Utilizing Building Offset and Shadow to Retrieve Urban Building Heights with ICESat-2 Photons
Building height serves as an essential feature of urban morphology that provides valuable insights into human socio-cultural behaviors and their impact on the environment in an urban milieu. However, openly accessible building height information at the individual building level is still lacking and...
Ausführliche Beschreibung
Autor*in: |
Bin Wu [verfasserIn] Hailan Huang [verfasserIn] Yi Zhao [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Remote Sensing - MDPI AG, 2009, 15(2023), 15, p 3786 |
---|---|
Übergeordnetes Werk: |
volume:15 ; year:2023 ; number:15, p 3786 |
Links: |
---|
DOI / URN: |
10.3390/rs15153786 |
---|
Katalog-ID: |
DOAJ093681003 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ093681003 | ||
003 | DE-627 | ||
005 | 20240413014842.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/rs15153786 |2 doi | |
035 | |a (DE-627)DOAJ093681003 | ||
035 | |a (DE-599)DOAJe0bbff541bed4dd3b1a22d239b6c2911 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Bin Wu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Utilizing Building Offset and Shadow to Retrieve Urban Building Heights with ICESat-2 Photons |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Building height serves as an essential feature of urban morphology that provides valuable insights into human socio-cultural behaviors and their impact on the environment in an urban milieu. However, openly accessible building height information at the individual building level is still lacking and remains sorely limited. Previous studies have shown that the ICESat-2′s ATL03/08 products are of good accuracy for urban building heights retrieval, however, these studies are limited to areas with available data coverage. To this end, we propose a method for extracting urban building height by using ICESat-2 ATL03 photons and high-resolution remote sensing images. We first extracted the information of building roof to footprint offsets and building shadows from high resolution imagery using multitasking CNN frameworks. Using the building height samples calculated from ICESat-2 ATL03 photons, we developed a building height estimation method that combines building offset and shadow length information. We assessed the efficacy of the proposed method in the Wujiaochang area of Shanghai city, China. The results indicated that the proposed method is able to extract building height with a MAE of 4.7 m, and outperforms the traditional shadow-based and offset-based method. We believe that the proposed method is a good candidate for accurately retrieving building heights on a city-wide scale. | ||
650 | 4 | |a building height | |
650 | 4 | |a ICESat-2 | |
650 | 4 | |a building offset | |
650 | 4 | |a building shadow | |
650 | 4 | |a deep learning | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
700 | 0 | |a Hailan Huang |e verfasserin |4 aut | |
700 | 0 | |a Yi Zhao |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Remote Sensing |d MDPI AG, 2009 |g 15(2023), 15, p 3786 |w (DE-627)608937916 |w (DE-600)2513863-7 |x 20724292 |7 nnns |
773 | 1 | 8 | |g volume:15 |g year:2023 |g number:15, p 3786 |
856 | 4 | 0 | |u https://doi.org/10.3390/rs15153786 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/e0bbff541bed4dd3b1a22d239b6c2911 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2072-4292/15/15/3786 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2072-4292 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4392 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 15 |j 2023 |e 15, p 3786 |
author_variant |
b w bw h h hh y z yz |
---|---|
matchkey_str |
article:20724292:2023----::tlznbidnofeadhdwoereerabidnhih |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.3390/rs15153786 doi (DE-627)DOAJ093681003 (DE-599)DOAJe0bbff541bed4dd3b1a22d239b6c2911 DE-627 ger DE-627 rakwb eng Bin Wu verfasserin aut Utilizing Building Offset and Shadow to Retrieve Urban Building Heights with ICESat-2 Photons 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Building height serves as an essential feature of urban morphology that provides valuable insights into human socio-cultural behaviors and their impact on the environment in an urban milieu. However, openly accessible building height information at the individual building level is still lacking and remains sorely limited. Previous studies have shown that the ICESat-2′s ATL03/08 products are of good accuracy for urban building heights retrieval, however, these studies are limited to areas with available data coverage. To this end, we propose a method for extracting urban building height by using ICESat-2 ATL03 photons and high-resolution remote sensing images. We first extracted the information of building roof to footprint offsets and building shadows from high resolution imagery using multitasking CNN frameworks. Using the building height samples calculated from ICESat-2 ATL03 photons, we developed a building height estimation method that combines building offset and shadow length information. We assessed the efficacy of the proposed method in the Wujiaochang area of Shanghai city, China. The results indicated that the proposed method is able to extract building height with a MAE of 4.7 m, and outperforms the traditional shadow-based and offset-based method. We believe that the proposed method is a good candidate for accurately retrieving building heights on a city-wide scale. building height ICESat-2 building offset building shadow deep learning Science Q Hailan Huang verfasserin aut Yi Zhao verfasserin aut In Remote Sensing MDPI AG, 2009 15(2023), 15, p 3786 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:15 year:2023 number:15, p 3786 https://doi.org/10.3390/rs15153786 kostenfrei https://doaj.org/article/e0bbff541bed4dd3b1a22d239b6c2911 kostenfrei https://www.mdpi.com/2072-4292/15/15/3786 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 15 2023 15, p 3786 |
spelling |
10.3390/rs15153786 doi (DE-627)DOAJ093681003 (DE-599)DOAJe0bbff541bed4dd3b1a22d239b6c2911 DE-627 ger DE-627 rakwb eng Bin Wu verfasserin aut Utilizing Building Offset and Shadow to Retrieve Urban Building Heights with ICESat-2 Photons 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Building height serves as an essential feature of urban morphology that provides valuable insights into human socio-cultural behaviors and their impact on the environment in an urban milieu. However, openly accessible building height information at the individual building level is still lacking and remains sorely limited. Previous studies have shown that the ICESat-2′s ATL03/08 products are of good accuracy for urban building heights retrieval, however, these studies are limited to areas with available data coverage. To this end, we propose a method for extracting urban building height by using ICESat-2 ATL03 photons and high-resolution remote sensing images. We first extracted the information of building roof to footprint offsets and building shadows from high resolution imagery using multitasking CNN frameworks. Using the building height samples calculated from ICESat-2 ATL03 photons, we developed a building height estimation method that combines building offset and shadow length information. We assessed the efficacy of the proposed method in the Wujiaochang area of Shanghai city, China. The results indicated that the proposed method is able to extract building height with a MAE of 4.7 m, and outperforms the traditional shadow-based and offset-based method. We believe that the proposed method is a good candidate for accurately retrieving building heights on a city-wide scale. building height ICESat-2 building offset building shadow deep learning Science Q Hailan Huang verfasserin aut Yi Zhao verfasserin aut In Remote Sensing MDPI AG, 2009 15(2023), 15, p 3786 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:15 year:2023 number:15, p 3786 https://doi.org/10.3390/rs15153786 kostenfrei https://doaj.org/article/e0bbff541bed4dd3b1a22d239b6c2911 kostenfrei https://www.mdpi.com/2072-4292/15/15/3786 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 15 2023 15, p 3786 |
allfields_unstemmed |
10.3390/rs15153786 doi (DE-627)DOAJ093681003 (DE-599)DOAJe0bbff541bed4dd3b1a22d239b6c2911 DE-627 ger DE-627 rakwb eng Bin Wu verfasserin aut Utilizing Building Offset and Shadow to Retrieve Urban Building Heights with ICESat-2 Photons 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Building height serves as an essential feature of urban morphology that provides valuable insights into human socio-cultural behaviors and their impact on the environment in an urban milieu. However, openly accessible building height information at the individual building level is still lacking and remains sorely limited. Previous studies have shown that the ICESat-2′s ATL03/08 products are of good accuracy for urban building heights retrieval, however, these studies are limited to areas with available data coverage. To this end, we propose a method for extracting urban building height by using ICESat-2 ATL03 photons and high-resolution remote sensing images. We first extracted the information of building roof to footprint offsets and building shadows from high resolution imagery using multitasking CNN frameworks. Using the building height samples calculated from ICESat-2 ATL03 photons, we developed a building height estimation method that combines building offset and shadow length information. We assessed the efficacy of the proposed method in the Wujiaochang area of Shanghai city, China. The results indicated that the proposed method is able to extract building height with a MAE of 4.7 m, and outperforms the traditional shadow-based and offset-based method. We believe that the proposed method is a good candidate for accurately retrieving building heights on a city-wide scale. building height ICESat-2 building offset building shadow deep learning Science Q Hailan Huang verfasserin aut Yi Zhao verfasserin aut In Remote Sensing MDPI AG, 2009 15(2023), 15, p 3786 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:15 year:2023 number:15, p 3786 https://doi.org/10.3390/rs15153786 kostenfrei https://doaj.org/article/e0bbff541bed4dd3b1a22d239b6c2911 kostenfrei https://www.mdpi.com/2072-4292/15/15/3786 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 15 2023 15, p 3786 |
allfieldsGer |
10.3390/rs15153786 doi (DE-627)DOAJ093681003 (DE-599)DOAJe0bbff541bed4dd3b1a22d239b6c2911 DE-627 ger DE-627 rakwb eng Bin Wu verfasserin aut Utilizing Building Offset and Shadow to Retrieve Urban Building Heights with ICESat-2 Photons 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Building height serves as an essential feature of urban morphology that provides valuable insights into human socio-cultural behaviors and their impact on the environment in an urban milieu. However, openly accessible building height information at the individual building level is still lacking and remains sorely limited. Previous studies have shown that the ICESat-2′s ATL03/08 products are of good accuracy for urban building heights retrieval, however, these studies are limited to areas with available data coverage. To this end, we propose a method for extracting urban building height by using ICESat-2 ATL03 photons and high-resolution remote sensing images. We first extracted the information of building roof to footprint offsets and building shadows from high resolution imagery using multitasking CNN frameworks. Using the building height samples calculated from ICESat-2 ATL03 photons, we developed a building height estimation method that combines building offset and shadow length information. We assessed the efficacy of the proposed method in the Wujiaochang area of Shanghai city, China. The results indicated that the proposed method is able to extract building height with a MAE of 4.7 m, and outperforms the traditional shadow-based and offset-based method. We believe that the proposed method is a good candidate for accurately retrieving building heights on a city-wide scale. building height ICESat-2 building offset building shadow deep learning Science Q Hailan Huang verfasserin aut Yi Zhao verfasserin aut In Remote Sensing MDPI AG, 2009 15(2023), 15, p 3786 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:15 year:2023 number:15, p 3786 https://doi.org/10.3390/rs15153786 kostenfrei https://doaj.org/article/e0bbff541bed4dd3b1a22d239b6c2911 kostenfrei https://www.mdpi.com/2072-4292/15/15/3786 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 15 2023 15, p 3786 |
allfieldsSound |
10.3390/rs15153786 doi (DE-627)DOAJ093681003 (DE-599)DOAJe0bbff541bed4dd3b1a22d239b6c2911 DE-627 ger DE-627 rakwb eng Bin Wu verfasserin aut Utilizing Building Offset and Shadow to Retrieve Urban Building Heights with ICESat-2 Photons 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Building height serves as an essential feature of urban morphology that provides valuable insights into human socio-cultural behaviors and their impact on the environment in an urban milieu. However, openly accessible building height information at the individual building level is still lacking and remains sorely limited. Previous studies have shown that the ICESat-2′s ATL03/08 products are of good accuracy for urban building heights retrieval, however, these studies are limited to areas with available data coverage. To this end, we propose a method for extracting urban building height by using ICESat-2 ATL03 photons and high-resolution remote sensing images. We first extracted the information of building roof to footprint offsets and building shadows from high resolution imagery using multitasking CNN frameworks. Using the building height samples calculated from ICESat-2 ATL03 photons, we developed a building height estimation method that combines building offset and shadow length information. We assessed the efficacy of the proposed method in the Wujiaochang area of Shanghai city, China. The results indicated that the proposed method is able to extract building height with a MAE of 4.7 m, and outperforms the traditional shadow-based and offset-based method. We believe that the proposed method is a good candidate for accurately retrieving building heights on a city-wide scale. building height ICESat-2 building offset building shadow deep learning Science Q Hailan Huang verfasserin aut Yi Zhao verfasserin aut In Remote Sensing MDPI AG, 2009 15(2023), 15, p 3786 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:15 year:2023 number:15, p 3786 https://doi.org/10.3390/rs15153786 kostenfrei https://doaj.org/article/e0bbff541bed4dd3b1a22d239b6c2911 kostenfrei https://www.mdpi.com/2072-4292/15/15/3786 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 15 2023 15, p 3786 |
language |
English |
source |
In Remote Sensing 15(2023), 15, p 3786 volume:15 year:2023 number:15, p 3786 |
sourceStr |
In Remote Sensing 15(2023), 15, p 3786 volume:15 year:2023 number:15, p 3786 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
building height ICESat-2 building offset building shadow deep learning Science Q |
isfreeaccess_bool |
true |
container_title |
Remote Sensing |
authorswithroles_txt_mv |
Bin Wu @@aut@@ Hailan Huang @@aut@@ Yi Zhao @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
608937916 |
id |
DOAJ093681003 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ093681003</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413014842.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/rs15153786</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ093681003</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe0bbff541bed4dd3b1a22d239b6c2911</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Bin Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Utilizing Building Offset and Shadow to Retrieve Urban Building Heights with ICESat-2 Photons</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Building height serves as an essential feature of urban morphology that provides valuable insights into human socio-cultural behaviors and their impact on the environment in an urban milieu. However, openly accessible building height information at the individual building level is still lacking and remains sorely limited. Previous studies have shown that the ICESat-2′s ATL03/08 products are of good accuracy for urban building heights retrieval, however, these studies are limited to areas with available data coverage. To this end, we propose a method for extracting urban building height by using ICESat-2 ATL03 photons and high-resolution remote sensing images. We first extracted the information of building roof to footprint offsets and building shadows from high resolution imagery using multitasking CNN frameworks. Using the building height samples calculated from ICESat-2 ATL03 photons, we developed a building height estimation method that combines building offset and shadow length information. We assessed the efficacy of the proposed method in the Wujiaochang area of Shanghai city, China. The results indicated that the proposed method is able to extract building height with a MAE of 4.7 m, and outperforms the traditional shadow-based and offset-based method. We believe that the proposed method is a good candidate for accurately retrieving building heights on a city-wide scale.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">building height</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ICESat-2</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">building offset</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">building shadow</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">deep learning</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hailan Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yi Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Remote Sensing</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">15(2023), 15, p 3786</subfield><subfield code="w">(DE-627)608937916</subfield><subfield code="w">(DE-600)2513863-7</subfield><subfield code="x">20724292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:15, p 3786</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/rs15153786</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e0bbff541bed4dd3b1a22d239b6c2911</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2072-4292/15/15/3786</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2072-4292</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2023</subfield><subfield code="e">15, p 3786</subfield></datafield></record></collection>
|
author |
Bin Wu |
spellingShingle |
Bin Wu misc building height misc ICESat-2 misc building offset misc building shadow misc deep learning misc Science misc Q Utilizing Building Offset and Shadow to Retrieve Urban Building Heights with ICESat-2 Photons |
authorStr |
Bin Wu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)608937916 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
20724292 |
topic_title |
Utilizing Building Offset and Shadow to Retrieve Urban Building Heights with ICESat-2 Photons building height ICESat-2 building offset building shadow deep learning |
topic |
misc building height misc ICESat-2 misc building offset misc building shadow misc deep learning misc Science misc Q |
topic_unstemmed |
misc building height misc ICESat-2 misc building offset misc building shadow misc deep learning misc Science misc Q |
topic_browse |
misc building height misc ICESat-2 misc building offset misc building shadow misc deep learning misc Science misc Q |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Remote Sensing |
hierarchy_parent_id |
608937916 |
hierarchy_top_title |
Remote Sensing |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)608937916 (DE-600)2513863-7 |
title |
Utilizing Building Offset and Shadow to Retrieve Urban Building Heights with ICESat-2 Photons |
ctrlnum |
(DE-627)DOAJ093681003 (DE-599)DOAJe0bbff541bed4dd3b1a22d239b6c2911 |
title_full |
Utilizing Building Offset and Shadow to Retrieve Urban Building Heights with ICESat-2 Photons |
author_sort |
Bin Wu |
journal |
Remote Sensing |
journalStr |
Remote Sensing |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Bin Wu Hailan Huang Yi Zhao |
container_volume |
15 |
format_se |
Elektronische Aufsätze |
author-letter |
Bin Wu |
doi_str_mv |
10.3390/rs15153786 |
author2-role |
verfasserin |
title_sort |
utilizing building offset and shadow to retrieve urban building heights with icesat-2 photons |
title_auth |
Utilizing Building Offset and Shadow to Retrieve Urban Building Heights with ICESat-2 Photons |
abstract |
Building height serves as an essential feature of urban morphology that provides valuable insights into human socio-cultural behaviors and their impact on the environment in an urban milieu. However, openly accessible building height information at the individual building level is still lacking and remains sorely limited. Previous studies have shown that the ICESat-2′s ATL03/08 products are of good accuracy for urban building heights retrieval, however, these studies are limited to areas with available data coverage. To this end, we propose a method for extracting urban building height by using ICESat-2 ATL03 photons and high-resolution remote sensing images. We first extracted the information of building roof to footprint offsets and building shadows from high resolution imagery using multitasking CNN frameworks. Using the building height samples calculated from ICESat-2 ATL03 photons, we developed a building height estimation method that combines building offset and shadow length information. We assessed the efficacy of the proposed method in the Wujiaochang area of Shanghai city, China. The results indicated that the proposed method is able to extract building height with a MAE of 4.7 m, and outperforms the traditional shadow-based and offset-based method. We believe that the proposed method is a good candidate for accurately retrieving building heights on a city-wide scale. |
abstractGer |
Building height serves as an essential feature of urban morphology that provides valuable insights into human socio-cultural behaviors and their impact on the environment in an urban milieu. However, openly accessible building height information at the individual building level is still lacking and remains sorely limited. Previous studies have shown that the ICESat-2′s ATL03/08 products are of good accuracy for urban building heights retrieval, however, these studies are limited to areas with available data coverage. To this end, we propose a method for extracting urban building height by using ICESat-2 ATL03 photons and high-resolution remote sensing images. We first extracted the information of building roof to footprint offsets and building shadows from high resolution imagery using multitasking CNN frameworks. Using the building height samples calculated from ICESat-2 ATL03 photons, we developed a building height estimation method that combines building offset and shadow length information. We assessed the efficacy of the proposed method in the Wujiaochang area of Shanghai city, China. The results indicated that the proposed method is able to extract building height with a MAE of 4.7 m, and outperforms the traditional shadow-based and offset-based method. We believe that the proposed method is a good candidate for accurately retrieving building heights on a city-wide scale. |
abstract_unstemmed |
Building height serves as an essential feature of urban morphology that provides valuable insights into human socio-cultural behaviors and their impact on the environment in an urban milieu. However, openly accessible building height information at the individual building level is still lacking and remains sorely limited. Previous studies have shown that the ICESat-2′s ATL03/08 products are of good accuracy for urban building heights retrieval, however, these studies are limited to areas with available data coverage. To this end, we propose a method for extracting urban building height by using ICESat-2 ATL03 photons and high-resolution remote sensing images. We first extracted the information of building roof to footprint offsets and building shadows from high resolution imagery using multitasking CNN frameworks. Using the building height samples calculated from ICESat-2 ATL03 photons, we developed a building height estimation method that combines building offset and shadow length information. We assessed the efficacy of the proposed method in the Wujiaochang area of Shanghai city, China. The results indicated that the proposed method is able to extract building height with a MAE of 4.7 m, and outperforms the traditional shadow-based and offset-based method. We believe that the proposed method is a good candidate for accurately retrieving building heights on a city-wide scale. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 |
container_issue |
15, p 3786 |
title_short |
Utilizing Building Offset and Shadow to Retrieve Urban Building Heights with ICESat-2 Photons |
url |
https://doi.org/10.3390/rs15153786 https://doaj.org/article/e0bbff541bed4dd3b1a22d239b6c2911 https://www.mdpi.com/2072-4292/15/15/3786 https://doaj.org/toc/2072-4292 |
remote_bool |
true |
author2 |
Hailan Huang Yi Zhao |
author2Str |
Hailan Huang Yi Zhao |
ppnlink |
608937916 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/rs15153786 |
up_date |
2024-07-03T18:46:21.103Z |
_version_ |
1803584674049556480 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ093681003</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413014842.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/rs15153786</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ093681003</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe0bbff541bed4dd3b1a22d239b6c2911</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Bin Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Utilizing Building Offset and Shadow to Retrieve Urban Building Heights with ICESat-2 Photons</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Building height serves as an essential feature of urban morphology that provides valuable insights into human socio-cultural behaviors and their impact on the environment in an urban milieu. However, openly accessible building height information at the individual building level is still lacking and remains sorely limited. Previous studies have shown that the ICESat-2′s ATL03/08 products are of good accuracy for urban building heights retrieval, however, these studies are limited to areas with available data coverage. To this end, we propose a method for extracting urban building height by using ICESat-2 ATL03 photons and high-resolution remote sensing images. We first extracted the information of building roof to footprint offsets and building shadows from high resolution imagery using multitasking CNN frameworks. Using the building height samples calculated from ICESat-2 ATL03 photons, we developed a building height estimation method that combines building offset and shadow length information. We assessed the efficacy of the proposed method in the Wujiaochang area of Shanghai city, China. The results indicated that the proposed method is able to extract building height with a MAE of 4.7 m, and outperforms the traditional shadow-based and offset-based method. We believe that the proposed method is a good candidate for accurately retrieving building heights on a city-wide scale.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">building height</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ICESat-2</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">building offset</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">building shadow</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">deep learning</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hailan Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yi Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Remote Sensing</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">15(2023), 15, p 3786</subfield><subfield code="w">(DE-627)608937916</subfield><subfield code="w">(DE-600)2513863-7</subfield><subfield code="x">20724292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:15, p 3786</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/rs15153786</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e0bbff541bed4dd3b1a22d239b6c2911</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2072-4292/15/15/3786</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2072-4292</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2023</subfield><subfield code="e">15, p 3786</subfield></datafield></record></collection>
|
score |
7.4026413 |