A Novel <i<KCNN2</i< Variant in a Family with Essential Tremor Plus: Clinical Characteristics and In Silico Analysis
Background: Essential tremor (ET) is one of the more common movement disorders. Current diagnosis is solely based on clinical findings. ET appears to be inherited in an autosomal dominant pattern. Several loci on specific chromosomes have been studied by linkage analysis, but the causes of essential...
Ausführliche Beschreibung
Autor*in: |
Maria d’Apolito [verfasserIn] Caterina Ceccarini [verfasserIn] Rosa Savino [verfasserIn] Iolanda Adipietro [verfasserIn] Ighli di Bari [verfasserIn] Rosa Santacroce [verfasserIn] Maria Curcetti [verfasserIn] Giovanna D’Andrea [verfasserIn] Anna-Irma Croce [verfasserIn] Carla Cesarano [verfasserIn] Anna Nunzia Polito [verfasserIn] Maurizio Margaglione [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Genes - MDPI AG, 2010, 14(2023), 7, p 1380 |
---|---|
Übergeordnetes Werk: |
volume:14 ; year:2023 ; number:7, p 1380 |
Links: |
---|
DOI / URN: |
10.3390/genes14071380 |
---|
Katalog-ID: |
DOAJ093898622 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ093898622 | ||
003 | DE-627 | ||
005 | 20240413022414.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/genes14071380 |2 doi | |
035 | |a (DE-627)DOAJ093898622 | ||
035 | |a (DE-599)DOAJca3cee81ab2f42f2862aecee71f64c56 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QH426-470 | |
100 | 0 | |a Maria d’Apolito |e verfasserin |4 aut | |
245 | 1 | 2 | |a A Novel <i<KCNN2</i< Variant in a Family with Essential Tremor Plus: Clinical Characteristics and In Silico Analysis |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Background: Essential tremor (ET) is one of the more common movement disorders. Current diagnosis is solely based on clinical findings. ET appears to be inherited in an autosomal dominant pattern. Several loci on specific chromosomes have been studied by linkage analysis, but the causes of essential tremor are still unknown in many patients. Genetic studies described the association of several genes with familial ET. However, they were found only in distinct families, suggesting that some can be private pathogenic variants. Aim of the Study: to characterize the phenotype of an Italian family with ET and identify the genetic variant associated. Methods: Clinical and genetic examinations were performed. Genetic testing was done with whole-exome sequencing (WES) using the Illumina platform. Bidirectional capillary Sanger sequencing was used to investigate the presence of variant in all affected members of the family. In silico prediction of pathogenicity was used to study the effect of gene variants on protein structure. Results: The proband was a 15-year-old boy. The patient was the first of two children of a non-consanguineous couple. Family history was remarkable for tremor in the mother line. His mother suffered from bilateral upper extremity kinetic tremors (since she was 20 years old), anxiety, and depression. Other relatives referred bilateral upper extremity tremors. In the index case, WES analysis performed supposing a dominant mode of inheritance, identified a novel heterozygous missense variant in potassium calcium-activated channel subfamily N member 2 (<i<KCNN2</i<) (NM_021614.3: c.1145G<A, p.Gly382Asp). In the pedigree investigation, all carriers of the gene variant had ET and showed variable expressivity, the elder symptomatic relative showing cognitive impairment and hallucinations in the last decade, in addition to tremor since a young age. The amino acid residue #382 is located in a transmembrane region and in silico analysis suggested a causative role for the variant. Modelling of the mutant protein structure showed that the variant causes a clash in the protein structure. Therefore, the variant could cause a conformational change that alters the ability of the protein in the modulation of ion channels Conclusions: The <i<KCNN2</i< gene variant identified could be associated with ET. The variant could modify a voltage-independent potassium channel activated by intracellular calcium. | ||
650 | 4 | |a gene | |
650 | 4 | |a <i<KCNN2</i< | |
650 | 4 | |a SK2 channel | |
650 | 4 | |a developmental delay | |
650 | 4 | |a essential tremor | |
653 | 0 | |a Genetics | |
700 | 0 | |a Caterina Ceccarini |e verfasserin |4 aut | |
700 | 0 | |a Rosa Savino |e verfasserin |4 aut | |
700 | 0 | |a Iolanda Adipietro |e verfasserin |4 aut | |
700 | 0 | |a Ighli di Bari |e verfasserin |4 aut | |
700 | 0 | |a Rosa Santacroce |e verfasserin |4 aut | |
700 | 0 | |a Maria Curcetti |e verfasserin |4 aut | |
700 | 0 | |a Giovanna D’Andrea |e verfasserin |4 aut | |
700 | 0 | |a Anna-Irma Croce |e verfasserin |4 aut | |
700 | 0 | |a Carla Cesarano |e verfasserin |4 aut | |
700 | 0 | |a Anna Nunzia Polito |e verfasserin |4 aut | |
700 | 0 | |a Maurizio Margaglione |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Genes |d MDPI AG, 2010 |g 14(2023), 7, p 1380 |w (DE-627)614096537 |w (DE-600)2527218-4 |x 20734425 |7 nnns |
773 | 1 | 8 | |g volume:14 |g year:2023 |g number:7, p 1380 |
856 | 4 | 0 | |u https://doi.org/10.3390/genes14071380 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/ca3cee81ab2f42f2862aecee71f64c56 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2073-4425/14/7/1380 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2073-4425 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 14 |j 2023 |e 7, p 1380 |
author_variant |
m d md c c cc r s rs i a ia i d b idb r s rs m c mc g d gd a i c aic c c cc a n p anp m m mm |
---|---|
matchkey_str |
article:20734425:2023----::nvlkn2vratnfmlwtesnilrmrlslnclhrce |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
QH |
publishDate |
2023 |
allfields |
10.3390/genes14071380 doi (DE-627)DOAJ093898622 (DE-599)DOAJca3cee81ab2f42f2862aecee71f64c56 DE-627 ger DE-627 rakwb eng QH426-470 Maria d’Apolito verfasserin aut A Novel <i<KCNN2</i< Variant in a Family with Essential Tremor Plus: Clinical Characteristics and In Silico Analysis 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background: Essential tremor (ET) is one of the more common movement disorders. Current diagnosis is solely based on clinical findings. ET appears to be inherited in an autosomal dominant pattern. Several loci on specific chromosomes have been studied by linkage analysis, but the causes of essential tremor are still unknown in many patients. Genetic studies described the association of several genes with familial ET. However, they were found only in distinct families, suggesting that some can be private pathogenic variants. Aim of the Study: to characterize the phenotype of an Italian family with ET and identify the genetic variant associated. Methods: Clinical and genetic examinations were performed. Genetic testing was done with whole-exome sequencing (WES) using the Illumina platform. Bidirectional capillary Sanger sequencing was used to investigate the presence of variant in all affected members of the family. In silico prediction of pathogenicity was used to study the effect of gene variants on protein structure. Results: The proband was a 15-year-old boy. The patient was the first of two children of a non-consanguineous couple. Family history was remarkable for tremor in the mother line. His mother suffered from bilateral upper extremity kinetic tremors (since she was 20 years old), anxiety, and depression. Other relatives referred bilateral upper extremity tremors. In the index case, WES analysis performed supposing a dominant mode of inheritance, identified a novel heterozygous missense variant in potassium calcium-activated channel subfamily N member 2 (<i<KCNN2</i<) (NM_021614.3: c.1145G<A, p.Gly382Asp). In the pedigree investigation, all carriers of the gene variant had ET and showed variable expressivity, the elder symptomatic relative showing cognitive impairment and hallucinations in the last decade, in addition to tremor since a young age. The amino acid residue #382 is located in a transmembrane region and in silico analysis suggested a causative role for the variant. Modelling of the mutant protein structure showed that the variant causes a clash in the protein structure. Therefore, the variant could cause a conformational change that alters the ability of the protein in the modulation of ion channels Conclusions: The <i<KCNN2</i< gene variant identified could be associated with ET. The variant could modify a voltage-independent potassium channel activated by intracellular calcium. gene <i<KCNN2</i< SK2 channel developmental delay essential tremor Genetics Caterina Ceccarini verfasserin aut Rosa Savino verfasserin aut Iolanda Adipietro verfasserin aut Ighli di Bari verfasserin aut Rosa Santacroce verfasserin aut Maria Curcetti verfasserin aut Giovanna D’Andrea verfasserin aut Anna-Irma Croce verfasserin aut Carla Cesarano verfasserin aut Anna Nunzia Polito verfasserin aut Maurizio Margaglione verfasserin aut In Genes MDPI AG, 2010 14(2023), 7, p 1380 (DE-627)614096537 (DE-600)2527218-4 20734425 nnns volume:14 year:2023 number:7, p 1380 https://doi.org/10.3390/genes14071380 kostenfrei https://doaj.org/article/ca3cee81ab2f42f2862aecee71f64c56 kostenfrei https://www.mdpi.com/2073-4425/14/7/1380 kostenfrei https://doaj.org/toc/2073-4425 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2023 7, p 1380 |
spelling |
10.3390/genes14071380 doi (DE-627)DOAJ093898622 (DE-599)DOAJca3cee81ab2f42f2862aecee71f64c56 DE-627 ger DE-627 rakwb eng QH426-470 Maria d’Apolito verfasserin aut A Novel <i<KCNN2</i< Variant in a Family with Essential Tremor Plus: Clinical Characteristics and In Silico Analysis 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background: Essential tremor (ET) is one of the more common movement disorders. Current diagnosis is solely based on clinical findings. ET appears to be inherited in an autosomal dominant pattern. Several loci on specific chromosomes have been studied by linkage analysis, but the causes of essential tremor are still unknown in many patients. Genetic studies described the association of several genes with familial ET. However, they were found only in distinct families, suggesting that some can be private pathogenic variants. Aim of the Study: to characterize the phenotype of an Italian family with ET and identify the genetic variant associated. Methods: Clinical and genetic examinations were performed. Genetic testing was done with whole-exome sequencing (WES) using the Illumina platform. Bidirectional capillary Sanger sequencing was used to investigate the presence of variant in all affected members of the family. In silico prediction of pathogenicity was used to study the effect of gene variants on protein structure. Results: The proband was a 15-year-old boy. The patient was the first of two children of a non-consanguineous couple. Family history was remarkable for tremor in the mother line. His mother suffered from bilateral upper extremity kinetic tremors (since she was 20 years old), anxiety, and depression. Other relatives referred bilateral upper extremity tremors. In the index case, WES analysis performed supposing a dominant mode of inheritance, identified a novel heterozygous missense variant in potassium calcium-activated channel subfamily N member 2 (<i<KCNN2</i<) (NM_021614.3: c.1145G<A, p.Gly382Asp). In the pedigree investigation, all carriers of the gene variant had ET and showed variable expressivity, the elder symptomatic relative showing cognitive impairment and hallucinations in the last decade, in addition to tremor since a young age. The amino acid residue #382 is located in a transmembrane region and in silico analysis suggested a causative role for the variant. Modelling of the mutant protein structure showed that the variant causes a clash in the protein structure. Therefore, the variant could cause a conformational change that alters the ability of the protein in the modulation of ion channels Conclusions: The <i<KCNN2</i< gene variant identified could be associated with ET. The variant could modify a voltage-independent potassium channel activated by intracellular calcium. gene <i<KCNN2</i< SK2 channel developmental delay essential tremor Genetics Caterina Ceccarini verfasserin aut Rosa Savino verfasserin aut Iolanda Adipietro verfasserin aut Ighli di Bari verfasserin aut Rosa Santacroce verfasserin aut Maria Curcetti verfasserin aut Giovanna D’Andrea verfasserin aut Anna-Irma Croce verfasserin aut Carla Cesarano verfasserin aut Anna Nunzia Polito verfasserin aut Maurizio Margaglione verfasserin aut In Genes MDPI AG, 2010 14(2023), 7, p 1380 (DE-627)614096537 (DE-600)2527218-4 20734425 nnns volume:14 year:2023 number:7, p 1380 https://doi.org/10.3390/genes14071380 kostenfrei https://doaj.org/article/ca3cee81ab2f42f2862aecee71f64c56 kostenfrei https://www.mdpi.com/2073-4425/14/7/1380 kostenfrei https://doaj.org/toc/2073-4425 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2023 7, p 1380 |
allfields_unstemmed |
10.3390/genes14071380 doi (DE-627)DOAJ093898622 (DE-599)DOAJca3cee81ab2f42f2862aecee71f64c56 DE-627 ger DE-627 rakwb eng QH426-470 Maria d’Apolito verfasserin aut A Novel <i<KCNN2</i< Variant in a Family with Essential Tremor Plus: Clinical Characteristics and In Silico Analysis 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background: Essential tremor (ET) is one of the more common movement disorders. Current diagnosis is solely based on clinical findings. ET appears to be inherited in an autosomal dominant pattern. Several loci on specific chromosomes have been studied by linkage analysis, but the causes of essential tremor are still unknown in many patients. Genetic studies described the association of several genes with familial ET. However, they were found only in distinct families, suggesting that some can be private pathogenic variants. Aim of the Study: to characterize the phenotype of an Italian family with ET and identify the genetic variant associated. Methods: Clinical and genetic examinations were performed. Genetic testing was done with whole-exome sequencing (WES) using the Illumina platform. Bidirectional capillary Sanger sequencing was used to investigate the presence of variant in all affected members of the family. In silico prediction of pathogenicity was used to study the effect of gene variants on protein structure. Results: The proband was a 15-year-old boy. The patient was the first of two children of a non-consanguineous couple. Family history was remarkable for tremor in the mother line. His mother suffered from bilateral upper extremity kinetic tremors (since she was 20 years old), anxiety, and depression. Other relatives referred bilateral upper extremity tremors. In the index case, WES analysis performed supposing a dominant mode of inheritance, identified a novel heterozygous missense variant in potassium calcium-activated channel subfamily N member 2 (<i<KCNN2</i<) (NM_021614.3: c.1145G<A, p.Gly382Asp). In the pedigree investigation, all carriers of the gene variant had ET and showed variable expressivity, the elder symptomatic relative showing cognitive impairment and hallucinations in the last decade, in addition to tremor since a young age. The amino acid residue #382 is located in a transmembrane region and in silico analysis suggested a causative role for the variant. Modelling of the mutant protein structure showed that the variant causes a clash in the protein structure. Therefore, the variant could cause a conformational change that alters the ability of the protein in the modulation of ion channels Conclusions: The <i<KCNN2</i< gene variant identified could be associated with ET. The variant could modify a voltage-independent potassium channel activated by intracellular calcium. gene <i<KCNN2</i< SK2 channel developmental delay essential tremor Genetics Caterina Ceccarini verfasserin aut Rosa Savino verfasserin aut Iolanda Adipietro verfasserin aut Ighli di Bari verfasserin aut Rosa Santacroce verfasserin aut Maria Curcetti verfasserin aut Giovanna D’Andrea verfasserin aut Anna-Irma Croce verfasserin aut Carla Cesarano verfasserin aut Anna Nunzia Polito verfasserin aut Maurizio Margaglione verfasserin aut In Genes MDPI AG, 2010 14(2023), 7, p 1380 (DE-627)614096537 (DE-600)2527218-4 20734425 nnns volume:14 year:2023 number:7, p 1380 https://doi.org/10.3390/genes14071380 kostenfrei https://doaj.org/article/ca3cee81ab2f42f2862aecee71f64c56 kostenfrei https://www.mdpi.com/2073-4425/14/7/1380 kostenfrei https://doaj.org/toc/2073-4425 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2023 7, p 1380 |
allfieldsGer |
10.3390/genes14071380 doi (DE-627)DOAJ093898622 (DE-599)DOAJca3cee81ab2f42f2862aecee71f64c56 DE-627 ger DE-627 rakwb eng QH426-470 Maria d’Apolito verfasserin aut A Novel <i<KCNN2</i< Variant in a Family with Essential Tremor Plus: Clinical Characteristics and In Silico Analysis 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background: Essential tremor (ET) is one of the more common movement disorders. Current diagnosis is solely based on clinical findings. ET appears to be inherited in an autosomal dominant pattern. Several loci on specific chromosomes have been studied by linkage analysis, but the causes of essential tremor are still unknown in many patients. Genetic studies described the association of several genes with familial ET. However, they were found only in distinct families, suggesting that some can be private pathogenic variants. Aim of the Study: to characterize the phenotype of an Italian family with ET and identify the genetic variant associated. Methods: Clinical and genetic examinations were performed. Genetic testing was done with whole-exome sequencing (WES) using the Illumina platform. Bidirectional capillary Sanger sequencing was used to investigate the presence of variant in all affected members of the family. In silico prediction of pathogenicity was used to study the effect of gene variants on protein structure. Results: The proband was a 15-year-old boy. The patient was the first of two children of a non-consanguineous couple. Family history was remarkable for tremor in the mother line. His mother suffered from bilateral upper extremity kinetic tremors (since she was 20 years old), anxiety, and depression. Other relatives referred bilateral upper extremity tremors. In the index case, WES analysis performed supposing a dominant mode of inheritance, identified a novel heterozygous missense variant in potassium calcium-activated channel subfamily N member 2 (<i<KCNN2</i<) (NM_021614.3: c.1145G<A, p.Gly382Asp). In the pedigree investigation, all carriers of the gene variant had ET and showed variable expressivity, the elder symptomatic relative showing cognitive impairment and hallucinations in the last decade, in addition to tremor since a young age. The amino acid residue #382 is located in a transmembrane region and in silico analysis suggested a causative role for the variant. Modelling of the mutant protein structure showed that the variant causes a clash in the protein structure. Therefore, the variant could cause a conformational change that alters the ability of the protein in the modulation of ion channels Conclusions: The <i<KCNN2</i< gene variant identified could be associated with ET. The variant could modify a voltage-independent potassium channel activated by intracellular calcium. gene <i<KCNN2</i< SK2 channel developmental delay essential tremor Genetics Caterina Ceccarini verfasserin aut Rosa Savino verfasserin aut Iolanda Adipietro verfasserin aut Ighli di Bari verfasserin aut Rosa Santacroce verfasserin aut Maria Curcetti verfasserin aut Giovanna D’Andrea verfasserin aut Anna-Irma Croce verfasserin aut Carla Cesarano verfasserin aut Anna Nunzia Polito verfasserin aut Maurizio Margaglione verfasserin aut In Genes MDPI AG, 2010 14(2023), 7, p 1380 (DE-627)614096537 (DE-600)2527218-4 20734425 nnns volume:14 year:2023 number:7, p 1380 https://doi.org/10.3390/genes14071380 kostenfrei https://doaj.org/article/ca3cee81ab2f42f2862aecee71f64c56 kostenfrei https://www.mdpi.com/2073-4425/14/7/1380 kostenfrei https://doaj.org/toc/2073-4425 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2023 7, p 1380 |
allfieldsSound |
10.3390/genes14071380 doi (DE-627)DOAJ093898622 (DE-599)DOAJca3cee81ab2f42f2862aecee71f64c56 DE-627 ger DE-627 rakwb eng QH426-470 Maria d’Apolito verfasserin aut A Novel <i<KCNN2</i< Variant in a Family with Essential Tremor Plus: Clinical Characteristics and In Silico Analysis 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background: Essential tremor (ET) is one of the more common movement disorders. Current diagnosis is solely based on clinical findings. ET appears to be inherited in an autosomal dominant pattern. Several loci on specific chromosomes have been studied by linkage analysis, but the causes of essential tremor are still unknown in many patients. Genetic studies described the association of several genes with familial ET. However, they were found only in distinct families, suggesting that some can be private pathogenic variants. Aim of the Study: to characterize the phenotype of an Italian family with ET and identify the genetic variant associated. Methods: Clinical and genetic examinations were performed. Genetic testing was done with whole-exome sequencing (WES) using the Illumina platform. Bidirectional capillary Sanger sequencing was used to investigate the presence of variant in all affected members of the family. In silico prediction of pathogenicity was used to study the effect of gene variants on protein structure. Results: The proband was a 15-year-old boy. The patient was the first of two children of a non-consanguineous couple. Family history was remarkable for tremor in the mother line. His mother suffered from bilateral upper extremity kinetic tremors (since she was 20 years old), anxiety, and depression. Other relatives referred bilateral upper extremity tremors. In the index case, WES analysis performed supposing a dominant mode of inheritance, identified a novel heterozygous missense variant in potassium calcium-activated channel subfamily N member 2 (<i<KCNN2</i<) (NM_021614.3: c.1145G<A, p.Gly382Asp). In the pedigree investigation, all carriers of the gene variant had ET and showed variable expressivity, the elder symptomatic relative showing cognitive impairment and hallucinations in the last decade, in addition to tremor since a young age. The amino acid residue #382 is located in a transmembrane region and in silico analysis suggested a causative role for the variant. Modelling of the mutant protein structure showed that the variant causes a clash in the protein structure. Therefore, the variant could cause a conformational change that alters the ability of the protein in the modulation of ion channels Conclusions: The <i<KCNN2</i< gene variant identified could be associated with ET. The variant could modify a voltage-independent potassium channel activated by intracellular calcium. gene <i<KCNN2</i< SK2 channel developmental delay essential tremor Genetics Caterina Ceccarini verfasserin aut Rosa Savino verfasserin aut Iolanda Adipietro verfasserin aut Ighli di Bari verfasserin aut Rosa Santacroce verfasserin aut Maria Curcetti verfasserin aut Giovanna D’Andrea verfasserin aut Anna-Irma Croce verfasserin aut Carla Cesarano verfasserin aut Anna Nunzia Polito verfasserin aut Maurizio Margaglione verfasserin aut In Genes MDPI AG, 2010 14(2023), 7, p 1380 (DE-627)614096537 (DE-600)2527218-4 20734425 nnns volume:14 year:2023 number:7, p 1380 https://doi.org/10.3390/genes14071380 kostenfrei https://doaj.org/article/ca3cee81ab2f42f2862aecee71f64c56 kostenfrei https://www.mdpi.com/2073-4425/14/7/1380 kostenfrei https://doaj.org/toc/2073-4425 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2023 7, p 1380 |
language |
English |
source |
In Genes 14(2023), 7, p 1380 volume:14 year:2023 number:7, p 1380 |
sourceStr |
In Genes 14(2023), 7, p 1380 volume:14 year:2023 number:7, p 1380 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
gene <i<KCNN2</i< SK2 channel developmental delay essential tremor Genetics |
isfreeaccess_bool |
true |
container_title |
Genes |
authorswithroles_txt_mv |
Maria d’Apolito @@aut@@ Caterina Ceccarini @@aut@@ Rosa Savino @@aut@@ Iolanda Adipietro @@aut@@ Ighli di Bari @@aut@@ Rosa Santacroce @@aut@@ Maria Curcetti @@aut@@ Giovanna D’Andrea @@aut@@ Anna-Irma Croce @@aut@@ Carla Cesarano @@aut@@ Anna Nunzia Polito @@aut@@ Maurizio Margaglione @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
614096537 |
id |
DOAJ093898622 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ093898622</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413022414.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/genes14071380</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ093898622</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJca3cee81ab2f42f2862aecee71f64c56</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH426-470</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Maria d’Apolito</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Novel <i<KCNN2</i< Variant in a Family with Essential Tremor Plus: Clinical Characteristics and In Silico Analysis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background: Essential tremor (ET) is one of the more common movement disorders. Current diagnosis is solely based on clinical findings. ET appears to be inherited in an autosomal dominant pattern. Several loci on specific chromosomes have been studied by linkage analysis, but the causes of essential tremor are still unknown in many patients. Genetic studies described the association of several genes with familial ET. However, they were found only in distinct families, suggesting that some can be private pathogenic variants. Aim of the Study: to characterize the phenotype of an Italian family with ET and identify the genetic variant associated. Methods: Clinical and genetic examinations were performed. Genetic testing was done with whole-exome sequencing (WES) using the Illumina platform. Bidirectional capillary Sanger sequencing was used to investigate the presence of variant in all affected members of the family. In silico prediction of pathogenicity was used to study the effect of gene variants on protein structure. Results: The proband was a 15-year-old boy. The patient was the first of two children of a non-consanguineous couple. Family history was remarkable for tremor in the mother line. His mother suffered from bilateral upper extremity kinetic tremors (since she was 20 years old), anxiety, and depression. Other relatives referred bilateral upper extremity tremors. In the index case, WES analysis performed supposing a dominant mode of inheritance, identified a novel heterozygous missense variant in potassium calcium-activated channel subfamily N member 2 (<i<KCNN2</i<) (NM_021614.3: c.1145G<A, p.Gly382Asp). In the pedigree investigation, all carriers of the gene variant had ET and showed variable expressivity, the elder symptomatic relative showing cognitive impairment and hallucinations in the last decade, in addition to tremor since a young age. The amino acid residue #382 is located in a transmembrane region and in silico analysis suggested a causative role for the variant. Modelling of the mutant protein structure showed that the variant causes a clash in the protein structure. Therefore, the variant could cause a conformational change that alters the ability of the protein in the modulation of ion channels Conclusions: The <i<KCNN2</i< gene variant identified could be associated with ET. The variant could modify a voltage-independent potassium channel activated by intracellular calcium.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">gene</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><i<KCNN2</i<</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SK2 channel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">developmental delay</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">essential tremor</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Genetics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Caterina Ceccarini</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rosa Savino</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Iolanda Adipietro</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ighli di Bari</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rosa Santacroce</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Maria Curcetti</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Giovanna D’Andrea</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Anna-Irma Croce</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Carla Cesarano</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Anna Nunzia Polito</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Maurizio Margaglione</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Genes</subfield><subfield code="d">MDPI AG, 2010</subfield><subfield code="g">14(2023), 7, p 1380</subfield><subfield code="w">(DE-627)614096537</subfield><subfield code="w">(DE-600)2527218-4</subfield><subfield code="x">20734425</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:7, p 1380</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/genes14071380</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/ca3cee81ab2f42f2862aecee71f64c56</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2073-4425/14/7/1380</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2073-4425</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2023</subfield><subfield code="e">7, p 1380</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Maria d’Apolito |
spellingShingle |
Maria d’Apolito misc QH426-470 misc gene misc <i<KCNN2</i< misc SK2 channel misc developmental delay misc essential tremor misc Genetics A Novel <i<KCNN2</i< Variant in a Family with Essential Tremor Plus: Clinical Characteristics and In Silico Analysis |
authorStr |
Maria d’Apolito |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)614096537 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QH426-470 |
illustrated |
Not Illustrated |
issn |
20734425 |
topic_title |
QH426-470 A Novel <i<KCNN2</i< Variant in a Family with Essential Tremor Plus: Clinical Characteristics and In Silico Analysis gene <i<KCNN2</i< SK2 channel developmental delay essential tremor |
topic |
misc QH426-470 misc gene misc <i<KCNN2</i< misc SK2 channel misc developmental delay misc essential tremor misc Genetics |
topic_unstemmed |
misc QH426-470 misc gene misc <i<KCNN2</i< misc SK2 channel misc developmental delay misc essential tremor misc Genetics |
topic_browse |
misc QH426-470 misc gene misc <i<KCNN2</i< misc SK2 channel misc developmental delay misc essential tremor misc Genetics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Genes |
hierarchy_parent_id |
614096537 |
hierarchy_top_title |
Genes |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)614096537 (DE-600)2527218-4 |
title |
A Novel <i<KCNN2</i< Variant in a Family with Essential Tremor Plus: Clinical Characteristics and In Silico Analysis |
ctrlnum |
(DE-627)DOAJ093898622 (DE-599)DOAJca3cee81ab2f42f2862aecee71f64c56 |
title_full |
A Novel <i<KCNN2</i< Variant in a Family with Essential Tremor Plus: Clinical Characteristics and In Silico Analysis |
author_sort |
Maria d’Apolito |
journal |
Genes |
journalStr |
Genes |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Maria d’Apolito Caterina Ceccarini Rosa Savino Iolanda Adipietro Ighli di Bari Rosa Santacroce Maria Curcetti Giovanna D’Andrea Anna-Irma Croce Carla Cesarano Anna Nunzia Polito Maurizio Margaglione |
container_volume |
14 |
class |
QH426-470 |
format_se |
Elektronische Aufsätze |
author-letter |
Maria d’Apolito |
doi_str_mv |
10.3390/genes14071380 |
author2-role |
verfasserin |
title_sort |
novel <i<kcnn2</i< variant in a family with essential tremor plus: clinical characteristics and in silico analysis |
callnumber |
QH426-470 |
title_auth |
A Novel <i<KCNN2</i< Variant in a Family with Essential Tremor Plus: Clinical Characteristics and In Silico Analysis |
abstract |
Background: Essential tremor (ET) is one of the more common movement disorders. Current diagnosis is solely based on clinical findings. ET appears to be inherited in an autosomal dominant pattern. Several loci on specific chromosomes have been studied by linkage analysis, but the causes of essential tremor are still unknown in many patients. Genetic studies described the association of several genes with familial ET. However, they were found only in distinct families, suggesting that some can be private pathogenic variants. Aim of the Study: to characterize the phenotype of an Italian family with ET and identify the genetic variant associated. Methods: Clinical and genetic examinations were performed. Genetic testing was done with whole-exome sequencing (WES) using the Illumina platform. Bidirectional capillary Sanger sequencing was used to investigate the presence of variant in all affected members of the family. In silico prediction of pathogenicity was used to study the effect of gene variants on protein structure. Results: The proband was a 15-year-old boy. The patient was the first of two children of a non-consanguineous couple. Family history was remarkable for tremor in the mother line. His mother suffered from bilateral upper extremity kinetic tremors (since she was 20 years old), anxiety, and depression. Other relatives referred bilateral upper extremity tremors. In the index case, WES analysis performed supposing a dominant mode of inheritance, identified a novel heterozygous missense variant in potassium calcium-activated channel subfamily N member 2 (<i<KCNN2</i<) (NM_021614.3: c.1145G<A, p.Gly382Asp). In the pedigree investigation, all carriers of the gene variant had ET and showed variable expressivity, the elder symptomatic relative showing cognitive impairment and hallucinations in the last decade, in addition to tremor since a young age. The amino acid residue #382 is located in a transmembrane region and in silico analysis suggested a causative role for the variant. Modelling of the mutant protein structure showed that the variant causes a clash in the protein structure. Therefore, the variant could cause a conformational change that alters the ability of the protein in the modulation of ion channels Conclusions: The <i<KCNN2</i< gene variant identified could be associated with ET. The variant could modify a voltage-independent potassium channel activated by intracellular calcium. |
abstractGer |
Background: Essential tremor (ET) is one of the more common movement disorders. Current diagnosis is solely based on clinical findings. ET appears to be inherited in an autosomal dominant pattern. Several loci on specific chromosomes have been studied by linkage analysis, but the causes of essential tremor are still unknown in many patients. Genetic studies described the association of several genes with familial ET. However, they were found only in distinct families, suggesting that some can be private pathogenic variants. Aim of the Study: to characterize the phenotype of an Italian family with ET and identify the genetic variant associated. Methods: Clinical and genetic examinations were performed. Genetic testing was done with whole-exome sequencing (WES) using the Illumina platform. Bidirectional capillary Sanger sequencing was used to investigate the presence of variant in all affected members of the family. In silico prediction of pathogenicity was used to study the effect of gene variants on protein structure. Results: The proband was a 15-year-old boy. The patient was the first of two children of a non-consanguineous couple. Family history was remarkable for tremor in the mother line. His mother suffered from bilateral upper extremity kinetic tremors (since she was 20 years old), anxiety, and depression. Other relatives referred bilateral upper extremity tremors. In the index case, WES analysis performed supposing a dominant mode of inheritance, identified a novel heterozygous missense variant in potassium calcium-activated channel subfamily N member 2 (<i<KCNN2</i<) (NM_021614.3: c.1145G<A, p.Gly382Asp). In the pedigree investigation, all carriers of the gene variant had ET and showed variable expressivity, the elder symptomatic relative showing cognitive impairment and hallucinations in the last decade, in addition to tremor since a young age. The amino acid residue #382 is located in a transmembrane region and in silico analysis suggested a causative role for the variant. Modelling of the mutant protein structure showed that the variant causes a clash in the protein structure. Therefore, the variant could cause a conformational change that alters the ability of the protein in the modulation of ion channels Conclusions: The <i<KCNN2</i< gene variant identified could be associated with ET. The variant could modify a voltage-independent potassium channel activated by intracellular calcium. |
abstract_unstemmed |
Background: Essential tremor (ET) is one of the more common movement disorders. Current diagnosis is solely based on clinical findings. ET appears to be inherited in an autosomal dominant pattern. Several loci on specific chromosomes have been studied by linkage analysis, but the causes of essential tremor are still unknown in many patients. Genetic studies described the association of several genes with familial ET. However, they were found only in distinct families, suggesting that some can be private pathogenic variants. Aim of the Study: to characterize the phenotype of an Italian family with ET and identify the genetic variant associated. Methods: Clinical and genetic examinations were performed. Genetic testing was done with whole-exome sequencing (WES) using the Illumina platform. Bidirectional capillary Sanger sequencing was used to investigate the presence of variant in all affected members of the family. In silico prediction of pathogenicity was used to study the effect of gene variants on protein structure. Results: The proband was a 15-year-old boy. The patient was the first of two children of a non-consanguineous couple. Family history was remarkable for tremor in the mother line. His mother suffered from bilateral upper extremity kinetic tremors (since she was 20 years old), anxiety, and depression. Other relatives referred bilateral upper extremity tremors. In the index case, WES analysis performed supposing a dominant mode of inheritance, identified a novel heterozygous missense variant in potassium calcium-activated channel subfamily N member 2 (<i<KCNN2</i<) (NM_021614.3: c.1145G<A, p.Gly382Asp). In the pedigree investigation, all carriers of the gene variant had ET and showed variable expressivity, the elder symptomatic relative showing cognitive impairment and hallucinations in the last decade, in addition to tremor since a young age. The amino acid residue #382 is located in a transmembrane region and in silico analysis suggested a causative role for the variant. Modelling of the mutant protein structure showed that the variant causes a clash in the protein structure. Therefore, the variant could cause a conformational change that alters the ability of the protein in the modulation of ion channels Conclusions: The <i<KCNN2</i< gene variant identified could be associated with ET. The variant could modify a voltage-independent potassium channel activated by intracellular calcium. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
7, p 1380 |
title_short |
A Novel <i<KCNN2</i< Variant in a Family with Essential Tremor Plus: Clinical Characteristics and In Silico Analysis |
url |
https://doi.org/10.3390/genes14071380 https://doaj.org/article/ca3cee81ab2f42f2862aecee71f64c56 https://www.mdpi.com/2073-4425/14/7/1380 https://doaj.org/toc/2073-4425 |
remote_bool |
true |
author2 |
Caterina Ceccarini Rosa Savino Iolanda Adipietro Ighli di Bari Rosa Santacroce Maria Curcetti Giovanna D’Andrea Anna-Irma Croce Carla Cesarano Anna Nunzia Polito Maurizio Margaglione |
author2Str |
Caterina Ceccarini Rosa Savino Iolanda Adipietro Ighli di Bari Rosa Santacroce Maria Curcetti Giovanna D’Andrea Anna-Irma Croce Carla Cesarano Anna Nunzia Polito Maurizio Margaglione |
ppnlink |
614096537 |
callnumber-subject |
QH - Natural History and Biology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/genes14071380 |
callnumber-a |
QH426-470 |
up_date |
2024-07-03T20:03:20.891Z |
_version_ |
1803589518250475520 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ093898622</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413022414.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/genes14071380</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ093898622</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJca3cee81ab2f42f2862aecee71f64c56</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH426-470</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Maria d’Apolito</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Novel <i<KCNN2</i< Variant in a Family with Essential Tremor Plus: Clinical Characteristics and In Silico Analysis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background: Essential tremor (ET) is one of the more common movement disorders. Current diagnosis is solely based on clinical findings. ET appears to be inherited in an autosomal dominant pattern. Several loci on specific chromosomes have been studied by linkage analysis, but the causes of essential tremor are still unknown in many patients. Genetic studies described the association of several genes with familial ET. However, they were found only in distinct families, suggesting that some can be private pathogenic variants. Aim of the Study: to characterize the phenotype of an Italian family with ET and identify the genetic variant associated. Methods: Clinical and genetic examinations were performed. Genetic testing was done with whole-exome sequencing (WES) using the Illumina platform. Bidirectional capillary Sanger sequencing was used to investigate the presence of variant in all affected members of the family. In silico prediction of pathogenicity was used to study the effect of gene variants on protein structure. Results: The proband was a 15-year-old boy. The patient was the first of two children of a non-consanguineous couple. Family history was remarkable for tremor in the mother line. His mother suffered from bilateral upper extremity kinetic tremors (since she was 20 years old), anxiety, and depression. Other relatives referred bilateral upper extremity tremors. In the index case, WES analysis performed supposing a dominant mode of inheritance, identified a novel heterozygous missense variant in potassium calcium-activated channel subfamily N member 2 (<i<KCNN2</i<) (NM_021614.3: c.1145G<A, p.Gly382Asp). In the pedigree investigation, all carriers of the gene variant had ET and showed variable expressivity, the elder symptomatic relative showing cognitive impairment and hallucinations in the last decade, in addition to tremor since a young age. The amino acid residue #382 is located in a transmembrane region and in silico analysis suggested a causative role for the variant. Modelling of the mutant protein structure showed that the variant causes a clash in the protein structure. Therefore, the variant could cause a conformational change that alters the ability of the protein in the modulation of ion channels Conclusions: The <i<KCNN2</i< gene variant identified could be associated with ET. The variant could modify a voltage-independent potassium channel activated by intracellular calcium.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">gene</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><i<KCNN2</i<</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SK2 channel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">developmental delay</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">essential tremor</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Genetics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Caterina Ceccarini</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rosa Savino</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Iolanda Adipietro</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ighli di Bari</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rosa Santacroce</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Maria Curcetti</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Giovanna D’Andrea</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Anna-Irma Croce</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Carla Cesarano</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Anna Nunzia Polito</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Maurizio Margaglione</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Genes</subfield><subfield code="d">MDPI AG, 2010</subfield><subfield code="g">14(2023), 7, p 1380</subfield><subfield code="w">(DE-627)614096537</subfield><subfield code="w">(DE-600)2527218-4</subfield><subfield code="x">20734425</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:7, p 1380</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/genes14071380</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/ca3cee81ab2f42f2862aecee71f64c56</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2073-4425/14/7/1380</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2073-4425</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2023</subfield><subfield code="e">7, p 1380</subfield></datafield></record></collection>
|
score |
7.399584 |