Siamese Neural Network for Keystroke Dynamics-Based Authentication on Partial Passwords
The paper addresses issues concerning secure authentication in computer systems. We focus on multi-factor authentication methods using two or more independent mechanisms to identify a user. User-specific behavioral biometrics is widely used to increase login security. The usage of behavioral biometr...
Ausführliche Beschreibung
Autor*in: |
Kamila Lis [verfasserIn] Ewa Niewiadomska-Szynkiewicz [verfasserIn] Katarzyna Dziewulska [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Sensors - MDPI AG, 2003, 23(2023), 15, p 6685 |
---|---|
Übergeordnetes Werk: |
volume:23 ; year:2023 ; number:15, p 6685 |
Links: |
---|
DOI / URN: |
10.3390/s23156685 |
---|
Katalog-ID: |
DOAJ093679351 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ093679351 | ||
003 | DE-627 | ||
005 | 20240413014826.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/s23156685 |2 doi | |
035 | |a (DE-627)DOAJ093679351 | ||
035 | |a (DE-599)DOAJebe217952f1544ed8e30075db7f2cf8d | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TP1-1185 | |
100 | 0 | |a Kamila Lis |e verfasserin |4 aut | |
245 | 1 | 0 | |a Siamese Neural Network for Keystroke Dynamics-Based Authentication on Partial Passwords |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The paper addresses issues concerning secure authentication in computer systems. We focus on multi-factor authentication methods using two or more independent mechanisms to identify a user. User-specific behavioral biometrics is widely used to increase login security. The usage of behavioral biometrics can support verification without bothering the user with a requirement of an additional interaction. Our research aimed to check whether using information about how partial passwords are typed is possible to strengthen user authentication security. The partial password is a query of a subset of characters from a full password. The use of partial passwords makes it difficult for attackers who can observe password entry to acquire sensitive information. In this paper, we use a Siamese neural network and n-shot classification using past recent logins to verify user identity based on keystroke dynamics obtained from the static text. The experimental results on real data demonstrate that keystroke dynamics authentication can be successfully used for partial password typing patterns. Our method can support the basic authentication process and increase users’ confidence. | ||
650 | 4 | |a keystroke dynamics | |
650 | 4 | |a behavioral biometry | |
650 | 4 | |a keyboard | |
650 | 4 | |a partial password authentication | |
650 | 4 | |a siamese network | |
653 | 0 | |a Chemical technology | |
700 | 0 | |a Ewa Niewiadomska-Szynkiewicz |e verfasserin |4 aut | |
700 | 0 | |a Katarzyna Dziewulska |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Sensors |d MDPI AG, 2003 |g 23(2023), 15, p 6685 |w (DE-627)331640910 |w (DE-600)2052857-7 |x 14248220 |7 nnns |
773 | 1 | 8 | |g volume:23 |g year:2023 |g number:15, p 6685 |
856 | 4 | 0 | |u https://doi.org/10.3390/s23156685 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/ebe217952f1544ed8e30075db7f2cf8d |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/1424-8220/23/15/6685 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1424-8220 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 23 |j 2023 |e 15, p 6685 |
author_variant |
k l kl e n s ens k d kd |
---|---|
matchkey_str |
article:14248220:2023----::imsnuantokokytoeyaisaeatetct |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
TP |
publishDate |
2023 |
allfields |
10.3390/s23156685 doi (DE-627)DOAJ093679351 (DE-599)DOAJebe217952f1544ed8e30075db7f2cf8d DE-627 ger DE-627 rakwb eng TP1-1185 Kamila Lis verfasserin aut Siamese Neural Network for Keystroke Dynamics-Based Authentication on Partial Passwords 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The paper addresses issues concerning secure authentication in computer systems. We focus on multi-factor authentication methods using two or more independent mechanisms to identify a user. User-specific behavioral biometrics is widely used to increase login security. The usage of behavioral biometrics can support verification without bothering the user with a requirement of an additional interaction. Our research aimed to check whether using information about how partial passwords are typed is possible to strengthen user authentication security. The partial password is a query of a subset of characters from a full password. The use of partial passwords makes it difficult for attackers who can observe password entry to acquire sensitive information. In this paper, we use a Siamese neural network and n-shot classification using past recent logins to verify user identity based on keystroke dynamics obtained from the static text. The experimental results on real data demonstrate that keystroke dynamics authentication can be successfully used for partial password typing patterns. Our method can support the basic authentication process and increase users’ confidence. keystroke dynamics behavioral biometry keyboard partial password authentication siamese network Chemical technology Ewa Niewiadomska-Szynkiewicz verfasserin aut Katarzyna Dziewulska verfasserin aut In Sensors MDPI AG, 2003 23(2023), 15, p 6685 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:23 year:2023 number:15, p 6685 https://doi.org/10.3390/s23156685 kostenfrei https://doaj.org/article/ebe217952f1544ed8e30075db7f2cf8d kostenfrei https://www.mdpi.com/1424-8220/23/15/6685 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2023 15, p 6685 |
spelling |
10.3390/s23156685 doi (DE-627)DOAJ093679351 (DE-599)DOAJebe217952f1544ed8e30075db7f2cf8d DE-627 ger DE-627 rakwb eng TP1-1185 Kamila Lis verfasserin aut Siamese Neural Network for Keystroke Dynamics-Based Authentication on Partial Passwords 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The paper addresses issues concerning secure authentication in computer systems. We focus on multi-factor authentication methods using two or more independent mechanisms to identify a user. User-specific behavioral biometrics is widely used to increase login security. The usage of behavioral biometrics can support verification without bothering the user with a requirement of an additional interaction. Our research aimed to check whether using information about how partial passwords are typed is possible to strengthen user authentication security. The partial password is a query of a subset of characters from a full password. The use of partial passwords makes it difficult for attackers who can observe password entry to acquire sensitive information. In this paper, we use a Siamese neural network and n-shot classification using past recent logins to verify user identity based on keystroke dynamics obtained from the static text. The experimental results on real data demonstrate that keystroke dynamics authentication can be successfully used for partial password typing patterns. Our method can support the basic authentication process and increase users’ confidence. keystroke dynamics behavioral biometry keyboard partial password authentication siamese network Chemical technology Ewa Niewiadomska-Szynkiewicz verfasserin aut Katarzyna Dziewulska verfasserin aut In Sensors MDPI AG, 2003 23(2023), 15, p 6685 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:23 year:2023 number:15, p 6685 https://doi.org/10.3390/s23156685 kostenfrei https://doaj.org/article/ebe217952f1544ed8e30075db7f2cf8d kostenfrei https://www.mdpi.com/1424-8220/23/15/6685 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2023 15, p 6685 |
allfields_unstemmed |
10.3390/s23156685 doi (DE-627)DOAJ093679351 (DE-599)DOAJebe217952f1544ed8e30075db7f2cf8d DE-627 ger DE-627 rakwb eng TP1-1185 Kamila Lis verfasserin aut Siamese Neural Network for Keystroke Dynamics-Based Authentication on Partial Passwords 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The paper addresses issues concerning secure authentication in computer systems. We focus on multi-factor authentication methods using two or more independent mechanisms to identify a user. User-specific behavioral biometrics is widely used to increase login security. The usage of behavioral biometrics can support verification without bothering the user with a requirement of an additional interaction. Our research aimed to check whether using information about how partial passwords are typed is possible to strengthen user authentication security. The partial password is a query of a subset of characters from a full password. The use of partial passwords makes it difficult for attackers who can observe password entry to acquire sensitive information. In this paper, we use a Siamese neural network and n-shot classification using past recent logins to verify user identity based on keystroke dynamics obtained from the static text. The experimental results on real data demonstrate that keystroke dynamics authentication can be successfully used for partial password typing patterns. Our method can support the basic authentication process and increase users’ confidence. keystroke dynamics behavioral biometry keyboard partial password authentication siamese network Chemical technology Ewa Niewiadomska-Szynkiewicz verfasserin aut Katarzyna Dziewulska verfasserin aut In Sensors MDPI AG, 2003 23(2023), 15, p 6685 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:23 year:2023 number:15, p 6685 https://doi.org/10.3390/s23156685 kostenfrei https://doaj.org/article/ebe217952f1544ed8e30075db7f2cf8d kostenfrei https://www.mdpi.com/1424-8220/23/15/6685 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2023 15, p 6685 |
allfieldsGer |
10.3390/s23156685 doi (DE-627)DOAJ093679351 (DE-599)DOAJebe217952f1544ed8e30075db7f2cf8d DE-627 ger DE-627 rakwb eng TP1-1185 Kamila Lis verfasserin aut Siamese Neural Network for Keystroke Dynamics-Based Authentication on Partial Passwords 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The paper addresses issues concerning secure authentication in computer systems. We focus on multi-factor authentication methods using two or more independent mechanisms to identify a user. User-specific behavioral biometrics is widely used to increase login security. The usage of behavioral biometrics can support verification without bothering the user with a requirement of an additional interaction. Our research aimed to check whether using information about how partial passwords are typed is possible to strengthen user authentication security. The partial password is a query of a subset of characters from a full password. The use of partial passwords makes it difficult for attackers who can observe password entry to acquire sensitive information. In this paper, we use a Siamese neural network and n-shot classification using past recent logins to verify user identity based on keystroke dynamics obtained from the static text. The experimental results on real data demonstrate that keystroke dynamics authentication can be successfully used for partial password typing patterns. Our method can support the basic authentication process and increase users’ confidence. keystroke dynamics behavioral biometry keyboard partial password authentication siamese network Chemical technology Ewa Niewiadomska-Szynkiewicz verfasserin aut Katarzyna Dziewulska verfasserin aut In Sensors MDPI AG, 2003 23(2023), 15, p 6685 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:23 year:2023 number:15, p 6685 https://doi.org/10.3390/s23156685 kostenfrei https://doaj.org/article/ebe217952f1544ed8e30075db7f2cf8d kostenfrei https://www.mdpi.com/1424-8220/23/15/6685 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2023 15, p 6685 |
allfieldsSound |
10.3390/s23156685 doi (DE-627)DOAJ093679351 (DE-599)DOAJebe217952f1544ed8e30075db7f2cf8d DE-627 ger DE-627 rakwb eng TP1-1185 Kamila Lis verfasserin aut Siamese Neural Network for Keystroke Dynamics-Based Authentication on Partial Passwords 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The paper addresses issues concerning secure authentication in computer systems. We focus on multi-factor authentication methods using two or more independent mechanisms to identify a user. User-specific behavioral biometrics is widely used to increase login security. The usage of behavioral biometrics can support verification without bothering the user with a requirement of an additional interaction. Our research aimed to check whether using information about how partial passwords are typed is possible to strengthen user authentication security. The partial password is a query of a subset of characters from a full password. The use of partial passwords makes it difficult for attackers who can observe password entry to acquire sensitive information. In this paper, we use a Siamese neural network and n-shot classification using past recent logins to verify user identity based on keystroke dynamics obtained from the static text. The experimental results on real data demonstrate that keystroke dynamics authentication can be successfully used for partial password typing patterns. Our method can support the basic authentication process and increase users’ confidence. keystroke dynamics behavioral biometry keyboard partial password authentication siamese network Chemical technology Ewa Niewiadomska-Szynkiewicz verfasserin aut Katarzyna Dziewulska verfasserin aut In Sensors MDPI AG, 2003 23(2023), 15, p 6685 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:23 year:2023 number:15, p 6685 https://doi.org/10.3390/s23156685 kostenfrei https://doaj.org/article/ebe217952f1544ed8e30075db7f2cf8d kostenfrei https://www.mdpi.com/1424-8220/23/15/6685 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2023 15, p 6685 |
language |
English |
source |
In Sensors 23(2023), 15, p 6685 volume:23 year:2023 number:15, p 6685 |
sourceStr |
In Sensors 23(2023), 15, p 6685 volume:23 year:2023 number:15, p 6685 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
keystroke dynamics behavioral biometry keyboard partial password authentication siamese network Chemical technology |
isfreeaccess_bool |
true |
container_title |
Sensors |
authorswithroles_txt_mv |
Kamila Lis @@aut@@ Ewa Niewiadomska-Szynkiewicz @@aut@@ Katarzyna Dziewulska @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
331640910 |
id |
DOAJ093679351 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ093679351</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413014826.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/s23156685</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ093679351</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJebe217952f1544ed8e30075db7f2cf8d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Kamila Lis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Siamese Neural Network for Keystroke Dynamics-Based Authentication on Partial Passwords</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The paper addresses issues concerning secure authentication in computer systems. We focus on multi-factor authentication methods using two or more independent mechanisms to identify a user. User-specific behavioral biometrics is widely used to increase login security. The usage of behavioral biometrics can support verification without bothering the user with a requirement of an additional interaction. Our research aimed to check whether using information about how partial passwords are typed is possible to strengthen user authentication security. The partial password is a query of a subset of characters from a full password. The use of partial passwords makes it difficult for attackers who can observe password entry to acquire sensitive information. In this paper, we use a Siamese neural network and n-shot classification using past recent logins to verify user identity based on keystroke dynamics obtained from the static text. The experimental results on real data demonstrate that keystroke dynamics authentication can be successfully used for partial password typing patterns. Our method can support the basic authentication process and increase users’ confidence.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">keystroke dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">behavioral biometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">keyboard</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">partial password authentication</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">siamese network</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ewa Niewiadomska-Szynkiewicz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Katarzyna Dziewulska</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Sensors</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">23(2023), 15, p 6685</subfield><subfield code="w">(DE-627)331640910</subfield><subfield code="w">(DE-600)2052857-7</subfield><subfield code="x">14248220</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:15, p 6685</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/s23156685</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/ebe217952f1544ed8e30075db7f2cf8d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1424-8220/23/15/6685</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1424-8220</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2023</subfield><subfield code="e">15, p 6685</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Kamila Lis |
spellingShingle |
Kamila Lis misc TP1-1185 misc keystroke dynamics misc behavioral biometry misc keyboard misc partial password authentication misc siamese network misc Chemical technology Siamese Neural Network for Keystroke Dynamics-Based Authentication on Partial Passwords |
authorStr |
Kamila Lis |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)331640910 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TP1-1185 |
illustrated |
Not Illustrated |
issn |
14248220 |
topic_title |
TP1-1185 Siamese Neural Network for Keystroke Dynamics-Based Authentication on Partial Passwords keystroke dynamics behavioral biometry keyboard partial password authentication siamese network |
topic |
misc TP1-1185 misc keystroke dynamics misc behavioral biometry misc keyboard misc partial password authentication misc siamese network misc Chemical technology |
topic_unstemmed |
misc TP1-1185 misc keystroke dynamics misc behavioral biometry misc keyboard misc partial password authentication misc siamese network misc Chemical technology |
topic_browse |
misc TP1-1185 misc keystroke dynamics misc behavioral biometry misc keyboard misc partial password authentication misc siamese network misc Chemical technology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Sensors |
hierarchy_parent_id |
331640910 |
hierarchy_top_title |
Sensors |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)331640910 (DE-600)2052857-7 |
title |
Siamese Neural Network for Keystroke Dynamics-Based Authentication on Partial Passwords |
ctrlnum |
(DE-627)DOAJ093679351 (DE-599)DOAJebe217952f1544ed8e30075db7f2cf8d |
title_full |
Siamese Neural Network for Keystroke Dynamics-Based Authentication on Partial Passwords |
author_sort |
Kamila Lis |
journal |
Sensors |
journalStr |
Sensors |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Kamila Lis Ewa Niewiadomska-Szynkiewicz Katarzyna Dziewulska |
container_volume |
23 |
class |
TP1-1185 |
format_se |
Elektronische Aufsätze |
author-letter |
Kamila Lis |
doi_str_mv |
10.3390/s23156685 |
author2-role |
verfasserin |
title_sort |
siamese neural network for keystroke dynamics-based authentication on partial passwords |
callnumber |
TP1-1185 |
title_auth |
Siamese Neural Network for Keystroke Dynamics-Based Authentication on Partial Passwords |
abstract |
The paper addresses issues concerning secure authentication in computer systems. We focus on multi-factor authentication methods using two or more independent mechanisms to identify a user. User-specific behavioral biometrics is widely used to increase login security. The usage of behavioral biometrics can support verification without bothering the user with a requirement of an additional interaction. Our research aimed to check whether using information about how partial passwords are typed is possible to strengthen user authentication security. The partial password is a query of a subset of characters from a full password. The use of partial passwords makes it difficult for attackers who can observe password entry to acquire sensitive information. In this paper, we use a Siamese neural network and n-shot classification using past recent logins to verify user identity based on keystroke dynamics obtained from the static text. The experimental results on real data demonstrate that keystroke dynamics authentication can be successfully used for partial password typing patterns. Our method can support the basic authentication process and increase users’ confidence. |
abstractGer |
The paper addresses issues concerning secure authentication in computer systems. We focus on multi-factor authentication methods using two or more independent mechanisms to identify a user. User-specific behavioral biometrics is widely used to increase login security. The usage of behavioral biometrics can support verification without bothering the user with a requirement of an additional interaction. Our research aimed to check whether using information about how partial passwords are typed is possible to strengthen user authentication security. The partial password is a query of a subset of characters from a full password. The use of partial passwords makes it difficult for attackers who can observe password entry to acquire sensitive information. In this paper, we use a Siamese neural network and n-shot classification using past recent logins to verify user identity based on keystroke dynamics obtained from the static text. The experimental results on real data demonstrate that keystroke dynamics authentication can be successfully used for partial password typing patterns. Our method can support the basic authentication process and increase users’ confidence. |
abstract_unstemmed |
The paper addresses issues concerning secure authentication in computer systems. We focus on multi-factor authentication methods using two or more independent mechanisms to identify a user. User-specific behavioral biometrics is widely used to increase login security. The usage of behavioral biometrics can support verification without bothering the user with a requirement of an additional interaction. Our research aimed to check whether using information about how partial passwords are typed is possible to strengthen user authentication security. The partial password is a query of a subset of characters from a full password. The use of partial passwords makes it difficult for attackers who can observe password entry to acquire sensitive information. In this paper, we use a Siamese neural network and n-shot classification using past recent logins to verify user identity based on keystroke dynamics obtained from the static text. The experimental results on real data demonstrate that keystroke dynamics authentication can be successfully used for partial password typing patterns. Our method can support the basic authentication process and increase users’ confidence. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
15, p 6685 |
title_short |
Siamese Neural Network for Keystroke Dynamics-Based Authentication on Partial Passwords |
url |
https://doi.org/10.3390/s23156685 https://doaj.org/article/ebe217952f1544ed8e30075db7f2cf8d https://www.mdpi.com/1424-8220/23/15/6685 https://doaj.org/toc/1424-8220 |
remote_bool |
true |
author2 |
Ewa Niewiadomska-Szynkiewicz Katarzyna Dziewulska |
author2Str |
Ewa Niewiadomska-Szynkiewicz Katarzyna Dziewulska |
ppnlink |
331640910 |
callnumber-subject |
TP - Chemical Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/s23156685 |
callnumber-a |
TP1-1185 |
up_date |
2024-07-03T18:45:45.406Z |
_version_ |
1803584636622733312 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ093679351</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413014826.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/s23156685</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ093679351</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJebe217952f1544ed8e30075db7f2cf8d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Kamila Lis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Siamese Neural Network for Keystroke Dynamics-Based Authentication on Partial Passwords</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The paper addresses issues concerning secure authentication in computer systems. We focus on multi-factor authentication methods using two or more independent mechanisms to identify a user. User-specific behavioral biometrics is widely used to increase login security. The usage of behavioral biometrics can support verification without bothering the user with a requirement of an additional interaction. Our research aimed to check whether using information about how partial passwords are typed is possible to strengthen user authentication security. The partial password is a query of a subset of characters from a full password. The use of partial passwords makes it difficult for attackers who can observe password entry to acquire sensitive information. In this paper, we use a Siamese neural network and n-shot classification using past recent logins to verify user identity based on keystroke dynamics obtained from the static text. The experimental results on real data demonstrate that keystroke dynamics authentication can be successfully used for partial password typing patterns. Our method can support the basic authentication process and increase users’ confidence.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">keystroke dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">behavioral biometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">keyboard</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">partial password authentication</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">siamese network</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ewa Niewiadomska-Szynkiewicz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Katarzyna Dziewulska</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Sensors</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">23(2023), 15, p 6685</subfield><subfield code="w">(DE-627)331640910</subfield><subfield code="w">(DE-600)2052857-7</subfield><subfield code="x">14248220</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:15, p 6685</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/s23156685</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/ebe217952f1544ed8e30075db7f2cf8d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1424-8220/23/15/6685</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1424-8220</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2023</subfield><subfield code="e">15, p 6685</subfield></datafield></record></collection>
|
score |
7.400695 |