Insight into the lncRNA–mRNA Co-Expression Profile and ceRNA Network in Lipopolysaccharide-Induced Acute Lung Injury
Long non-coding RNAs (lncRNAs) participate in acute lung injury (ALI). However, their latent biological function and molecular mechanism have not been fully understood. In the present study, the global expression profiles of lncRNAs and mRNAs between the control and lipopolysaccharide (LPS)-stimulat...
Ausführliche Beschreibung
Autor*in: |
Yue Shen [verfasserIn] Linjing Gong [verfasserIn] Fan Xu [verfasserIn] Sijiao Wang [verfasserIn] Hanhan Liu [verfasserIn] Yali Wang [verfasserIn] Lijuan Hu [verfasserIn] Lei Zhu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Current Issues in Molecular Biology - MDPI AG, 2021, 45(2023), 7, Seite 6170-6189 |
---|---|
Übergeordnetes Werk: |
volume:45 ; year:2023 ; number:7 ; pages:6170-6189 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.3390/cimb45070389 |
---|
Katalog-ID: |
DOAJ093923627 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ093923627 | ||
003 | DE-627 | ||
005 | 20240413022818.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/cimb45070389 |2 doi | |
035 | |a (DE-627)DOAJ093923627 | ||
035 | |a (DE-599)DOAJ158b9cec855441ac8005cfc22af22f32 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QH301-705.5 | |
100 | 0 | |a Yue Shen |e verfasserin |4 aut | |
245 | 1 | 0 | |a Insight into the lncRNA–mRNA Co-Expression Profile and ceRNA Network in Lipopolysaccharide-Induced Acute Lung Injury |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Long non-coding RNAs (lncRNAs) participate in acute lung injury (ALI). However, their latent biological function and molecular mechanism have not been fully understood. In the present study, the global expression profiles of lncRNAs and mRNAs between the control and lipopolysaccharide (LPS)-stimulated groups of human normal lung epithelial cells (BEAS-2B) were determined using high-throughput sequencing. Overall, a total of 433 lncRNAs and 183 mRNAs were differentially expressed. A lncRNA–mRNA co-expression network was established, and then the top 10 lncRNAs were screened using topological methods. <i<Gene Ontology</i< and <i<Kyoto Encyclopedia of Genes and Genomes</i< analysis results showed that the key lncRNAs targeting mRNAs were mostly enriched in the inflammatory-related biological processes. Gene set variation analysis and Pearson’s correlation coefficients confirmed the close correlation for the top 10 lncRNAs with inflammatory responses. A protein–protein interaction network analysis was conducted based on the key lncRNAs targeting mRNAs, where IL-1β, IL-6, and CXCL8 were regarded as the hub genes. A competing endogenous RNA (ceRNA) modulatory network was created with five lncRNAs, thirteen microRNAs, and twelve mRNAs. Finally, real-time quantitative reverse transcription-polymerase chain reaction was employed to verify the expression levels of several key lncRNAs in BEAS-2B cells and human serum samples. | ||
650 | 4 | |a acute lung injury | |
650 | 4 | |a long noncoding RNAs | |
650 | 4 | |a high-throughput RNA sequencing | |
650 | 4 | |a expression profile | |
650 | 4 | |a ceRNA regulatory network | |
650 | 4 | |a inflammatory response | |
653 | 0 | |a Biology (General) | |
700 | 0 | |a Linjing Gong |e verfasserin |4 aut | |
700 | 0 | |a Fan Xu |e verfasserin |4 aut | |
700 | 0 | |a Sijiao Wang |e verfasserin |4 aut | |
700 | 0 | |a Hanhan Liu |e verfasserin |4 aut | |
700 | 0 | |a Yali Wang |e verfasserin |4 aut | |
700 | 0 | |a Lijuan Hu |e verfasserin |4 aut | |
700 | 0 | |a Lei Zhu |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Current Issues in Molecular Biology |d MDPI AG, 2021 |g 45(2023), 7, Seite 6170-6189 |w (DE-627)355690365 |w (DE-600)2090836-2 |x 14673045 |7 nnns |
773 | 1 | 8 | |g volume:45 |g year:2023 |g number:7 |g pages:6170-6189 |
856 | 4 | 0 | |u https://doi.org/10.3390/cimb45070389 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/158b9cec855441ac8005cfc22af22f32 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/1467-3045/45/7/389 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1467-3037 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1467-3045 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 45 |j 2023 |e 7 |h 6170-6189 |
author_variant |
y s ys l g lg f x fx s w sw h l hl y w yw l h lh l z lz |
---|---|
matchkey_str |
article:14673045:2023----::nihittenraraoxrsinrfladenntokniooyaca |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
QH |
publishDate |
2023 |
allfields |
10.3390/cimb45070389 doi (DE-627)DOAJ093923627 (DE-599)DOAJ158b9cec855441ac8005cfc22af22f32 DE-627 ger DE-627 rakwb eng QH301-705.5 Yue Shen verfasserin aut Insight into the lncRNA–mRNA Co-Expression Profile and ceRNA Network in Lipopolysaccharide-Induced Acute Lung Injury 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Long non-coding RNAs (lncRNAs) participate in acute lung injury (ALI). However, their latent biological function and molecular mechanism have not been fully understood. In the present study, the global expression profiles of lncRNAs and mRNAs between the control and lipopolysaccharide (LPS)-stimulated groups of human normal lung epithelial cells (BEAS-2B) were determined using high-throughput sequencing. Overall, a total of 433 lncRNAs and 183 mRNAs were differentially expressed. A lncRNA–mRNA co-expression network was established, and then the top 10 lncRNAs were screened using topological methods. <i<Gene Ontology</i< and <i<Kyoto Encyclopedia of Genes and Genomes</i< analysis results showed that the key lncRNAs targeting mRNAs were mostly enriched in the inflammatory-related biological processes. Gene set variation analysis and Pearson’s correlation coefficients confirmed the close correlation for the top 10 lncRNAs with inflammatory responses. A protein–protein interaction network analysis was conducted based on the key lncRNAs targeting mRNAs, where IL-1β, IL-6, and CXCL8 were regarded as the hub genes. A competing endogenous RNA (ceRNA) modulatory network was created with five lncRNAs, thirteen microRNAs, and twelve mRNAs. Finally, real-time quantitative reverse transcription-polymerase chain reaction was employed to verify the expression levels of several key lncRNAs in BEAS-2B cells and human serum samples. acute lung injury long noncoding RNAs high-throughput RNA sequencing expression profile ceRNA regulatory network inflammatory response Biology (General) Linjing Gong verfasserin aut Fan Xu verfasserin aut Sijiao Wang verfasserin aut Hanhan Liu verfasserin aut Yali Wang verfasserin aut Lijuan Hu verfasserin aut Lei Zhu verfasserin aut In Current Issues in Molecular Biology MDPI AG, 2021 45(2023), 7, Seite 6170-6189 (DE-627)355690365 (DE-600)2090836-2 14673045 nnns volume:45 year:2023 number:7 pages:6170-6189 https://doi.org/10.3390/cimb45070389 kostenfrei https://doaj.org/article/158b9cec855441ac8005cfc22af22f32 kostenfrei https://www.mdpi.com/1467-3045/45/7/389 kostenfrei https://doaj.org/toc/1467-3037 Journal toc kostenfrei https://doaj.org/toc/1467-3045 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 45 2023 7 6170-6189 |
spelling |
10.3390/cimb45070389 doi (DE-627)DOAJ093923627 (DE-599)DOAJ158b9cec855441ac8005cfc22af22f32 DE-627 ger DE-627 rakwb eng QH301-705.5 Yue Shen verfasserin aut Insight into the lncRNA–mRNA Co-Expression Profile and ceRNA Network in Lipopolysaccharide-Induced Acute Lung Injury 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Long non-coding RNAs (lncRNAs) participate in acute lung injury (ALI). However, their latent biological function and molecular mechanism have not been fully understood. In the present study, the global expression profiles of lncRNAs and mRNAs between the control and lipopolysaccharide (LPS)-stimulated groups of human normal lung epithelial cells (BEAS-2B) were determined using high-throughput sequencing. Overall, a total of 433 lncRNAs and 183 mRNAs were differentially expressed. A lncRNA–mRNA co-expression network was established, and then the top 10 lncRNAs were screened using topological methods. <i<Gene Ontology</i< and <i<Kyoto Encyclopedia of Genes and Genomes</i< analysis results showed that the key lncRNAs targeting mRNAs were mostly enriched in the inflammatory-related biological processes. Gene set variation analysis and Pearson’s correlation coefficients confirmed the close correlation for the top 10 lncRNAs with inflammatory responses. A protein–protein interaction network analysis was conducted based on the key lncRNAs targeting mRNAs, where IL-1β, IL-6, and CXCL8 were regarded as the hub genes. A competing endogenous RNA (ceRNA) modulatory network was created with five lncRNAs, thirteen microRNAs, and twelve mRNAs. Finally, real-time quantitative reverse transcription-polymerase chain reaction was employed to verify the expression levels of several key lncRNAs in BEAS-2B cells and human serum samples. acute lung injury long noncoding RNAs high-throughput RNA sequencing expression profile ceRNA regulatory network inflammatory response Biology (General) Linjing Gong verfasserin aut Fan Xu verfasserin aut Sijiao Wang verfasserin aut Hanhan Liu verfasserin aut Yali Wang verfasserin aut Lijuan Hu verfasserin aut Lei Zhu verfasserin aut In Current Issues in Molecular Biology MDPI AG, 2021 45(2023), 7, Seite 6170-6189 (DE-627)355690365 (DE-600)2090836-2 14673045 nnns volume:45 year:2023 number:7 pages:6170-6189 https://doi.org/10.3390/cimb45070389 kostenfrei https://doaj.org/article/158b9cec855441ac8005cfc22af22f32 kostenfrei https://www.mdpi.com/1467-3045/45/7/389 kostenfrei https://doaj.org/toc/1467-3037 Journal toc kostenfrei https://doaj.org/toc/1467-3045 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 45 2023 7 6170-6189 |
allfields_unstemmed |
10.3390/cimb45070389 doi (DE-627)DOAJ093923627 (DE-599)DOAJ158b9cec855441ac8005cfc22af22f32 DE-627 ger DE-627 rakwb eng QH301-705.5 Yue Shen verfasserin aut Insight into the lncRNA–mRNA Co-Expression Profile and ceRNA Network in Lipopolysaccharide-Induced Acute Lung Injury 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Long non-coding RNAs (lncRNAs) participate in acute lung injury (ALI). However, their latent biological function and molecular mechanism have not been fully understood. In the present study, the global expression profiles of lncRNAs and mRNAs between the control and lipopolysaccharide (LPS)-stimulated groups of human normal lung epithelial cells (BEAS-2B) were determined using high-throughput sequencing. Overall, a total of 433 lncRNAs and 183 mRNAs were differentially expressed. A lncRNA–mRNA co-expression network was established, and then the top 10 lncRNAs were screened using topological methods. <i<Gene Ontology</i< and <i<Kyoto Encyclopedia of Genes and Genomes</i< analysis results showed that the key lncRNAs targeting mRNAs were mostly enriched in the inflammatory-related biological processes. Gene set variation analysis and Pearson’s correlation coefficients confirmed the close correlation for the top 10 lncRNAs with inflammatory responses. A protein–protein interaction network analysis was conducted based on the key lncRNAs targeting mRNAs, where IL-1β, IL-6, and CXCL8 were regarded as the hub genes. A competing endogenous RNA (ceRNA) modulatory network was created with five lncRNAs, thirteen microRNAs, and twelve mRNAs. Finally, real-time quantitative reverse transcription-polymerase chain reaction was employed to verify the expression levels of several key lncRNAs in BEAS-2B cells and human serum samples. acute lung injury long noncoding RNAs high-throughput RNA sequencing expression profile ceRNA regulatory network inflammatory response Biology (General) Linjing Gong verfasserin aut Fan Xu verfasserin aut Sijiao Wang verfasserin aut Hanhan Liu verfasserin aut Yali Wang verfasserin aut Lijuan Hu verfasserin aut Lei Zhu verfasserin aut In Current Issues in Molecular Biology MDPI AG, 2021 45(2023), 7, Seite 6170-6189 (DE-627)355690365 (DE-600)2090836-2 14673045 nnns volume:45 year:2023 number:7 pages:6170-6189 https://doi.org/10.3390/cimb45070389 kostenfrei https://doaj.org/article/158b9cec855441ac8005cfc22af22f32 kostenfrei https://www.mdpi.com/1467-3045/45/7/389 kostenfrei https://doaj.org/toc/1467-3037 Journal toc kostenfrei https://doaj.org/toc/1467-3045 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 45 2023 7 6170-6189 |
allfieldsGer |
10.3390/cimb45070389 doi (DE-627)DOAJ093923627 (DE-599)DOAJ158b9cec855441ac8005cfc22af22f32 DE-627 ger DE-627 rakwb eng QH301-705.5 Yue Shen verfasserin aut Insight into the lncRNA–mRNA Co-Expression Profile and ceRNA Network in Lipopolysaccharide-Induced Acute Lung Injury 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Long non-coding RNAs (lncRNAs) participate in acute lung injury (ALI). However, their latent biological function and molecular mechanism have not been fully understood. In the present study, the global expression profiles of lncRNAs and mRNAs between the control and lipopolysaccharide (LPS)-stimulated groups of human normal lung epithelial cells (BEAS-2B) were determined using high-throughput sequencing. Overall, a total of 433 lncRNAs and 183 mRNAs were differentially expressed. A lncRNA–mRNA co-expression network was established, and then the top 10 lncRNAs were screened using topological methods. <i<Gene Ontology</i< and <i<Kyoto Encyclopedia of Genes and Genomes</i< analysis results showed that the key lncRNAs targeting mRNAs were mostly enriched in the inflammatory-related biological processes. Gene set variation analysis and Pearson’s correlation coefficients confirmed the close correlation for the top 10 lncRNAs with inflammatory responses. A protein–protein interaction network analysis was conducted based on the key lncRNAs targeting mRNAs, where IL-1β, IL-6, and CXCL8 were regarded as the hub genes. A competing endogenous RNA (ceRNA) modulatory network was created with five lncRNAs, thirteen microRNAs, and twelve mRNAs. Finally, real-time quantitative reverse transcription-polymerase chain reaction was employed to verify the expression levels of several key lncRNAs in BEAS-2B cells and human serum samples. acute lung injury long noncoding RNAs high-throughput RNA sequencing expression profile ceRNA regulatory network inflammatory response Biology (General) Linjing Gong verfasserin aut Fan Xu verfasserin aut Sijiao Wang verfasserin aut Hanhan Liu verfasserin aut Yali Wang verfasserin aut Lijuan Hu verfasserin aut Lei Zhu verfasserin aut In Current Issues in Molecular Biology MDPI AG, 2021 45(2023), 7, Seite 6170-6189 (DE-627)355690365 (DE-600)2090836-2 14673045 nnns volume:45 year:2023 number:7 pages:6170-6189 https://doi.org/10.3390/cimb45070389 kostenfrei https://doaj.org/article/158b9cec855441ac8005cfc22af22f32 kostenfrei https://www.mdpi.com/1467-3045/45/7/389 kostenfrei https://doaj.org/toc/1467-3037 Journal toc kostenfrei https://doaj.org/toc/1467-3045 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 45 2023 7 6170-6189 |
allfieldsSound |
10.3390/cimb45070389 doi (DE-627)DOAJ093923627 (DE-599)DOAJ158b9cec855441ac8005cfc22af22f32 DE-627 ger DE-627 rakwb eng QH301-705.5 Yue Shen verfasserin aut Insight into the lncRNA–mRNA Co-Expression Profile and ceRNA Network in Lipopolysaccharide-Induced Acute Lung Injury 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Long non-coding RNAs (lncRNAs) participate in acute lung injury (ALI). However, their latent biological function and molecular mechanism have not been fully understood. In the present study, the global expression profiles of lncRNAs and mRNAs between the control and lipopolysaccharide (LPS)-stimulated groups of human normal lung epithelial cells (BEAS-2B) were determined using high-throughput sequencing. Overall, a total of 433 lncRNAs and 183 mRNAs were differentially expressed. A lncRNA–mRNA co-expression network was established, and then the top 10 lncRNAs were screened using topological methods. <i<Gene Ontology</i< and <i<Kyoto Encyclopedia of Genes and Genomes</i< analysis results showed that the key lncRNAs targeting mRNAs were mostly enriched in the inflammatory-related biological processes. Gene set variation analysis and Pearson’s correlation coefficients confirmed the close correlation for the top 10 lncRNAs with inflammatory responses. A protein–protein interaction network analysis was conducted based on the key lncRNAs targeting mRNAs, where IL-1β, IL-6, and CXCL8 were regarded as the hub genes. A competing endogenous RNA (ceRNA) modulatory network was created with five lncRNAs, thirteen microRNAs, and twelve mRNAs. Finally, real-time quantitative reverse transcription-polymerase chain reaction was employed to verify the expression levels of several key lncRNAs in BEAS-2B cells and human serum samples. acute lung injury long noncoding RNAs high-throughput RNA sequencing expression profile ceRNA regulatory network inflammatory response Biology (General) Linjing Gong verfasserin aut Fan Xu verfasserin aut Sijiao Wang verfasserin aut Hanhan Liu verfasserin aut Yali Wang verfasserin aut Lijuan Hu verfasserin aut Lei Zhu verfasserin aut In Current Issues in Molecular Biology MDPI AG, 2021 45(2023), 7, Seite 6170-6189 (DE-627)355690365 (DE-600)2090836-2 14673045 nnns volume:45 year:2023 number:7 pages:6170-6189 https://doi.org/10.3390/cimb45070389 kostenfrei https://doaj.org/article/158b9cec855441ac8005cfc22af22f32 kostenfrei https://www.mdpi.com/1467-3045/45/7/389 kostenfrei https://doaj.org/toc/1467-3037 Journal toc kostenfrei https://doaj.org/toc/1467-3045 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 45 2023 7 6170-6189 |
language |
English |
source |
In Current Issues in Molecular Biology 45(2023), 7, Seite 6170-6189 volume:45 year:2023 number:7 pages:6170-6189 |
sourceStr |
In Current Issues in Molecular Biology 45(2023), 7, Seite 6170-6189 volume:45 year:2023 number:7 pages:6170-6189 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
acute lung injury long noncoding RNAs high-throughput RNA sequencing expression profile ceRNA regulatory network inflammatory response Biology (General) |
isfreeaccess_bool |
true |
container_title |
Current Issues in Molecular Biology |
authorswithroles_txt_mv |
Yue Shen @@aut@@ Linjing Gong @@aut@@ Fan Xu @@aut@@ Sijiao Wang @@aut@@ Hanhan Liu @@aut@@ Yali Wang @@aut@@ Lijuan Hu @@aut@@ Lei Zhu @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
355690365 |
id |
DOAJ093923627 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ093923627</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413022818.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/cimb45070389</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ093923627</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ158b9cec855441ac8005cfc22af22f32</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yue Shen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Insight into the lncRNA–mRNA Co-Expression Profile and ceRNA Network in Lipopolysaccharide-Induced Acute Lung Injury</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Long non-coding RNAs (lncRNAs) participate in acute lung injury (ALI). However, their latent biological function and molecular mechanism have not been fully understood. In the present study, the global expression profiles of lncRNAs and mRNAs between the control and lipopolysaccharide (LPS)-stimulated groups of human normal lung epithelial cells (BEAS-2B) were determined using high-throughput sequencing. Overall, a total of 433 lncRNAs and 183 mRNAs were differentially expressed. A lncRNA–mRNA co-expression network was established, and then the top 10 lncRNAs were screened using topological methods. <i<Gene Ontology</i< and <i<Kyoto Encyclopedia of Genes and Genomes</i< analysis results showed that the key lncRNAs targeting mRNAs were mostly enriched in the inflammatory-related biological processes. Gene set variation analysis and Pearson’s correlation coefficients confirmed the close correlation for the top 10 lncRNAs with inflammatory responses. A protein–protein interaction network analysis was conducted based on the key lncRNAs targeting mRNAs, where IL-1β, IL-6, and CXCL8 were regarded as the hub genes. A competing endogenous RNA (ceRNA) modulatory network was created with five lncRNAs, thirteen microRNAs, and twelve mRNAs. Finally, real-time quantitative reverse transcription-polymerase chain reaction was employed to verify the expression levels of several key lncRNAs in BEAS-2B cells and human serum samples.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">acute lung injury</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">long noncoding RNAs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">high-throughput RNA sequencing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">expression profile</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ceRNA regulatory network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">inflammatory response</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Linjing Gong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fan Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sijiao Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hanhan Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yali Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lijuan Hu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lei Zhu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Current Issues in Molecular Biology</subfield><subfield code="d">MDPI AG, 2021</subfield><subfield code="g">45(2023), 7, Seite 6170-6189</subfield><subfield code="w">(DE-627)355690365</subfield><subfield code="w">(DE-600)2090836-2</subfield><subfield code="x">14673045</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:45</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:7</subfield><subfield code="g">pages:6170-6189</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/cimb45070389</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/158b9cec855441ac8005cfc22af22f32</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1467-3045/45/7/389</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1467-3037</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1467-3045</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">45</subfield><subfield code="j">2023</subfield><subfield code="e">7</subfield><subfield code="h">6170-6189</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Yue Shen |
spellingShingle |
Yue Shen misc QH301-705.5 misc acute lung injury misc long noncoding RNAs misc high-throughput RNA sequencing misc expression profile misc ceRNA regulatory network misc inflammatory response misc Biology (General) Insight into the lncRNA–mRNA Co-Expression Profile and ceRNA Network in Lipopolysaccharide-Induced Acute Lung Injury |
authorStr |
Yue Shen |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)355690365 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QH301-705 |
illustrated |
Not Illustrated |
issn |
14673045 |
topic_title |
QH301-705.5 Insight into the lncRNA–mRNA Co-Expression Profile and ceRNA Network in Lipopolysaccharide-Induced Acute Lung Injury acute lung injury long noncoding RNAs high-throughput RNA sequencing expression profile ceRNA regulatory network inflammatory response |
topic |
misc QH301-705.5 misc acute lung injury misc long noncoding RNAs misc high-throughput RNA sequencing misc expression profile misc ceRNA regulatory network misc inflammatory response misc Biology (General) |
topic_unstemmed |
misc QH301-705.5 misc acute lung injury misc long noncoding RNAs misc high-throughput RNA sequencing misc expression profile misc ceRNA regulatory network misc inflammatory response misc Biology (General) |
topic_browse |
misc QH301-705.5 misc acute lung injury misc long noncoding RNAs misc high-throughput RNA sequencing misc expression profile misc ceRNA regulatory network misc inflammatory response misc Biology (General) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Current Issues in Molecular Biology |
hierarchy_parent_id |
355690365 |
hierarchy_top_title |
Current Issues in Molecular Biology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)355690365 (DE-600)2090836-2 |
title |
Insight into the lncRNA–mRNA Co-Expression Profile and ceRNA Network in Lipopolysaccharide-Induced Acute Lung Injury |
ctrlnum |
(DE-627)DOAJ093923627 (DE-599)DOAJ158b9cec855441ac8005cfc22af22f32 |
title_full |
Insight into the lncRNA–mRNA Co-Expression Profile and ceRNA Network in Lipopolysaccharide-Induced Acute Lung Injury |
author_sort |
Yue Shen |
journal |
Current Issues in Molecular Biology |
journalStr |
Current Issues in Molecular Biology |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
container_start_page |
6170 |
author_browse |
Yue Shen Linjing Gong Fan Xu Sijiao Wang Hanhan Liu Yali Wang Lijuan Hu Lei Zhu |
container_volume |
45 |
class |
QH301-705.5 |
format_se |
Elektronische Aufsätze |
author-letter |
Yue Shen |
doi_str_mv |
10.3390/cimb45070389 |
author2-role |
verfasserin |
title_sort |
insight into the lncrna–mrna co-expression profile and cerna network in lipopolysaccharide-induced acute lung injury |
callnumber |
QH301-705.5 |
title_auth |
Insight into the lncRNA–mRNA Co-Expression Profile and ceRNA Network in Lipopolysaccharide-Induced Acute Lung Injury |
abstract |
Long non-coding RNAs (lncRNAs) participate in acute lung injury (ALI). However, their latent biological function and molecular mechanism have not been fully understood. In the present study, the global expression profiles of lncRNAs and mRNAs between the control and lipopolysaccharide (LPS)-stimulated groups of human normal lung epithelial cells (BEAS-2B) were determined using high-throughput sequencing. Overall, a total of 433 lncRNAs and 183 mRNAs were differentially expressed. A lncRNA–mRNA co-expression network was established, and then the top 10 lncRNAs were screened using topological methods. <i<Gene Ontology</i< and <i<Kyoto Encyclopedia of Genes and Genomes</i< analysis results showed that the key lncRNAs targeting mRNAs were mostly enriched in the inflammatory-related biological processes. Gene set variation analysis and Pearson’s correlation coefficients confirmed the close correlation for the top 10 lncRNAs with inflammatory responses. A protein–protein interaction network analysis was conducted based on the key lncRNAs targeting mRNAs, where IL-1β, IL-6, and CXCL8 were regarded as the hub genes. A competing endogenous RNA (ceRNA) modulatory network was created with five lncRNAs, thirteen microRNAs, and twelve mRNAs. Finally, real-time quantitative reverse transcription-polymerase chain reaction was employed to verify the expression levels of several key lncRNAs in BEAS-2B cells and human serum samples. |
abstractGer |
Long non-coding RNAs (lncRNAs) participate in acute lung injury (ALI). However, their latent biological function and molecular mechanism have not been fully understood. In the present study, the global expression profiles of lncRNAs and mRNAs between the control and lipopolysaccharide (LPS)-stimulated groups of human normal lung epithelial cells (BEAS-2B) were determined using high-throughput sequencing. Overall, a total of 433 lncRNAs and 183 mRNAs were differentially expressed. A lncRNA–mRNA co-expression network was established, and then the top 10 lncRNAs were screened using topological methods. <i<Gene Ontology</i< and <i<Kyoto Encyclopedia of Genes and Genomes</i< analysis results showed that the key lncRNAs targeting mRNAs were mostly enriched in the inflammatory-related biological processes. Gene set variation analysis and Pearson’s correlation coefficients confirmed the close correlation for the top 10 lncRNAs with inflammatory responses. A protein–protein interaction network analysis was conducted based on the key lncRNAs targeting mRNAs, where IL-1β, IL-6, and CXCL8 were regarded as the hub genes. A competing endogenous RNA (ceRNA) modulatory network was created with five lncRNAs, thirteen microRNAs, and twelve mRNAs. Finally, real-time quantitative reverse transcription-polymerase chain reaction was employed to verify the expression levels of several key lncRNAs in BEAS-2B cells and human serum samples. |
abstract_unstemmed |
Long non-coding RNAs (lncRNAs) participate in acute lung injury (ALI). However, their latent biological function and molecular mechanism have not been fully understood. In the present study, the global expression profiles of lncRNAs and mRNAs between the control and lipopolysaccharide (LPS)-stimulated groups of human normal lung epithelial cells (BEAS-2B) were determined using high-throughput sequencing. Overall, a total of 433 lncRNAs and 183 mRNAs were differentially expressed. A lncRNA–mRNA co-expression network was established, and then the top 10 lncRNAs were screened using topological methods. <i<Gene Ontology</i< and <i<Kyoto Encyclopedia of Genes and Genomes</i< analysis results showed that the key lncRNAs targeting mRNAs were mostly enriched in the inflammatory-related biological processes. Gene set variation analysis and Pearson’s correlation coefficients confirmed the close correlation for the top 10 lncRNAs with inflammatory responses. A protein–protein interaction network analysis was conducted based on the key lncRNAs targeting mRNAs, where IL-1β, IL-6, and CXCL8 were regarded as the hub genes. A competing endogenous RNA (ceRNA) modulatory network was created with five lncRNAs, thirteen microRNAs, and twelve mRNAs. Finally, real-time quantitative reverse transcription-polymerase chain reaction was employed to verify the expression levels of several key lncRNAs in BEAS-2B cells and human serum samples. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
7 |
title_short |
Insight into the lncRNA–mRNA Co-Expression Profile and ceRNA Network in Lipopolysaccharide-Induced Acute Lung Injury |
url |
https://doi.org/10.3390/cimb45070389 https://doaj.org/article/158b9cec855441ac8005cfc22af22f32 https://www.mdpi.com/1467-3045/45/7/389 https://doaj.org/toc/1467-3037 https://doaj.org/toc/1467-3045 |
remote_bool |
true |
author2 |
Linjing Gong Fan Xu Sijiao Wang Hanhan Liu Yali Wang Lijuan Hu Lei Zhu |
author2Str |
Linjing Gong Fan Xu Sijiao Wang Hanhan Liu Yali Wang Lijuan Hu Lei Zhu |
ppnlink |
355690365 |
callnumber-subject |
QH - Natural History and Biology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/cimb45070389 |
callnumber-a |
QH301-705.5 |
up_date |
2024-07-03T20:12:22.498Z |
_version_ |
1803590086166577152 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ093923627</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413022818.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/cimb45070389</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ093923627</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ158b9cec855441ac8005cfc22af22f32</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yue Shen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Insight into the lncRNA–mRNA Co-Expression Profile and ceRNA Network in Lipopolysaccharide-Induced Acute Lung Injury</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Long non-coding RNAs (lncRNAs) participate in acute lung injury (ALI). However, their latent biological function and molecular mechanism have not been fully understood. In the present study, the global expression profiles of lncRNAs and mRNAs between the control and lipopolysaccharide (LPS)-stimulated groups of human normal lung epithelial cells (BEAS-2B) were determined using high-throughput sequencing. Overall, a total of 433 lncRNAs and 183 mRNAs were differentially expressed. A lncRNA–mRNA co-expression network was established, and then the top 10 lncRNAs were screened using topological methods. <i<Gene Ontology</i< and <i<Kyoto Encyclopedia of Genes and Genomes</i< analysis results showed that the key lncRNAs targeting mRNAs were mostly enriched in the inflammatory-related biological processes. Gene set variation analysis and Pearson’s correlation coefficients confirmed the close correlation for the top 10 lncRNAs with inflammatory responses. A protein–protein interaction network analysis was conducted based on the key lncRNAs targeting mRNAs, where IL-1β, IL-6, and CXCL8 were regarded as the hub genes. A competing endogenous RNA (ceRNA) modulatory network was created with five lncRNAs, thirteen microRNAs, and twelve mRNAs. Finally, real-time quantitative reverse transcription-polymerase chain reaction was employed to verify the expression levels of several key lncRNAs in BEAS-2B cells and human serum samples.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">acute lung injury</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">long noncoding RNAs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">high-throughput RNA sequencing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">expression profile</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ceRNA regulatory network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">inflammatory response</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Linjing Gong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fan Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sijiao Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hanhan Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yali Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lijuan Hu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lei Zhu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Current Issues in Molecular Biology</subfield><subfield code="d">MDPI AG, 2021</subfield><subfield code="g">45(2023), 7, Seite 6170-6189</subfield><subfield code="w">(DE-627)355690365</subfield><subfield code="w">(DE-600)2090836-2</subfield><subfield code="x">14673045</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:45</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:7</subfield><subfield code="g">pages:6170-6189</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/cimb45070389</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/158b9cec855441ac8005cfc22af22f32</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1467-3045/45/7/389</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1467-3037</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1467-3045</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">45</subfield><subfield code="j">2023</subfield><subfield code="e">7</subfield><subfield code="h">6170-6189</subfield></datafield></record></collection>
|
score |
7.399295 |