Coalition Game Theoretic Power Allocation Strategy for Multi-Target Detection in Distributed Radar Networks
This paper studies a coalition game theoretic power allocation algorithm for multi-target detection in radar networks based on low probability of intercept (LPI). The main goal of the algorithm is to reduce the total radiated power of the radar networks while satisfying the predetermined target dete...
Ausführliche Beschreibung
Autor*in: |
Xiangrong Dai [verfasserIn] Chenguang Shi [verfasserIn] Ziwei Wang [verfasserIn] Jianjiang Zhou [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Remote Sensing - MDPI AG, 2009, 15(2023), 15, p 3804 |
---|---|
Übergeordnetes Werk: |
volume:15 ; year:2023 ; number:15, p 3804 |
Links: |
---|
DOI / URN: |
10.3390/rs15153804 |
---|
Katalog-ID: |
DOAJ093680848 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ093680848 | ||
003 | DE-627 | ||
005 | 20240413014840.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/rs15153804 |2 doi | |
035 | |a (DE-627)DOAJ093680848 | ||
035 | |a (DE-599)DOAJ9a468f4928d240399e695083ce8fcec3 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Xiangrong Dai |e verfasserin |4 aut | |
245 | 1 | 0 | |a Coalition Game Theoretic Power Allocation Strategy for Multi-Target Detection in Distributed Radar Networks |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a This paper studies a coalition game theoretic power allocation algorithm for multi-target detection in radar networks based on low probability of intercept (LPI). The main goal of the algorithm is to reduce the total radiated power of the radar networks while satisfying the predetermined target detection performance of each radar. Firstly, a utility function that comprehensively considers both target detection performance and the radiated power of the radar networks is designed with LPI performance as the guiding principle. Secondly, it causes a coalition to form between cooperating radars, and radars within the same coalition share information. On this basis, a mathematical model for power allocation in radar networks based on coalition game theory is established. The model takes the given target detection performance as a constraint and maximizing system energy efficiency and optimal power allocation as the optimization objective. Furthermore, this paper proposes a game algorithm for joint coalition formation and power allocation in a multi-target detection scenario. Finally, the existence and uniqueness of the Nash equilibrium (NE) solution are proven through strict mathematical deduction. Simulation results validate the effectiveness and feasibility of the proposed algorithm. | ||
650 | 4 | |a coalition game | |
650 | 4 | |a radar networks | |
650 | 4 | |a power allocation | |
650 | 4 | |a Nash equilibrium (NE) | |
650 | 4 | |a low probability of intercept (LPI) | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
700 | 0 | |a Chenguang Shi |e verfasserin |4 aut | |
700 | 0 | |a Ziwei Wang |e verfasserin |4 aut | |
700 | 0 | |a Jianjiang Zhou |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Remote Sensing |d MDPI AG, 2009 |g 15(2023), 15, p 3804 |w (DE-627)608937916 |w (DE-600)2513863-7 |x 20724292 |7 nnns |
773 | 1 | 8 | |g volume:15 |g year:2023 |g number:15, p 3804 |
856 | 4 | 0 | |u https://doi.org/10.3390/rs15153804 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/9a468f4928d240399e695083ce8fcec3 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2072-4292/15/15/3804 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2072-4292 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4392 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 15 |j 2023 |e 15, p 3804 |
author_variant |
x d xd c s cs z w zw j z jz |
---|---|
matchkey_str |
article:20724292:2023----::oltogmtertcoealctosrtgfruttredtcin |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.3390/rs15153804 doi (DE-627)DOAJ093680848 (DE-599)DOAJ9a468f4928d240399e695083ce8fcec3 DE-627 ger DE-627 rakwb eng Xiangrong Dai verfasserin aut Coalition Game Theoretic Power Allocation Strategy for Multi-Target Detection in Distributed Radar Networks 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper studies a coalition game theoretic power allocation algorithm for multi-target detection in radar networks based on low probability of intercept (LPI). The main goal of the algorithm is to reduce the total radiated power of the radar networks while satisfying the predetermined target detection performance of each radar. Firstly, a utility function that comprehensively considers both target detection performance and the radiated power of the radar networks is designed with LPI performance as the guiding principle. Secondly, it causes a coalition to form between cooperating radars, and radars within the same coalition share information. On this basis, a mathematical model for power allocation in radar networks based on coalition game theory is established. The model takes the given target detection performance as a constraint and maximizing system energy efficiency and optimal power allocation as the optimization objective. Furthermore, this paper proposes a game algorithm for joint coalition formation and power allocation in a multi-target detection scenario. Finally, the existence and uniqueness of the Nash equilibrium (NE) solution are proven through strict mathematical deduction. Simulation results validate the effectiveness and feasibility of the proposed algorithm. coalition game radar networks power allocation Nash equilibrium (NE) low probability of intercept (LPI) Science Q Chenguang Shi verfasserin aut Ziwei Wang verfasserin aut Jianjiang Zhou verfasserin aut In Remote Sensing MDPI AG, 2009 15(2023), 15, p 3804 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:15 year:2023 number:15, p 3804 https://doi.org/10.3390/rs15153804 kostenfrei https://doaj.org/article/9a468f4928d240399e695083ce8fcec3 kostenfrei https://www.mdpi.com/2072-4292/15/15/3804 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 15 2023 15, p 3804 |
spelling |
10.3390/rs15153804 doi (DE-627)DOAJ093680848 (DE-599)DOAJ9a468f4928d240399e695083ce8fcec3 DE-627 ger DE-627 rakwb eng Xiangrong Dai verfasserin aut Coalition Game Theoretic Power Allocation Strategy for Multi-Target Detection in Distributed Radar Networks 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper studies a coalition game theoretic power allocation algorithm for multi-target detection in radar networks based on low probability of intercept (LPI). The main goal of the algorithm is to reduce the total radiated power of the radar networks while satisfying the predetermined target detection performance of each radar. Firstly, a utility function that comprehensively considers both target detection performance and the radiated power of the radar networks is designed with LPI performance as the guiding principle. Secondly, it causes a coalition to form between cooperating radars, and radars within the same coalition share information. On this basis, a mathematical model for power allocation in radar networks based on coalition game theory is established. The model takes the given target detection performance as a constraint and maximizing system energy efficiency and optimal power allocation as the optimization objective. Furthermore, this paper proposes a game algorithm for joint coalition formation and power allocation in a multi-target detection scenario. Finally, the existence and uniqueness of the Nash equilibrium (NE) solution are proven through strict mathematical deduction. Simulation results validate the effectiveness and feasibility of the proposed algorithm. coalition game radar networks power allocation Nash equilibrium (NE) low probability of intercept (LPI) Science Q Chenguang Shi verfasserin aut Ziwei Wang verfasserin aut Jianjiang Zhou verfasserin aut In Remote Sensing MDPI AG, 2009 15(2023), 15, p 3804 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:15 year:2023 number:15, p 3804 https://doi.org/10.3390/rs15153804 kostenfrei https://doaj.org/article/9a468f4928d240399e695083ce8fcec3 kostenfrei https://www.mdpi.com/2072-4292/15/15/3804 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 15 2023 15, p 3804 |
allfields_unstemmed |
10.3390/rs15153804 doi (DE-627)DOAJ093680848 (DE-599)DOAJ9a468f4928d240399e695083ce8fcec3 DE-627 ger DE-627 rakwb eng Xiangrong Dai verfasserin aut Coalition Game Theoretic Power Allocation Strategy for Multi-Target Detection in Distributed Radar Networks 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper studies a coalition game theoretic power allocation algorithm for multi-target detection in radar networks based on low probability of intercept (LPI). The main goal of the algorithm is to reduce the total radiated power of the radar networks while satisfying the predetermined target detection performance of each radar. Firstly, a utility function that comprehensively considers both target detection performance and the radiated power of the radar networks is designed with LPI performance as the guiding principle. Secondly, it causes a coalition to form between cooperating radars, and radars within the same coalition share information. On this basis, a mathematical model for power allocation in radar networks based on coalition game theory is established. The model takes the given target detection performance as a constraint and maximizing system energy efficiency and optimal power allocation as the optimization objective. Furthermore, this paper proposes a game algorithm for joint coalition formation and power allocation in a multi-target detection scenario. Finally, the existence and uniqueness of the Nash equilibrium (NE) solution are proven through strict mathematical deduction. Simulation results validate the effectiveness and feasibility of the proposed algorithm. coalition game radar networks power allocation Nash equilibrium (NE) low probability of intercept (LPI) Science Q Chenguang Shi verfasserin aut Ziwei Wang verfasserin aut Jianjiang Zhou verfasserin aut In Remote Sensing MDPI AG, 2009 15(2023), 15, p 3804 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:15 year:2023 number:15, p 3804 https://doi.org/10.3390/rs15153804 kostenfrei https://doaj.org/article/9a468f4928d240399e695083ce8fcec3 kostenfrei https://www.mdpi.com/2072-4292/15/15/3804 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 15 2023 15, p 3804 |
allfieldsGer |
10.3390/rs15153804 doi (DE-627)DOAJ093680848 (DE-599)DOAJ9a468f4928d240399e695083ce8fcec3 DE-627 ger DE-627 rakwb eng Xiangrong Dai verfasserin aut Coalition Game Theoretic Power Allocation Strategy for Multi-Target Detection in Distributed Radar Networks 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper studies a coalition game theoretic power allocation algorithm for multi-target detection in radar networks based on low probability of intercept (LPI). The main goal of the algorithm is to reduce the total radiated power of the radar networks while satisfying the predetermined target detection performance of each radar. Firstly, a utility function that comprehensively considers both target detection performance and the radiated power of the radar networks is designed with LPI performance as the guiding principle. Secondly, it causes a coalition to form between cooperating radars, and radars within the same coalition share information. On this basis, a mathematical model for power allocation in radar networks based on coalition game theory is established. The model takes the given target detection performance as a constraint and maximizing system energy efficiency and optimal power allocation as the optimization objective. Furthermore, this paper proposes a game algorithm for joint coalition formation and power allocation in a multi-target detection scenario. Finally, the existence and uniqueness of the Nash equilibrium (NE) solution are proven through strict mathematical deduction. Simulation results validate the effectiveness and feasibility of the proposed algorithm. coalition game radar networks power allocation Nash equilibrium (NE) low probability of intercept (LPI) Science Q Chenguang Shi verfasserin aut Ziwei Wang verfasserin aut Jianjiang Zhou verfasserin aut In Remote Sensing MDPI AG, 2009 15(2023), 15, p 3804 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:15 year:2023 number:15, p 3804 https://doi.org/10.3390/rs15153804 kostenfrei https://doaj.org/article/9a468f4928d240399e695083ce8fcec3 kostenfrei https://www.mdpi.com/2072-4292/15/15/3804 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 15 2023 15, p 3804 |
allfieldsSound |
10.3390/rs15153804 doi (DE-627)DOAJ093680848 (DE-599)DOAJ9a468f4928d240399e695083ce8fcec3 DE-627 ger DE-627 rakwb eng Xiangrong Dai verfasserin aut Coalition Game Theoretic Power Allocation Strategy for Multi-Target Detection in Distributed Radar Networks 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper studies a coalition game theoretic power allocation algorithm for multi-target detection in radar networks based on low probability of intercept (LPI). The main goal of the algorithm is to reduce the total radiated power of the radar networks while satisfying the predetermined target detection performance of each radar. Firstly, a utility function that comprehensively considers both target detection performance and the radiated power of the radar networks is designed with LPI performance as the guiding principle. Secondly, it causes a coalition to form between cooperating radars, and radars within the same coalition share information. On this basis, a mathematical model for power allocation in radar networks based on coalition game theory is established. The model takes the given target detection performance as a constraint and maximizing system energy efficiency and optimal power allocation as the optimization objective. Furthermore, this paper proposes a game algorithm for joint coalition formation and power allocation in a multi-target detection scenario. Finally, the existence and uniqueness of the Nash equilibrium (NE) solution are proven through strict mathematical deduction. Simulation results validate the effectiveness and feasibility of the proposed algorithm. coalition game radar networks power allocation Nash equilibrium (NE) low probability of intercept (LPI) Science Q Chenguang Shi verfasserin aut Ziwei Wang verfasserin aut Jianjiang Zhou verfasserin aut In Remote Sensing MDPI AG, 2009 15(2023), 15, p 3804 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:15 year:2023 number:15, p 3804 https://doi.org/10.3390/rs15153804 kostenfrei https://doaj.org/article/9a468f4928d240399e695083ce8fcec3 kostenfrei https://www.mdpi.com/2072-4292/15/15/3804 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 15 2023 15, p 3804 |
language |
English |
source |
In Remote Sensing 15(2023), 15, p 3804 volume:15 year:2023 number:15, p 3804 |
sourceStr |
In Remote Sensing 15(2023), 15, p 3804 volume:15 year:2023 number:15, p 3804 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
coalition game radar networks power allocation Nash equilibrium (NE) low probability of intercept (LPI) Science Q |
isfreeaccess_bool |
true |
container_title |
Remote Sensing |
authorswithroles_txt_mv |
Xiangrong Dai @@aut@@ Chenguang Shi @@aut@@ Ziwei Wang @@aut@@ Jianjiang Zhou @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
608937916 |
id |
DOAJ093680848 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ093680848</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413014840.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/rs15153804</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ093680848</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ9a468f4928d240399e695083ce8fcec3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xiangrong Dai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Coalition Game Theoretic Power Allocation Strategy for Multi-Target Detection in Distributed Radar Networks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper studies a coalition game theoretic power allocation algorithm for multi-target detection in radar networks based on low probability of intercept (LPI). The main goal of the algorithm is to reduce the total radiated power of the radar networks while satisfying the predetermined target detection performance of each radar. Firstly, a utility function that comprehensively considers both target detection performance and the radiated power of the radar networks is designed with LPI performance as the guiding principle. Secondly, it causes a coalition to form between cooperating radars, and radars within the same coalition share information. On this basis, a mathematical model for power allocation in radar networks based on coalition game theory is established. The model takes the given target detection performance as a constraint and maximizing system energy efficiency and optimal power allocation as the optimization objective. Furthermore, this paper proposes a game algorithm for joint coalition formation and power allocation in a multi-target detection scenario. Finally, the existence and uniqueness of the Nash equilibrium (NE) solution are proven through strict mathematical deduction. Simulation results validate the effectiveness and feasibility of the proposed algorithm.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">coalition game</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">radar networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">power allocation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nash equilibrium (NE)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">low probability of intercept (LPI)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chenguang Shi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ziwei Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jianjiang Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Remote Sensing</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">15(2023), 15, p 3804</subfield><subfield code="w">(DE-627)608937916</subfield><subfield code="w">(DE-600)2513863-7</subfield><subfield code="x">20724292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:15, p 3804</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/rs15153804</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/9a468f4928d240399e695083ce8fcec3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2072-4292/15/15/3804</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2072-4292</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2023</subfield><subfield code="e">15, p 3804</subfield></datafield></record></collection>
|
author |
Xiangrong Dai |
spellingShingle |
Xiangrong Dai misc coalition game misc radar networks misc power allocation misc Nash equilibrium (NE) misc low probability of intercept (LPI) misc Science misc Q Coalition Game Theoretic Power Allocation Strategy for Multi-Target Detection in Distributed Radar Networks |
authorStr |
Xiangrong Dai |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)608937916 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
20724292 |
topic_title |
Coalition Game Theoretic Power Allocation Strategy for Multi-Target Detection in Distributed Radar Networks coalition game radar networks power allocation Nash equilibrium (NE) low probability of intercept (LPI) |
topic |
misc coalition game misc radar networks misc power allocation misc Nash equilibrium (NE) misc low probability of intercept (LPI) misc Science misc Q |
topic_unstemmed |
misc coalition game misc radar networks misc power allocation misc Nash equilibrium (NE) misc low probability of intercept (LPI) misc Science misc Q |
topic_browse |
misc coalition game misc radar networks misc power allocation misc Nash equilibrium (NE) misc low probability of intercept (LPI) misc Science misc Q |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Remote Sensing |
hierarchy_parent_id |
608937916 |
hierarchy_top_title |
Remote Sensing |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)608937916 (DE-600)2513863-7 |
title |
Coalition Game Theoretic Power Allocation Strategy for Multi-Target Detection in Distributed Radar Networks |
ctrlnum |
(DE-627)DOAJ093680848 (DE-599)DOAJ9a468f4928d240399e695083ce8fcec3 |
title_full |
Coalition Game Theoretic Power Allocation Strategy for Multi-Target Detection in Distributed Radar Networks |
author_sort |
Xiangrong Dai |
journal |
Remote Sensing |
journalStr |
Remote Sensing |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Xiangrong Dai Chenguang Shi Ziwei Wang Jianjiang Zhou |
container_volume |
15 |
format_se |
Elektronische Aufsätze |
author-letter |
Xiangrong Dai |
doi_str_mv |
10.3390/rs15153804 |
author2-role |
verfasserin |
title_sort |
coalition game theoretic power allocation strategy for multi-target detection in distributed radar networks |
title_auth |
Coalition Game Theoretic Power Allocation Strategy for Multi-Target Detection in Distributed Radar Networks |
abstract |
This paper studies a coalition game theoretic power allocation algorithm for multi-target detection in radar networks based on low probability of intercept (LPI). The main goal of the algorithm is to reduce the total radiated power of the radar networks while satisfying the predetermined target detection performance of each radar. Firstly, a utility function that comprehensively considers both target detection performance and the radiated power of the radar networks is designed with LPI performance as the guiding principle. Secondly, it causes a coalition to form between cooperating radars, and radars within the same coalition share information. On this basis, a mathematical model for power allocation in radar networks based on coalition game theory is established. The model takes the given target detection performance as a constraint and maximizing system energy efficiency and optimal power allocation as the optimization objective. Furthermore, this paper proposes a game algorithm for joint coalition formation and power allocation in a multi-target detection scenario. Finally, the existence and uniqueness of the Nash equilibrium (NE) solution are proven through strict mathematical deduction. Simulation results validate the effectiveness and feasibility of the proposed algorithm. |
abstractGer |
This paper studies a coalition game theoretic power allocation algorithm for multi-target detection in radar networks based on low probability of intercept (LPI). The main goal of the algorithm is to reduce the total radiated power of the radar networks while satisfying the predetermined target detection performance of each radar. Firstly, a utility function that comprehensively considers both target detection performance and the radiated power of the radar networks is designed with LPI performance as the guiding principle. Secondly, it causes a coalition to form between cooperating radars, and radars within the same coalition share information. On this basis, a mathematical model for power allocation in radar networks based on coalition game theory is established. The model takes the given target detection performance as a constraint and maximizing system energy efficiency and optimal power allocation as the optimization objective. Furthermore, this paper proposes a game algorithm for joint coalition formation and power allocation in a multi-target detection scenario. Finally, the existence and uniqueness of the Nash equilibrium (NE) solution are proven through strict mathematical deduction. Simulation results validate the effectiveness and feasibility of the proposed algorithm. |
abstract_unstemmed |
This paper studies a coalition game theoretic power allocation algorithm for multi-target detection in radar networks based on low probability of intercept (LPI). The main goal of the algorithm is to reduce the total radiated power of the radar networks while satisfying the predetermined target detection performance of each radar. Firstly, a utility function that comprehensively considers both target detection performance and the radiated power of the radar networks is designed with LPI performance as the guiding principle. Secondly, it causes a coalition to form between cooperating radars, and radars within the same coalition share information. On this basis, a mathematical model for power allocation in radar networks based on coalition game theory is established. The model takes the given target detection performance as a constraint and maximizing system energy efficiency and optimal power allocation as the optimization objective. Furthermore, this paper proposes a game algorithm for joint coalition formation and power allocation in a multi-target detection scenario. Finally, the existence and uniqueness of the Nash equilibrium (NE) solution are proven through strict mathematical deduction. Simulation results validate the effectiveness and feasibility of the proposed algorithm. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 |
container_issue |
15, p 3804 |
title_short |
Coalition Game Theoretic Power Allocation Strategy for Multi-Target Detection in Distributed Radar Networks |
url |
https://doi.org/10.3390/rs15153804 https://doaj.org/article/9a468f4928d240399e695083ce8fcec3 https://www.mdpi.com/2072-4292/15/15/3804 https://doaj.org/toc/2072-4292 |
remote_bool |
true |
author2 |
Chenguang Shi Ziwei Wang Jianjiang Zhou |
author2Str |
Chenguang Shi Ziwei Wang Jianjiang Zhou |
ppnlink |
608937916 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/rs15153804 |
up_date |
2024-07-03T18:46:18.034Z |
_version_ |
1803584670834622464 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ093680848</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413014840.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/rs15153804</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ093680848</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ9a468f4928d240399e695083ce8fcec3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xiangrong Dai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Coalition Game Theoretic Power Allocation Strategy for Multi-Target Detection in Distributed Radar Networks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper studies a coalition game theoretic power allocation algorithm for multi-target detection in radar networks based on low probability of intercept (LPI). The main goal of the algorithm is to reduce the total radiated power of the radar networks while satisfying the predetermined target detection performance of each radar. Firstly, a utility function that comprehensively considers both target detection performance and the radiated power of the radar networks is designed with LPI performance as the guiding principle. Secondly, it causes a coalition to form between cooperating radars, and radars within the same coalition share information. On this basis, a mathematical model for power allocation in radar networks based on coalition game theory is established. The model takes the given target detection performance as a constraint and maximizing system energy efficiency and optimal power allocation as the optimization objective. Furthermore, this paper proposes a game algorithm for joint coalition formation and power allocation in a multi-target detection scenario. Finally, the existence and uniqueness of the Nash equilibrium (NE) solution are proven through strict mathematical deduction. Simulation results validate the effectiveness and feasibility of the proposed algorithm.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">coalition game</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">radar networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">power allocation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nash equilibrium (NE)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">low probability of intercept (LPI)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chenguang Shi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ziwei Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jianjiang Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Remote Sensing</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">15(2023), 15, p 3804</subfield><subfield code="w">(DE-627)608937916</subfield><subfield code="w">(DE-600)2513863-7</subfield><subfield code="x">20724292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:15, p 3804</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/rs15153804</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/9a468f4928d240399e695083ce8fcec3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2072-4292/15/15/3804</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2072-4292</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2023</subfield><subfield code="e">15, p 3804</subfield></datafield></record></collection>
|
score |
7.399131 |