Trend detection and change point analysis of inflows in Karuppanadhi and Gundar dams of Chittar River Basin, Tamil Nadu, India
Gaining insights into the patterns of hydroclimatic elements such as inflows to dams is essential to adeptly strategize and oversee water resource planning. For this study, we focused on Karuppanadhi and Gundar dams within the Chittar River Basin in Tamil Nadu. We employed various time series trend...
Ausführliche Beschreibung
Autor*in: |
Arockia Anusty J [verfasserIn] Man Singh [verfasserIn] Manoj Khanna [verfasserIn] Prameela Krishnan [verfasserIn] Manoj Shrivastava [verfasserIn] CM Parihar [verfasserIn] Jitendra Rajput [verfasserIn] Hari Krishna B [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Water Practice and Technology - IWA Publishing, 2021, 19(2024), 1, Seite 113-133 |
---|---|
Übergeordnetes Werk: |
volume:19 ; year:2024 ; number:1 ; pages:113-133 |
Links: |
---|
DOI / URN: |
10.2166/wpt.2023.231 |
---|
Katalog-ID: |
DOAJ093737149 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ093737149 | ||
003 | DE-627 | ||
005 | 20240413015809.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.2166/wpt.2023.231 |2 doi | |
035 | |a (DE-627)DOAJ093737149 | ||
035 | |a (DE-599)DOAJab35eaeb4a664b98a0b0638600022a69 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TD1-1066 | |
100 | 0 | |a Arockia Anusty J |e verfasserin |4 aut | |
245 | 1 | 0 | |a Trend detection and change point analysis of inflows in Karuppanadhi and Gundar dams of Chittar River Basin, Tamil Nadu, India |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Gaining insights into the patterns of hydroclimatic elements such as inflows to dams is essential to adeptly strategize and oversee water resource planning. For this study, we focused on Karuppanadhi and Gundar dams within the Chittar River Basin in Tamil Nadu. We employed various time series trend assessment methods – Mann–Kendall (MK), modified Mann–Kendall (MMK), Sen slope estimator, and innovative trend analysis (ITA). Furthermore, we conducted change point detection analysis using homogeneity tests, namely Pettitt's test, standard normal homogeneity test (SNHT), and Buishand test. The analysis was carried out across three-time scales: monthly, seasonal, and annual for 30 years (1991–2020) span. Results revealed declining trends significantly across all three timescales for the Karuppanadhi dam. Whereas for the Gundar dam, notable trends included increased patterns in January, March, December, and the winter season, while other months/seasons showed statistically decreasing trends. ITA exhibited greater sensitivity in identifying trends at monthly and seasonal scales, indicating its superior trend detection over MK and MMK methods. Change point analysis of trends identified a rising trend in August post-2017 for both dams. Other change points indicated decreasing inflow trends thereafter. Analysing trends and change points in dam inflows aid decisions on water resources management. HIGHLIGHTS Karuppanadhi and Gundar dams are in the non-perennial Chittar river basin.; Dam inflows, which in turn determine the outflows influence the crop choices of farmers in the dam command area.; Non-parametric trend tests, namely, MK, MMK, and ITA were used for trend assessment.; This study examines the trend presence, magnitude, and trend shifts in three-time scales (monthly, seasonal, and annual).; | ||
650 | 4 | |a gundar | |
650 | 4 | |a homogeneity test | |
650 | 4 | |a innovative trend analysis | |
650 | 4 | |a karuppanadhi | |
650 | 4 | |a trend analysis | |
653 | 0 | |a Environmental technology. Sanitary engineering | |
700 | 0 | |a Man Singh |e verfasserin |4 aut | |
700 | 0 | |a Manoj Khanna |e verfasserin |4 aut | |
700 | 0 | |a Prameela Krishnan |e verfasserin |4 aut | |
700 | 0 | |a Manoj Shrivastava |e verfasserin |4 aut | |
700 | 0 | |a CM Parihar |e verfasserin |4 aut | |
700 | 0 | |a Jitendra Rajput |e verfasserin |4 aut | |
700 | 0 | |a Hari Krishna B |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Water Practice and Technology |d IWA Publishing, 2021 |g 19(2024), 1, Seite 113-133 |w (DE-627)600307050 |w (DE-600)2495042-7 |x 1751231X |7 nnns |
773 | 1 | 8 | |g volume:19 |g year:2024 |g number:1 |g pages:113-133 |
856 | 4 | 0 | |u https://doi.org/10.2166/wpt.2023.231 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/ab35eaeb4a664b98a0b0638600022a69 |z kostenfrei |
856 | 4 | 0 | |u http://wpt.iwaponline.com/content/19/1/113 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1751-231X |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_4046 | ||
951 | |a AR | ||
952 | |d 19 |j 2024 |e 1 |h 113-133 |
author_variant |
a a j aaj m s ms m k mk p k pk m s ms c p cp j r jr h k b hkb |
---|---|
matchkey_str |
article:1751231X:2024----::rndtcinncagpitnlssfnlwikrpaahadudrasfht |
hierarchy_sort_str |
2024 |
callnumber-subject-code |
TD |
publishDate |
2024 |
allfields |
10.2166/wpt.2023.231 doi (DE-627)DOAJ093737149 (DE-599)DOAJab35eaeb4a664b98a0b0638600022a69 DE-627 ger DE-627 rakwb eng TD1-1066 Arockia Anusty J verfasserin aut Trend detection and change point analysis of inflows in Karuppanadhi and Gundar dams of Chittar River Basin, Tamil Nadu, India 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Gaining insights into the patterns of hydroclimatic elements such as inflows to dams is essential to adeptly strategize and oversee water resource planning. For this study, we focused on Karuppanadhi and Gundar dams within the Chittar River Basin in Tamil Nadu. We employed various time series trend assessment methods – Mann–Kendall (MK), modified Mann–Kendall (MMK), Sen slope estimator, and innovative trend analysis (ITA). Furthermore, we conducted change point detection analysis using homogeneity tests, namely Pettitt's test, standard normal homogeneity test (SNHT), and Buishand test. The analysis was carried out across three-time scales: monthly, seasonal, and annual for 30 years (1991–2020) span. Results revealed declining trends significantly across all three timescales for the Karuppanadhi dam. Whereas for the Gundar dam, notable trends included increased patterns in January, March, December, and the winter season, while other months/seasons showed statistically decreasing trends. ITA exhibited greater sensitivity in identifying trends at monthly and seasonal scales, indicating its superior trend detection over MK and MMK methods. Change point analysis of trends identified a rising trend in August post-2017 for both dams. Other change points indicated decreasing inflow trends thereafter. Analysing trends and change points in dam inflows aid decisions on water resources management. HIGHLIGHTS Karuppanadhi and Gundar dams are in the non-perennial Chittar river basin.; Dam inflows, which in turn determine the outflows influence the crop choices of farmers in the dam command area.; Non-parametric trend tests, namely, MK, MMK, and ITA were used for trend assessment.; This study examines the trend presence, magnitude, and trend shifts in three-time scales (monthly, seasonal, and annual).; gundar homogeneity test innovative trend analysis karuppanadhi trend analysis Environmental technology. Sanitary engineering Man Singh verfasserin aut Manoj Khanna verfasserin aut Prameela Krishnan verfasserin aut Manoj Shrivastava verfasserin aut CM Parihar verfasserin aut Jitendra Rajput verfasserin aut Hari Krishna B verfasserin aut In Water Practice and Technology IWA Publishing, 2021 19(2024), 1, Seite 113-133 (DE-627)600307050 (DE-600)2495042-7 1751231X nnns volume:19 year:2024 number:1 pages:113-133 https://doi.org/10.2166/wpt.2023.231 kostenfrei https://doaj.org/article/ab35eaeb4a664b98a0b0638600022a69 kostenfrei http://wpt.iwaponline.com/content/19/1/113 kostenfrei https://doaj.org/toc/1751-231X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_4046 AR 19 2024 1 113-133 |
spelling |
10.2166/wpt.2023.231 doi (DE-627)DOAJ093737149 (DE-599)DOAJab35eaeb4a664b98a0b0638600022a69 DE-627 ger DE-627 rakwb eng TD1-1066 Arockia Anusty J verfasserin aut Trend detection and change point analysis of inflows in Karuppanadhi and Gundar dams of Chittar River Basin, Tamil Nadu, India 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Gaining insights into the patterns of hydroclimatic elements such as inflows to dams is essential to adeptly strategize and oversee water resource planning. For this study, we focused on Karuppanadhi and Gundar dams within the Chittar River Basin in Tamil Nadu. We employed various time series trend assessment methods – Mann–Kendall (MK), modified Mann–Kendall (MMK), Sen slope estimator, and innovative trend analysis (ITA). Furthermore, we conducted change point detection analysis using homogeneity tests, namely Pettitt's test, standard normal homogeneity test (SNHT), and Buishand test. The analysis was carried out across three-time scales: monthly, seasonal, and annual for 30 years (1991–2020) span. Results revealed declining trends significantly across all three timescales for the Karuppanadhi dam. Whereas for the Gundar dam, notable trends included increased patterns in January, March, December, and the winter season, while other months/seasons showed statistically decreasing trends. ITA exhibited greater sensitivity in identifying trends at monthly and seasonal scales, indicating its superior trend detection over MK and MMK methods. Change point analysis of trends identified a rising trend in August post-2017 for both dams. Other change points indicated decreasing inflow trends thereafter. Analysing trends and change points in dam inflows aid decisions on water resources management. HIGHLIGHTS Karuppanadhi and Gundar dams are in the non-perennial Chittar river basin.; Dam inflows, which in turn determine the outflows influence the crop choices of farmers in the dam command area.; Non-parametric trend tests, namely, MK, MMK, and ITA were used for trend assessment.; This study examines the trend presence, magnitude, and trend shifts in three-time scales (monthly, seasonal, and annual).; gundar homogeneity test innovative trend analysis karuppanadhi trend analysis Environmental technology. Sanitary engineering Man Singh verfasserin aut Manoj Khanna verfasserin aut Prameela Krishnan verfasserin aut Manoj Shrivastava verfasserin aut CM Parihar verfasserin aut Jitendra Rajput verfasserin aut Hari Krishna B verfasserin aut In Water Practice and Technology IWA Publishing, 2021 19(2024), 1, Seite 113-133 (DE-627)600307050 (DE-600)2495042-7 1751231X nnns volume:19 year:2024 number:1 pages:113-133 https://doi.org/10.2166/wpt.2023.231 kostenfrei https://doaj.org/article/ab35eaeb4a664b98a0b0638600022a69 kostenfrei http://wpt.iwaponline.com/content/19/1/113 kostenfrei https://doaj.org/toc/1751-231X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_4046 AR 19 2024 1 113-133 |
allfields_unstemmed |
10.2166/wpt.2023.231 doi (DE-627)DOAJ093737149 (DE-599)DOAJab35eaeb4a664b98a0b0638600022a69 DE-627 ger DE-627 rakwb eng TD1-1066 Arockia Anusty J verfasserin aut Trend detection and change point analysis of inflows in Karuppanadhi and Gundar dams of Chittar River Basin, Tamil Nadu, India 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Gaining insights into the patterns of hydroclimatic elements such as inflows to dams is essential to adeptly strategize and oversee water resource planning. For this study, we focused on Karuppanadhi and Gundar dams within the Chittar River Basin in Tamil Nadu. We employed various time series trend assessment methods – Mann–Kendall (MK), modified Mann–Kendall (MMK), Sen slope estimator, and innovative trend analysis (ITA). Furthermore, we conducted change point detection analysis using homogeneity tests, namely Pettitt's test, standard normal homogeneity test (SNHT), and Buishand test. The analysis was carried out across three-time scales: monthly, seasonal, and annual for 30 years (1991–2020) span. Results revealed declining trends significantly across all three timescales for the Karuppanadhi dam. Whereas for the Gundar dam, notable trends included increased patterns in January, March, December, and the winter season, while other months/seasons showed statistically decreasing trends. ITA exhibited greater sensitivity in identifying trends at monthly and seasonal scales, indicating its superior trend detection over MK and MMK methods. Change point analysis of trends identified a rising trend in August post-2017 for both dams. Other change points indicated decreasing inflow trends thereafter. Analysing trends and change points in dam inflows aid decisions on water resources management. HIGHLIGHTS Karuppanadhi and Gundar dams are in the non-perennial Chittar river basin.; Dam inflows, which in turn determine the outflows influence the crop choices of farmers in the dam command area.; Non-parametric trend tests, namely, MK, MMK, and ITA were used for trend assessment.; This study examines the trend presence, magnitude, and trend shifts in three-time scales (monthly, seasonal, and annual).; gundar homogeneity test innovative trend analysis karuppanadhi trend analysis Environmental technology. Sanitary engineering Man Singh verfasserin aut Manoj Khanna verfasserin aut Prameela Krishnan verfasserin aut Manoj Shrivastava verfasserin aut CM Parihar verfasserin aut Jitendra Rajput verfasserin aut Hari Krishna B verfasserin aut In Water Practice and Technology IWA Publishing, 2021 19(2024), 1, Seite 113-133 (DE-627)600307050 (DE-600)2495042-7 1751231X nnns volume:19 year:2024 number:1 pages:113-133 https://doi.org/10.2166/wpt.2023.231 kostenfrei https://doaj.org/article/ab35eaeb4a664b98a0b0638600022a69 kostenfrei http://wpt.iwaponline.com/content/19/1/113 kostenfrei https://doaj.org/toc/1751-231X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_4046 AR 19 2024 1 113-133 |
allfieldsGer |
10.2166/wpt.2023.231 doi (DE-627)DOAJ093737149 (DE-599)DOAJab35eaeb4a664b98a0b0638600022a69 DE-627 ger DE-627 rakwb eng TD1-1066 Arockia Anusty J verfasserin aut Trend detection and change point analysis of inflows in Karuppanadhi and Gundar dams of Chittar River Basin, Tamil Nadu, India 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Gaining insights into the patterns of hydroclimatic elements such as inflows to dams is essential to adeptly strategize and oversee water resource planning. For this study, we focused on Karuppanadhi and Gundar dams within the Chittar River Basin in Tamil Nadu. We employed various time series trend assessment methods – Mann–Kendall (MK), modified Mann–Kendall (MMK), Sen slope estimator, and innovative trend analysis (ITA). Furthermore, we conducted change point detection analysis using homogeneity tests, namely Pettitt's test, standard normal homogeneity test (SNHT), and Buishand test. The analysis was carried out across three-time scales: monthly, seasonal, and annual for 30 years (1991–2020) span. Results revealed declining trends significantly across all three timescales for the Karuppanadhi dam. Whereas for the Gundar dam, notable trends included increased patterns in January, March, December, and the winter season, while other months/seasons showed statistically decreasing trends. ITA exhibited greater sensitivity in identifying trends at monthly and seasonal scales, indicating its superior trend detection over MK and MMK methods. Change point analysis of trends identified a rising trend in August post-2017 for both dams. Other change points indicated decreasing inflow trends thereafter. Analysing trends and change points in dam inflows aid decisions on water resources management. HIGHLIGHTS Karuppanadhi and Gundar dams are in the non-perennial Chittar river basin.; Dam inflows, which in turn determine the outflows influence the crop choices of farmers in the dam command area.; Non-parametric trend tests, namely, MK, MMK, and ITA were used for trend assessment.; This study examines the trend presence, magnitude, and trend shifts in three-time scales (monthly, seasonal, and annual).; gundar homogeneity test innovative trend analysis karuppanadhi trend analysis Environmental technology. Sanitary engineering Man Singh verfasserin aut Manoj Khanna verfasserin aut Prameela Krishnan verfasserin aut Manoj Shrivastava verfasserin aut CM Parihar verfasserin aut Jitendra Rajput verfasserin aut Hari Krishna B verfasserin aut In Water Practice and Technology IWA Publishing, 2021 19(2024), 1, Seite 113-133 (DE-627)600307050 (DE-600)2495042-7 1751231X nnns volume:19 year:2024 number:1 pages:113-133 https://doi.org/10.2166/wpt.2023.231 kostenfrei https://doaj.org/article/ab35eaeb4a664b98a0b0638600022a69 kostenfrei http://wpt.iwaponline.com/content/19/1/113 kostenfrei https://doaj.org/toc/1751-231X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_4046 AR 19 2024 1 113-133 |
allfieldsSound |
10.2166/wpt.2023.231 doi (DE-627)DOAJ093737149 (DE-599)DOAJab35eaeb4a664b98a0b0638600022a69 DE-627 ger DE-627 rakwb eng TD1-1066 Arockia Anusty J verfasserin aut Trend detection and change point analysis of inflows in Karuppanadhi and Gundar dams of Chittar River Basin, Tamil Nadu, India 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Gaining insights into the patterns of hydroclimatic elements such as inflows to dams is essential to adeptly strategize and oversee water resource planning. For this study, we focused on Karuppanadhi and Gundar dams within the Chittar River Basin in Tamil Nadu. We employed various time series trend assessment methods – Mann–Kendall (MK), modified Mann–Kendall (MMK), Sen slope estimator, and innovative trend analysis (ITA). Furthermore, we conducted change point detection analysis using homogeneity tests, namely Pettitt's test, standard normal homogeneity test (SNHT), and Buishand test. The analysis was carried out across three-time scales: monthly, seasonal, and annual for 30 years (1991–2020) span. Results revealed declining trends significantly across all three timescales for the Karuppanadhi dam. Whereas for the Gundar dam, notable trends included increased patterns in January, March, December, and the winter season, while other months/seasons showed statistically decreasing trends. ITA exhibited greater sensitivity in identifying trends at monthly and seasonal scales, indicating its superior trend detection over MK and MMK methods. Change point analysis of trends identified a rising trend in August post-2017 for both dams. Other change points indicated decreasing inflow trends thereafter. Analysing trends and change points in dam inflows aid decisions on water resources management. HIGHLIGHTS Karuppanadhi and Gundar dams are in the non-perennial Chittar river basin.; Dam inflows, which in turn determine the outflows influence the crop choices of farmers in the dam command area.; Non-parametric trend tests, namely, MK, MMK, and ITA were used for trend assessment.; This study examines the trend presence, magnitude, and trend shifts in three-time scales (monthly, seasonal, and annual).; gundar homogeneity test innovative trend analysis karuppanadhi trend analysis Environmental technology. Sanitary engineering Man Singh verfasserin aut Manoj Khanna verfasserin aut Prameela Krishnan verfasserin aut Manoj Shrivastava verfasserin aut CM Parihar verfasserin aut Jitendra Rajput verfasserin aut Hari Krishna B verfasserin aut In Water Practice and Technology IWA Publishing, 2021 19(2024), 1, Seite 113-133 (DE-627)600307050 (DE-600)2495042-7 1751231X nnns volume:19 year:2024 number:1 pages:113-133 https://doi.org/10.2166/wpt.2023.231 kostenfrei https://doaj.org/article/ab35eaeb4a664b98a0b0638600022a69 kostenfrei http://wpt.iwaponline.com/content/19/1/113 kostenfrei https://doaj.org/toc/1751-231X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_4046 AR 19 2024 1 113-133 |
language |
English |
source |
In Water Practice and Technology 19(2024), 1, Seite 113-133 volume:19 year:2024 number:1 pages:113-133 |
sourceStr |
In Water Practice and Technology 19(2024), 1, Seite 113-133 volume:19 year:2024 number:1 pages:113-133 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
gundar homogeneity test innovative trend analysis karuppanadhi trend analysis Environmental technology. Sanitary engineering |
isfreeaccess_bool |
true |
container_title |
Water Practice and Technology |
authorswithroles_txt_mv |
Arockia Anusty J @@aut@@ Man Singh @@aut@@ Manoj Khanna @@aut@@ Prameela Krishnan @@aut@@ Manoj Shrivastava @@aut@@ CM Parihar @@aut@@ Jitendra Rajput @@aut@@ Hari Krishna B @@aut@@ |
publishDateDaySort_date |
2024-01-01T00:00:00Z |
hierarchy_top_id |
600307050 |
id |
DOAJ093737149 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ093737149</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413015809.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.2166/wpt.2023.231</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ093737149</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJab35eaeb4a664b98a0b0638600022a69</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TD1-1066</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Arockia Anusty J</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Trend detection and change point analysis of inflows in Karuppanadhi and Gundar dams of Chittar River Basin, Tamil Nadu, India</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Gaining insights into the patterns of hydroclimatic elements such as inflows to dams is essential to adeptly strategize and oversee water resource planning. For this study, we focused on Karuppanadhi and Gundar dams within the Chittar River Basin in Tamil Nadu. We employed various time series trend assessment methods – Mann–Kendall (MK), modified Mann–Kendall (MMK), Sen slope estimator, and innovative trend analysis (ITA). Furthermore, we conducted change point detection analysis using homogeneity tests, namely Pettitt's test, standard normal homogeneity test (SNHT), and Buishand test. The analysis was carried out across three-time scales: monthly, seasonal, and annual for 30 years (1991–2020) span. Results revealed declining trends significantly across all three timescales for the Karuppanadhi dam. Whereas for the Gundar dam, notable trends included increased patterns in January, March, December, and the winter season, while other months/seasons showed statistically decreasing trends. ITA exhibited greater sensitivity in identifying trends at monthly and seasonal scales, indicating its superior trend detection over MK and MMK methods. Change point analysis of trends identified a rising trend in August post-2017 for both dams. Other change points indicated decreasing inflow trends thereafter. Analysing trends and change points in dam inflows aid decisions on water resources management. HIGHLIGHTS Karuppanadhi and Gundar dams are in the non-perennial Chittar river basin.; Dam inflows, which in turn determine the outflows influence the crop choices of farmers in the dam command area.; Non-parametric trend tests, namely, MK, MMK, and ITA were used for trend assessment.; This study examines the trend presence, magnitude, and trend shifts in three-time scales (monthly, seasonal, and annual).;</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">gundar</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">homogeneity test</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">innovative trend analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">karuppanadhi</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">trend analysis</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental technology. Sanitary engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Man Singh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Manoj Khanna</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Prameela Krishnan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Manoj Shrivastava</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">CM Parihar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jitendra Rajput</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hari Krishna B</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Water Practice and Technology</subfield><subfield code="d">IWA Publishing, 2021</subfield><subfield code="g">19(2024), 1, Seite 113-133</subfield><subfield code="w">(DE-627)600307050</subfield><subfield code="w">(DE-600)2495042-7</subfield><subfield code="x">1751231X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:19</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:113-133</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.2166/wpt.2023.231</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/ab35eaeb4a664b98a0b0638600022a69</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://wpt.iwaponline.com/content/19/1/113</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1751-231X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">19</subfield><subfield code="j">2024</subfield><subfield code="e">1</subfield><subfield code="h">113-133</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Arockia Anusty J |
spellingShingle |
Arockia Anusty J misc TD1-1066 misc gundar misc homogeneity test misc innovative trend analysis misc karuppanadhi misc trend analysis misc Environmental technology. Sanitary engineering Trend detection and change point analysis of inflows in Karuppanadhi and Gundar dams of Chittar River Basin, Tamil Nadu, India |
authorStr |
Arockia Anusty J |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)600307050 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TD1-1066 |
illustrated |
Not Illustrated |
issn |
1751231X |
topic_title |
TD1-1066 Trend detection and change point analysis of inflows in Karuppanadhi and Gundar dams of Chittar River Basin, Tamil Nadu, India gundar homogeneity test innovative trend analysis karuppanadhi trend analysis |
topic |
misc TD1-1066 misc gundar misc homogeneity test misc innovative trend analysis misc karuppanadhi misc trend analysis misc Environmental technology. Sanitary engineering |
topic_unstemmed |
misc TD1-1066 misc gundar misc homogeneity test misc innovative trend analysis misc karuppanadhi misc trend analysis misc Environmental technology. Sanitary engineering |
topic_browse |
misc TD1-1066 misc gundar misc homogeneity test misc innovative trend analysis misc karuppanadhi misc trend analysis misc Environmental technology. Sanitary engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Water Practice and Technology |
hierarchy_parent_id |
600307050 |
hierarchy_top_title |
Water Practice and Technology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)600307050 (DE-600)2495042-7 |
title |
Trend detection and change point analysis of inflows in Karuppanadhi and Gundar dams of Chittar River Basin, Tamil Nadu, India |
ctrlnum |
(DE-627)DOAJ093737149 (DE-599)DOAJab35eaeb4a664b98a0b0638600022a69 |
title_full |
Trend detection and change point analysis of inflows in Karuppanadhi and Gundar dams of Chittar River Basin, Tamil Nadu, India |
author_sort |
Arockia Anusty J |
journal |
Water Practice and Technology |
journalStr |
Water Practice and Technology |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
container_start_page |
113 |
author_browse |
Arockia Anusty J Man Singh Manoj Khanna Prameela Krishnan Manoj Shrivastava CM Parihar Jitendra Rajput Hari Krishna B |
container_volume |
19 |
class |
TD1-1066 |
format_se |
Elektronische Aufsätze |
author-letter |
Arockia Anusty J |
doi_str_mv |
10.2166/wpt.2023.231 |
author2-role |
verfasserin |
title_sort |
trend detection and change point analysis of inflows in karuppanadhi and gundar dams of chittar river basin, tamil nadu, india |
callnumber |
TD1-1066 |
title_auth |
Trend detection and change point analysis of inflows in Karuppanadhi and Gundar dams of Chittar River Basin, Tamil Nadu, India |
abstract |
Gaining insights into the patterns of hydroclimatic elements such as inflows to dams is essential to adeptly strategize and oversee water resource planning. For this study, we focused on Karuppanadhi and Gundar dams within the Chittar River Basin in Tamil Nadu. We employed various time series trend assessment methods – Mann–Kendall (MK), modified Mann–Kendall (MMK), Sen slope estimator, and innovative trend analysis (ITA). Furthermore, we conducted change point detection analysis using homogeneity tests, namely Pettitt's test, standard normal homogeneity test (SNHT), and Buishand test. The analysis was carried out across three-time scales: monthly, seasonal, and annual for 30 years (1991–2020) span. Results revealed declining trends significantly across all three timescales for the Karuppanadhi dam. Whereas for the Gundar dam, notable trends included increased patterns in January, March, December, and the winter season, while other months/seasons showed statistically decreasing trends. ITA exhibited greater sensitivity in identifying trends at monthly and seasonal scales, indicating its superior trend detection over MK and MMK methods. Change point analysis of trends identified a rising trend in August post-2017 for both dams. Other change points indicated decreasing inflow trends thereafter. Analysing trends and change points in dam inflows aid decisions on water resources management. HIGHLIGHTS Karuppanadhi and Gundar dams are in the non-perennial Chittar river basin.; Dam inflows, which in turn determine the outflows influence the crop choices of farmers in the dam command area.; Non-parametric trend tests, namely, MK, MMK, and ITA were used for trend assessment.; This study examines the trend presence, magnitude, and trend shifts in three-time scales (monthly, seasonal, and annual).; |
abstractGer |
Gaining insights into the patterns of hydroclimatic elements such as inflows to dams is essential to adeptly strategize and oversee water resource planning. For this study, we focused on Karuppanadhi and Gundar dams within the Chittar River Basin in Tamil Nadu. We employed various time series trend assessment methods – Mann–Kendall (MK), modified Mann–Kendall (MMK), Sen slope estimator, and innovative trend analysis (ITA). Furthermore, we conducted change point detection analysis using homogeneity tests, namely Pettitt's test, standard normal homogeneity test (SNHT), and Buishand test. The analysis was carried out across three-time scales: monthly, seasonal, and annual for 30 years (1991–2020) span. Results revealed declining trends significantly across all three timescales for the Karuppanadhi dam. Whereas for the Gundar dam, notable trends included increased patterns in January, March, December, and the winter season, while other months/seasons showed statistically decreasing trends. ITA exhibited greater sensitivity in identifying trends at monthly and seasonal scales, indicating its superior trend detection over MK and MMK methods. Change point analysis of trends identified a rising trend in August post-2017 for both dams. Other change points indicated decreasing inflow trends thereafter. Analysing trends and change points in dam inflows aid decisions on water resources management. HIGHLIGHTS Karuppanadhi and Gundar dams are in the non-perennial Chittar river basin.; Dam inflows, which in turn determine the outflows influence the crop choices of farmers in the dam command area.; Non-parametric trend tests, namely, MK, MMK, and ITA were used for trend assessment.; This study examines the trend presence, magnitude, and trend shifts in three-time scales (monthly, seasonal, and annual).; |
abstract_unstemmed |
Gaining insights into the patterns of hydroclimatic elements such as inflows to dams is essential to adeptly strategize and oversee water resource planning. For this study, we focused on Karuppanadhi and Gundar dams within the Chittar River Basin in Tamil Nadu. We employed various time series trend assessment methods – Mann–Kendall (MK), modified Mann–Kendall (MMK), Sen slope estimator, and innovative trend analysis (ITA). Furthermore, we conducted change point detection analysis using homogeneity tests, namely Pettitt's test, standard normal homogeneity test (SNHT), and Buishand test. The analysis was carried out across three-time scales: monthly, seasonal, and annual for 30 years (1991–2020) span. Results revealed declining trends significantly across all three timescales for the Karuppanadhi dam. Whereas for the Gundar dam, notable trends included increased patterns in January, March, December, and the winter season, while other months/seasons showed statistically decreasing trends. ITA exhibited greater sensitivity in identifying trends at monthly and seasonal scales, indicating its superior trend detection over MK and MMK methods. Change point analysis of trends identified a rising trend in August post-2017 for both dams. Other change points indicated decreasing inflow trends thereafter. Analysing trends and change points in dam inflows aid decisions on water resources management. HIGHLIGHTS Karuppanadhi and Gundar dams are in the non-perennial Chittar river basin.; Dam inflows, which in turn determine the outflows influence the crop choices of farmers in the dam command area.; Non-parametric trend tests, namely, MK, MMK, and ITA were used for trend assessment.; This study examines the trend presence, magnitude, and trend shifts in three-time scales (monthly, seasonal, and annual).; |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_4046 |
container_issue |
1 |
title_short |
Trend detection and change point analysis of inflows in Karuppanadhi and Gundar dams of Chittar River Basin, Tamil Nadu, India |
url |
https://doi.org/10.2166/wpt.2023.231 https://doaj.org/article/ab35eaeb4a664b98a0b0638600022a69 http://wpt.iwaponline.com/content/19/1/113 https://doaj.org/toc/1751-231X |
remote_bool |
true |
author2 |
Man Singh Manoj Khanna Prameela Krishnan Manoj Shrivastava CM Parihar Jitendra Rajput Hari Krishna B |
author2Str |
Man Singh Manoj Khanna Prameela Krishnan Manoj Shrivastava CM Parihar Jitendra Rajput Hari Krishna B |
ppnlink |
600307050 |
callnumber-subject |
TD - Environmental Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.2166/wpt.2023.231 |
callnumber-a |
TD1-1066 |
up_date |
2024-07-03T19:07:16.982Z |
_version_ |
1803585990933086208 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ093737149</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413015809.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.2166/wpt.2023.231</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ093737149</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJab35eaeb4a664b98a0b0638600022a69</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TD1-1066</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Arockia Anusty J</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Trend detection and change point analysis of inflows in Karuppanadhi and Gundar dams of Chittar River Basin, Tamil Nadu, India</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Gaining insights into the patterns of hydroclimatic elements such as inflows to dams is essential to adeptly strategize and oversee water resource planning. For this study, we focused on Karuppanadhi and Gundar dams within the Chittar River Basin in Tamil Nadu. We employed various time series trend assessment methods – Mann–Kendall (MK), modified Mann–Kendall (MMK), Sen slope estimator, and innovative trend analysis (ITA). Furthermore, we conducted change point detection analysis using homogeneity tests, namely Pettitt's test, standard normal homogeneity test (SNHT), and Buishand test. The analysis was carried out across three-time scales: monthly, seasonal, and annual for 30 years (1991–2020) span. Results revealed declining trends significantly across all three timescales for the Karuppanadhi dam. Whereas for the Gundar dam, notable trends included increased patterns in January, March, December, and the winter season, while other months/seasons showed statistically decreasing trends. ITA exhibited greater sensitivity in identifying trends at monthly and seasonal scales, indicating its superior trend detection over MK and MMK methods. Change point analysis of trends identified a rising trend in August post-2017 for both dams. Other change points indicated decreasing inflow trends thereafter. Analysing trends and change points in dam inflows aid decisions on water resources management. HIGHLIGHTS Karuppanadhi and Gundar dams are in the non-perennial Chittar river basin.; Dam inflows, which in turn determine the outflows influence the crop choices of farmers in the dam command area.; Non-parametric trend tests, namely, MK, MMK, and ITA were used for trend assessment.; This study examines the trend presence, magnitude, and trend shifts in three-time scales (monthly, seasonal, and annual).;</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">gundar</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">homogeneity test</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">innovative trend analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">karuppanadhi</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">trend analysis</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental technology. Sanitary engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Man Singh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Manoj Khanna</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Prameela Krishnan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Manoj Shrivastava</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">CM Parihar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jitendra Rajput</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hari Krishna B</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Water Practice and Technology</subfield><subfield code="d">IWA Publishing, 2021</subfield><subfield code="g">19(2024), 1, Seite 113-133</subfield><subfield code="w">(DE-627)600307050</subfield><subfield code="w">(DE-600)2495042-7</subfield><subfield code="x">1751231X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:19</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:113-133</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.2166/wpt.2023.231</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/ab35eaeb4a664b98a0b0638600022a69</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://wpt.iwaponline.com/content/19/1/113</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1751-231X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">19</subfield><subfield code="j">2024</subfield><subfield code="e">1</subfield><subfield code="h">113-133</subfield></datafield></record></collection>
|
score |
7.401374 |