Minucci verfasserin aut Concetta Santonocito verfasserin aut In Genes MDPI AG, 2010 14(2023), 8, p 1608 (DE-627)614096537 (DE-600)2527218-4 20734425 nnns volume:14 year:2023 number:8, p 1608 https://doi.org/10.3390/genes14081608 kostenfrei https://doaj.org/article/b80db389161a41c1bdfb57522d4bc8cc kostenfrei https://www.mdpi.com/2073-4425/14/8/1608 kostenfrei https://doaj.org/toc/2073-4425 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2023 8, p 1608 |
allfieldsSound |
10.3390/genes14081608 doi (DE-627)DOAJ093612508 (DE-599)DOAJb80db389161a41c1bdfb57522d4bc8cc DE-627 ger DE-627 rakwb eng QH426-470 Elisa De Paolis verfasserin aut Next-Generation Sequencing for Screening Analysis of Cystic Fibrosis: Spectrum and Novel Variants in a South–Central Italian Cohort 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The incidence of cystic fibrosis (CF) and the spectrum of cystic fibrosis transmembrane conductance regulator (CFTR) gene variants differ among geographic regions. Differences in CF carrier distribution are also reported among Italian regions. We described the spectrum of the CFTR variants observed in a large group of subjects belonging from central–southern Italy. We also provide a predictive evaluation of the novel variants identified. CFTR screening was performed in a south–central Italian cohort of 770 subjects. We adopted a next-generation sequencing (NGS) approach using the Devyser CFTR NGS kit on the Illumina MiSeq System coupled with Amplicon Suite data analysis. Bioinformatics evaluation of the impact of novel variants was described. Overall, the presence of at least one alternative allele in the CFTR gene was recorded for 23% of the subjects, with a carrier frequency of CF pathogenic variants of 1:12. The largest sub-group corresponded to the heterozygous carriers of a variant with a conflicting interpretation of pathogenicity. The common CFTR p.(Phe508del) pathogenic variants were identified in 37% of mutated subjects. Bioinformatics prediction supported a potential damaging effect for the three novel <i<CFTR</i< variants identified: p.(Leu1187Phe), p.(Pro22Thr), and <i<c.744-3C < G</i<. NGS applied to CF screening had the benefit of: effectively identifying asymptomatic carriers. It lies in a wide overview of CFTR variants and gives a comprehensive picture of the carrier prevalence. The identification of a high number of unclassified variants may represent a challenge whilst at the same time being of interest and relevance for clinicians. cystic fibrosis cystic fibrosis transmembrane conductance regulator gene CFTR next-generation sequencing cystic fibrosis carriers Genetics Bruno Tilocca verfasserin aut Carla Lombardi verfasserin aut Maria De Bonis verfasserin aut Paola Concolino verfasserin aut Maria Elisabetta Onori verfasserin aut Claudio Ricciardi Tenore verfasserin aut Alessia Perrucci verfasserin aut Paola Roncada verfasserin aut Ettore Capoluongo verfasserin aut Andrea Urbani verfasserin aut Angelo Minucci verfasserin aut Concetta Santonocito verfasserin aut In Genes MDPI AG, 2010 14(2023), 8, p 1608 (DE-627)614096537 (DE-600)2527218-4 20734425 nnns volume:14 year:2023 number:8, p 1608 https://doi.org/10.3390/genes14081608 kostenfrei https://doaj.org/article/b80db389161a41c1bdfb57522d4bc8cc kostenfrei https://www.mdpi.com/2073-4425/14/8/1608 kostenfrei https://doaj.org/toc/2073-4425 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2023 8, p 1608 |
language |
English |
source |
In Genes 14(2023), 8, p 1608 volume:14 year:2023 number:8, p 1608 |
sourceStr |
In Genes 14(2023), 8, p 1608 volume:14 year:2023 number:8, p 1608 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
cystic fibrosis cystic fibrosis transmembrane conductance regulator gene CFTR next-generation sequencing cystic fibrosis carriers Genetics |
isfreeaccess_bool |
true |
container_title |
Genes |
authorswithroles_txt_mv |
Elisa De Paolis @@aut@@ Bruno Tilocca @@aut@@ Carla Lombardi @@aut@@ Maria De Bonis @@aut@@ Paola Concolino @@aut@@ Maria Elisabetta Onori @@aut@@ Claudio Ricciardi Tenore @@aut@@ Alessia Perrucci @@aut@@ Paola Roncada @@aut@@ Ettore Capoluongo @@aut@@ Andrea Urbani @@aut@@ Angelo Minucci @@aut@@ Concetta Santonocito @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
614096537 |
id |
DOAJ093612508 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ093612508</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413013750.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/genes14081608</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ093612508</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb80db389161a41c1bdfb57522d4bc8cc</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH426-470</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Elisa De Paolis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Next-Generation Sequencing for Screening Analysis of Cystic Fibrosis: Spectrum and Novel Variants in a South–Central Italian Cohort</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The incidence of cystic fibrosis (CF) and the spectrum of cystic fibrosis transmembrane conductance regulator (CFTR) gene variants differ among geographic regions. Differences in CF carrier distribution are also reported among Italian regions. We described the spectrum of the CFTR variants observed in a large group of subjects belonging from central–southern Italy. We also provide a predictive evaluation of the novel variants identified. CFTR screening was performed in a south–central Italian cohort of 770 subjects. We adopted a next-generation sequencing (NGS) approach using the Devyser CFTR NGS kit on the Illumina MiSeq System coupled with Amplicon Suite data analysis. Bioinformatics evaluation of the impact of novel variants was described. Overall, the presence of at least one alternative allele in the CFTR gene was recorded for 23% of the subjects, with a carrier frequency of CF pathogenic variants of 1:12. The largest sub-group corresponded to the heterozygous carriers of a variant with a conflicting interpretation of pathogenicity. The common CFTR p.(Phe508del) pathogenic variants were identified in 37% of mutated subjects. Bioinformatics prediction supported a potential damaging effect for the three novel <i<CFTR</i< variants identified: p.(Leu1187Phe), p.(Pro22Thr), and <i<c.744-3C < G</i<. NGS applied to CF screening had the benefit of: effectively identifying asymptomatic carriers. It lies in a wide overview of CFTR variants and gives a comprehensive picture of the carrier prevalence. The identification of a high number of unclassified variants may represent a challenge whilst at the same time being of interest and relevance for clinicians.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cystic fibrosis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cystic fibrosis transmembrane conductance regulator gene</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CFTR</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">next-generation sequencing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cystic fibrosis carriers</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Genetics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bruno Tilocca</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Carla Lombardi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Maria De Bonis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Paola Concolino</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Maria Elisabetta Onori</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Claudio Ricciardi Tenore</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alessia Perrucci</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Paola Roncada</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ettore Capoluongo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Andrea Urbani</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Angelo Minucci</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Concetta Santonocito</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Genes</subfield><subfield code="d">MDPI AG, 2010</subfield><subfield code="g">14(2023), 8, p 1608</subfield><subfield code="w">(DE-627)614096537</subfield><subfield code="w">(DE-600)2527218-4</subfield><subfield code="x">20734425</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:8, p 1608</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/genes14081608</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b80db389161a41c1bdfb57522d4bc8cc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2073-4425/14/8/1608</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2073-4425</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2023</subfield><subfield code="e">8, p 1608</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Elisa De Paolis |
spellingShingle |
Elisa De Paolis misc QH426-470 misc cystic fibrosis misc cystic fibrosis transmembrane conductance regulator gene misc CFTR misc next-generation sequencing misc cystic fibrosis carriers misc Genetics Next-Generation Sequencing for Screening Analysis of Cystic Fibrosis: Spectrum and Novel Variants in a South–Central Italian Cohort |
authorStr |
Elisa De Paolis |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)614096537 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QH426-470 |
illustrated |
Not Illustrated |
issn |
20734425 |
topic_title |
QH426-470 Next-Generation Sequencing for Screening Analysis of Cystic Fibrosis: Spectrum and Novel Variants in a South–Central Italian Cohort cystic fibrosis cystic fibrosis transmembrane conductance regulator gene CFTR next-generation sequencing cystic fibrosis carriers |
topic |
misc QH426-470 misc cystic fibrosis misc cystic fibrosis transmembrane conductance regulator gene misc CFTR misc next-generation sequencing misc cystic fibrosis carriers misc Genetics |
topic_unstemmed |
misc QH426-470 misc cystic fibrosis misc cystic fibrosis transmembrane conductance regulator gene misc CFTR misc next-generation sequencing misc cystic fibrosis carriers misc Genetics |
topic_browse |
misc QH426-470 misc cystic fibrosis misc cystic fibrosis transmembrane conductance regulator gene misc CFTR misc next-generation sequencing misc cystic fibrosis carriers misc Genetics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Genes |
hierarchy_parent_id |
614096537 |
hierarchy_top_title |
Genes |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)614096537 (DE-600)2527218-4 |
title |
Next-Generation Sequencing for Screening Analysis of Cystic Fibrosis: Spectrum and Novel Variants in a South–Central Italian Cohort |
ctrlnum |
(DE-627)DOAJ093612508 (DE-599)DOAJb80db389161a41c1bdfb57522d4bc8cc |
title_full |
Next-Generation Sequencing for Screening Analysis of Cystic Fibrosis: Spectrum and Novel Variants in a South–Central Italian Cohort |
author_sort |
Elisa De Paolis |
journal |
Genes |
journalStr |
Genes |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Elisa De Paolis Bruno Tilocca Carla Lombardi Maria De Bonis Paola Concolino Maria Elisabetta Onori Claudio Ricciardi Tenore Alessia Perrucci Paola Roncada Ettore Capoluongo Andrea Urbani Angelo Minucci Concetta Santonocito |
container_volume |
14 |
class |
QH426-470 |
format_se |
Elektronische Aufsätze |
author-letter |
Elisa De Paolis |
doi_str_mv |
10.3390/genes14081608 |
author2-role |
verfasserin |
title_sort |
next-generation sequencing for screening analysis of cystic fibrosis: spectrum and novel variants in a south–central italian cohort |
callnumber |
QH426-470 |
title_auth |
Next-Generation Sequencing for Screening Analysis of Cystic Fibrosis: Spectrum and Novel Variants in a South–Central Italian Cohort |
abstract |
The incidence of cystic fibrosis (CF) and the spectrum of cystic fibrosis transmembrane conductance regulator (CFTR) gene variants differ among geographic regions. Differences in CF carrier distribution are also reported among Italian regions. We described the spectrum of the CFTR variants observed in a large group of subjects belonging from central–southern Italy. We also provide a predictive evaluation of the novel variants identified. CFTR screening was performed in a south–central Italian cohort of 770 subjects. We adopted a next-generation sequencing (NGS) approach using the Devyser CFTR NGS kit on the Illumina MiSeq System coupled with Amplicon Suite data analysis. Bioinformatics evaluation of the impact of novel variants was described. Overall, the presence of at least one alternative allele in the CFTR gene was recorded for 23% of the subjects, with a carrier frequency of CF pathogenic variants of 1:12. The largest sub-group corresponded to the heterozygous carriers of a variant with a conflicting interpretation of pathogenicity. The common CFTR p.(Phe508del) pathogenic variants were identified in 37% of mutated subjects. Bioinformatics prediction supported a potential damaging effect for the three novel <i<CFTR</i< variants identified: p.(Leu1187Phe), p.(Pro22Thr), and <i<c.744-3C < G</i<. NGS applied to CF screening had the benefit of: effectively identifying asymptomatic carriers. It lies in a wide overview of CFTR variants and gives a comprehensive picture of the carrier prevalence. The identification of a high number of unclassified variants may represent a challenge whilst at the same time being of interest and relevance for clinicians. |
abstractGer |
The incidence of cystic fibrosis (CF) and the spectrum of cystic fibrosis transmembrane conductance regulator (CFTR) gene variants differ among geographic regions. Differences in CF carrier distribution are also reported among Italian regions. We described the spectrum of the CFTR variants observed in a large group of subjects belonging from central–southern Italy. We also provide a predictive evaluation of the novel variants identified. CFTR screening was performed in a south–central Italian cohort of 770 subjects. We adopted a next-generation sequencing (NGS) approach using the Devyser CFTR NGS kit on the Illumina MiSeq System coupled with Amplicon Suite data analysis. Bioinformatics evaluation of the impact of novel variants was described. Overall, the presence of at least one alternative allele in the CFTR gene was recorded for 23% of the subjects, with a carrier frequency of CF pathogenic variants of 1:12. The largest sub-group corresponded to the heterozygous carriers of a variant with a conflicting interpretation of pathogenicity. The common CFTR p.(Phe508del) pathogenic variants were identified in 37% of mutated subjects. Bioinformatics prediction supported a potential damaging effect for the three novel <i<CFTR</i< variants identified: p.(Leu1187Phe), p.(Pro22Thr), and <i<c.744-3C < G</i<. NGS applied to CF screening had the benefit of: effectively identifying asymptomatic carriers. It lies in a wide overview of CFTR variants and gives a comprehensive picture of the carrier prevalence. The identification of a high number of unclassified variants may represent a challenge whilst at the same time being of interest and relevance for clinicians. |
abstract_unstemmed |
The incidence of cystic fibrosis (CF) and the spectrum of cystic fibrosis transmembrane conductance regulator (CFTR) gene variants differ among geographic regions. Differences in CF carrier distribution are also reported among Italian regions. We described the spectrum of the CFTR variants observed in a large group of subjects belonging from central–southern Italy. We also provide a predictive evaluation of the novel variants identified. CFTR screening was performed in a south–central Italian cohort of 770 subjects. We adopted a next-generation sequencing (NGS) approach using the Devyser CFTR NGS kit on the Illumina MiSeq System coupled with Amplicon Suite data analysis. Bioinformatics evaluation of the impact of novel variants was described. Overall, the presence of at least one alternative allele in the CFTR gene was recorded for 23% of the subjects, with a carrier frequency of CF pathogenic variants of 1:12. The largest sub-group corresponded to the heterozygous carriers of a variant with a conflicting interpretation of pathogenicity. The common CFTR p.(Phe508del) pathogenic variants were identified in 37% of mutated subjects. Bioinformatics prediction supported a potential damaging effect for the three novel <i<CFTR</i< variants identified: p.(Leu1187Phe), p.(Pro22Thr), and <i<c.744-3C < G</i<. NGS applied to CF screening had the benefit of: effectively identifying asymptomatic carriers. It lies in a wide overview of CFTR variants and gives a comprehensive picture of the carrier prevalence. The identification of a high number of unclassified variants may represent a challenge whilst at the same time being of interest and relevance for clinicians. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
8, p 1608 |
title_short |
Next-Generation Sequencing for Screening Analysis of Cystic Fibrosis: Spectrum and Novel Variants in a South–Central Italian Cohort |
url |
https://doi.org/10.3390/genes14081608 https://doaj.org/article/b80db389161a41c1bdfb57522d4bc8cc https://www.mdpi.com/2073-4425/14/8/1608 https://doaj.org/toc/2073-4425 |
remote_bool |
true |
author2 |
Bruno Tilocca Carla Lombardi Maria De Bonis Paola Concolino Maria Elisabetta Onori Claudio Ricciardi Tenore Alessia Perrucci Paola Roncada Ettore Capoluongo Andrea Urbani Angelo Minucci Concetta Santonocito |
author2Str |
Bruno Tilocca Carla Lombardi Maria De Bonis Paola Concolino Maria Elisabetta Onori Claudio Ricciardi Tenore Alessia Perrucci Paola Roncada Ettore Capoluongo Andrea Urbani Angelo Minucci Concetta Santonocito |
ppnlink |
614096537 |
callnumber-subject |
QH - Natural History and Biology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/genes14081608 |
callnumber-a |
QH426-470 |
up_date |
2024-07-03T18:22:17.043Z |
_version_ |
1803583159843946496 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ093612508</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413013750.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/genes14081608</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ093612508</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb80db389161a41c1bdfb57522d4bc8cc</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH426-470</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Elisa De Paolis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Next-Generation Sequencing for Screening Analysis of Cystic Fibrosis: Spectrum and Novel Variants in a South–Central Italian Cohort</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The incidence of cystic fibrosis (CF) and the spectrum of cystic fibrosis transmembrane conductance regulator (CFTR) gene variants differ among geographic regions. Differences in CF carrier distribution are also reported among Italian regions. We described the spectrum of the CFTR variants observed in a large group of subjects belonging from central–southern Italy. We also provide a predictive evaluation of the novel variants identified. CFTR screening was performed in a south–central Italian cohort of 770 subjects. We adopted a next-generation sequencing (NGS) approach using the Devyser CFTR NGS kit on the Illumina MiSeq System coupled with Amplicon Suite data analysis. Bioinformatics evaluation of the impact of novel variants was described. Overall, the presence of at least one alternative allele in the CFTR gene was recorded for 23% of the subjects, with a carrier frequency of CF pathogenic variants of 1:12. The largest sub-group corresponded to the heterozygous carriers of a variant with a conflicting interpretation of pathogenicity. The common CFTR p.(Phe508del) pathogenic variants were identified in 37% of mutated subjects. Bioinformatics prediction supported a potential damaging effect for the three novel <i<CFTR</i< variants identified: p.(Leu1187Phe), p.(Pro22Thr), and <i<c.744-3C < G</i<. NGS applied to CF screening had the benefit of: effectively identifying asymptomatic carriers. It lies in a wide overview of CFTR variants and gives a comprehensive picture of the carrier prevalence. The identification of a high number of unclassified variants may represent a challenge whilst at the same time being of interest and relevance for clinicians.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cystic fibrosis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cystic fibrosis transmembrane conductance regulator gene</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CFTR</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">next-generation sequencing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cystic fibrosis carriers</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Genetics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bruno Tilocca</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Carla Lombardi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Maria De Bonis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Paola Concolino</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Maria Elisabetta Onori</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Claudio Ricciardi Tenore</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alessia Perrucci</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Paola Roncada</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ettore Capoluongo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Andrea Urbani</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Angelo Minucci</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Concetta Santonocito</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Genes</subfield><subfield code="d">MDPI AG, 2010</subfield><subfield code="g">14(2023), 8, p 1608</subfield><subfield code="w">(DE-627)614096537</subfield><subfield code="w">(DE-600)2527218-4</subfield><subfield code="x">20734425</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:8, p 1608</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/genes14081608</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b80db389161a41c1bdfb57522d4bc8cc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2073-4425/14/8/1608</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2073-4425</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2023</subfield><subfield code="e">8, p 1608</subfield></datafield></record></collection>
|
score |
7.3995028 |