Machine Learning Integrating <sup<99m</sup<Tc Sestamibi SPECT/CT and Radiomics Data Achieves Optimal Characterization of Renal Oncocytic Tumors
The increasing evidence of oncocytic renal tumors positive in <sup<99m</sup<Tc Sestamibi Single Photon Emission Tomography/Computed Tomography (SPECT/CT) examination calls for the development of diagnostic tools to differentiate these tumors from more aggressive forms. This study combine...
Ausführliche Beschreibung
Autor*in: |
Michail E. Klontzas [verfasserIn] Emmanouil Koltsakis [verfasserIn] Georgios Kalarakis [verfasserIn] Kiril Trpkov [verfasserIn] Thomas Papathomas [verfasserIn] Apostolos H. Karantanas [verfasserIn] Antonios Tzortzakakis [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Cancers - MDPI AG, 2010, 15(2023), 14, p 3553 |
---|---|
Übergeordnetes Werk: |
volume:15 ; year:2023 ; number:14, p 3553 |
Links: |
---|
DOI / URN: |
10.3390/cancers15143553 |
---|
Katalog-ID: |
DOAJ093931026 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ093931026 | ||
003 | DE-627 | ||
005 | 20240413022933.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/cancers15143553 |2 doi | |
035 | |a (DE-627)DOAJ093931026 | ||
035 | |a (DE-599)DOAJ06c65198288243edadccc7ef61d2dbf9 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a RC254-282 | |
100 | 0 | |a Michail E. Klontzas |e verfasserin |4 aut | |
245 | 1 | 0 | |a Machine Learning Integrating <sup<99m</sup<Tc Sestamibi SPECT/CT and Radiomics Data Achieves Optimal Characterization of Renal Oncocytic Tumors |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The increasing evidence of oncocytic renal tumors positive in <sup<99m</sup<Tc Sestamibi Single Photon Emission Tomography/Computed Tomography (SPECT/CT) examination calls for the development of diagnostic tools to differentiate these tumors from more aggressive forms. This study combined radiomics analysis with the uptake of <sup<99m</sup<Tc Sestamibi on SPECT/CT to differentiate benign renal oncocytic neoplasms from renal cell carcinoma. A total of 57 renal tumors were prospectively collected. Histopathological analysis and radiomics data extraction were performed. XGBoost classifiers were trained using the radiomics features alone and combined with the results from the visual evaluation of <sup<99m</sup<Tc Sestamibi SPECT/CT examination. The combined SPECT/radiomics model achieved higher accuracy (95%) with an area under the curve (AUC) of 98.3% (95% CI 93.7–100%) than the radiomics-only model (71.67%) with an AUC of 75% (95% CI 49.7–100%) and visual evaluation of <sup<99m</sup<Tc Sestamibi SPECT/CT alone (90.8%) with an AUC of 90.8% (95%CI 82.5–99.1%). The positive predictive values of SPECT/radiomics, radiomics-only, and <sup<99m</sup<Tc Sestamibi SPECT/CT-only models were 100%, 85.71%, and 85%, respectively, whereas the negative predictive values were 85.71%, 55.56%, and 94.6%, respectively. Feature importance analysis revealed that <sup<99m</sup<Tc Sestamibi uptake was the most influential attribute in the combined model. This study highlights the potential of combining radiomics analysis with <sup<99m</sup<Tc Sestamibi SPECT/CT to improve the preoperative characterization of benign renal oncocytic neoplasms. The proposed SPECT/radiomics classifier outperformed the visual evaluation of <sup<99m</sup<Tc Sestamibii SPECT/CT and the radiomics-only model, demonstrating that the integration of <sup<99m</sup<Tc Sestamibi SPECT/CT and radiomics data provides improved diagnostic performance, with minimal false positive and false negative results. | ||
650 | 4 | |a <sup<99m</sup<Tc Sestamibi SPECT/CT | |
650 | 4 | |a artificial intelligence | |
650 | 4 | |a machine learning | |
650 | 4 | |a radiomics | |
650 | 4 | |a renal cell carcinoma | |
650 | 4 | |a renal oncocytoma | |
653 | 0 | |a Neoplasms. Tumors. Oncology. Including cancer and carcinogens | |
700 | 0 | |a Emmanouil Koltsakis |e verfasserin |4 aut | |
700 | 0 | |a Georgios Kalarakis |e verfasserin |4 aut | |
700 | 0 | |a Kiril Trpkov |e verfasserin |4 aut | |
700 | 0 | |a Thomas Papathomas |e verfasserin |4 aut | |
700 | 0 | |a Apostolos H. Karantanas |e verfasserin |4 aut | |
700 | 0 | |a Antonios Tzortzakakis |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Cancers |d MDPI AG, 2010 |g 15(2023), 14, p 3553 |w (DE-627)614095670 |w (DE-600)2527080-1 |x 20726694 |7 nnns |
773 | 1 | 8 | |g volume:15 |g year:2023 |g number:14, p 3553 |
856 | 4 | 0 | |u https://doi.org/10.3390/cancers15143553 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/06c65198288243edadccc7ef61d2dbf9 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2072-6694/15/14/3553 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2072-6694 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 15 |j 2023 |e 14, p 3553 |
author_variant |
m e k mek e k ek g k gk k t kt t p tp a h k ahk a t at |
---|---|
matchkey_str |
article:20726694:2023----::ahnlannitgaigu9mutssaiipccadaimcdtaheeotmlhrc |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
RC |
publishDate |
2023 |
allfields |
10.3390/cancers15143553 doi (DE-627)DOAJ093931026 (DE-599)DOAJ06c65198288243edadccc7ef61d2dbf9 DE-627 ger DE-627 rakwb eng RC254-282 Michail E. Klontzas verfasserin aut Machine Learning Integrating <sup<99m</sup<Tc Sestamibi SPECT/CT and Radiomics Data Achieves Optimal Characterization of Renal Oncocytic Tumors 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The increasing evidence of oncocytic renal tumors positive in <sup<99m</sup<Tc Sestamibi Single Photon Emission Tomography/Computed Tomography (SPECT/CT) examination calls for the development of diagnostic tools to differentiate these tumors from more aggressive forms. This study combined radiomics analysis with the uptake of <sup<99m</sup<Tc Sestamibi on SPECT/CT to differentiate benign renal oncocytic neoplasms from renal cell carcinoma. A total of 57 renal tumors were prospectively collected. Histopathological analysis and radiomics data extraction were performed. XGBoost classifiers were trained using the radiomics features alone and combined with the results from the visual evaluation of <sup<99m</sup<Tc Sestamibi SPECT/CT examination. The combined SPECT/radiomics model achieved higher accuracy (95%) with an area under the curve (AUC) of 98.3% (95% CI 93.7–100%) than the radiomics-only model (71.67%) with an AUC of 75% (95% CI 49.7–100%) and visual evaluation of <sup<99m</sup<Tc Sestamibi SPECT/CT alone (90.8%) with an AUC of 90.8% (95%CI 82.5–99.1%). The positive predictive values of SPECT/radiomics, radiomics-only, and <sup<99m</sup<Tc Sestamibi SPECT/CT-only models were 100%, 85.71%, and 85%, respectively, whereas the negative predictive values were 85.71%, 55.56%, and 94.6%, respectively. Feature importance analysis revealed that <sup<99m</sup<Tc Sestamibi uptake was the most influential attribute in the combined model. This study highlights the potential of combining radiomics analysis with <sup<99m</sup<Tc Sestamibi SPECT/CT to improve the preoperative characterization of benign renal oncocytic neoplasms. The proposed SPECT/radiomics classifier outperformed the visual evaluation of <sup<99m</sup<Tc Sestamibii SPECT/CT and the radiomics-only model, demonstrating that the integration of <sup<99m</sup<Tc Sestamibi SPECT/CT and radiomics data provides improved diagnostic performance, with minimal false positive and false negative results. <sup<99m</sup<Tc Sestamibi SPECT/CT artificial intelligence machine learning radiomics renal cell carcinoma renal oncocytoma Neoplasms. Tumors. Oncology. Including cancer and carcinogens Emmanouil Koltsakis verfasserin aut Georgios Kalarakis verfasserin aut Kiril Trpkov verfasserin aut Thomas Papathomas verfasserin aut Apostolos H. Karantanas verfasserin aut Antonios Tzortzakakis verfasserin aut In Cancers MDPI AG, 2010 15(2023), 14, p 3553 (DE-627)614095670 (DE-600)2527080-1 20726694 nnns volume:15 year:2023 number:14, p 3553 https://doi.org/10.3390/cancers15143553 kostenfrei https://doaj.org/article/06c65198288243edadccc7ef61d2dbf9 kostenfrei https://www.mdpi.com/2072-6694/15/14/3553 kostenfrei https://doaj.org/toc/2072-6694 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2023 14, p 3553 |
spelling |
10.3390/cancers15143553 doi (DE-627)DOAJ093931026 (DE-599)DOAJ06c65198288243edadccc7ef61d2dbf9 DE-627 ger DE-627 rakwb eng RC254-282 Michail E. Klontzas verfasserin aut Machine Learning Integrating <sup<99m</sup<Tc Sestamibi SPECT/CT and Radiomics Data Achieves Optimal Characterization of Renal Oncocytic Tumors 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The increasing evidence of oncocytic renal tumors positive in <sup<99m</sup<Tc Sestamibi Single Photon Emission Tomography/Computed Tomography (SPECT/CT) examination calls for the development of diagnostic tools to differentiate these tumors from more aggressive forms. This study combined radiomics analysis with the uptake of <sup<99m</sup<Tc Sestamibi on SPECT/CT to differentiate benign renal oncocytic neoplasms from renal cell carcinoma. A total of 57 renal tumors were prospectively collected. Histopathological analysis and radiomics data extraction were performed. XGBoost classifiers were trained using the radiomics features alone and combined with the results from the visual evaluation of <sup<99m</sup<Tc Sestamibi SPECT/CT examination. The combined SPECT/radiomics model achieved higher accuracy (95%) with an area under the curve (AUC) of 98.3% (95% CI 93.7–100%) than the radiomics-only model (71.67%) with an AUC of 75% (95% CI 49.7–100%) and visual evaluation of <sup<99m</sup<Tc Sestamibi SPECT/CT alone (90.8%) with an AUC of 90.8% (95%CI 82.5–99.1%). The positive predictive values of SPECT/radiomics, radiomics-only, and <sup<99m</sup<Tc Sestamibi SPECT/CT-only models were 100%, 85.71%, and 85%, respectively, whereas the negative predictive values were 85.71%, 55.56%, and 94.6%, respectively. Feature importance analysis revealed that <sup<99m</sup<Tc Sestamibi uptake was the most influential attribute in the combined model. This study highlights the potential of combining radiomics analysis with <sup<99m</sup<Tc Sestamibi SPECT/CT to improve the preoperative characterization of benign renal oncocytic neoplasms. The proposed SPECT/radiomics classifier outperformed the visual evaluation of <sup<99m</sup<Tc Sestamibii SPECT/CT and the radiomics-only model, demonstrating that the integration of <sup<99m</sup<Tc Sestamibi SPECT/CT and radiomics data provides improved diagnostic performance, with minimal false positive and false negative results. <sup<99m</sup<Tc Sestamibi SPECT/CT artificial intelligence machine learning radiomics renal cell carcinoma renal oncocytoma Neoplasms. Tumors. Oncology. Including cancer and carcinogens Emmanouil Koltsakis verfasserin aut Georgios Kalarakis verfasserin aut Kiril Trpkov verfasserin aut Thomas Papathomas verfasserin aut Apostolos H. Karantanas verfasserin aut Antonios Tzortzakakis verfasserin aut In Cancers MDPI AG, 2010 15(2023), 14, p 3553 (DE-627)614095670 (DE-600)2527080-1 20726694 nnns volume:15 year:2023 number:14, p 3553 https://doi.org/10.3390/cancers15143553 kostenfrei https://doaj.org/article/06c65198288243edadccc7ef61d2dbf9 kostenfrei https://www.mdpi.com/2072-6694/15/14/3553 kostenfrei https://doaj.org/toc/2072-6694 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2023 14, p 3553 |
allfields_unstemmed |
10.3390/cancers15143553 doi (DE-627)DOAJ093931026 (DE-599)DOAJ06c65198288243edadccc7ef61d2dbf9 DE-627 ger DE-627 rakwb eng RC254-282 Michail E. Klontzas verfasserin aut Machine Learning Integrating <sup<99m</sup<Tc Sestamibi SPECT/CT and Radiomics Data Achieves Optimal Characterization of Renal Oncocytic Tumors 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The increasing evidence of oncocytic renal tumors positive in <sup<99m</sup<Tc Sestamibi Single Photon Emission Tomography/Computed Tomography (SPECT/CT) examination calls for the development of diagnostic tools to differentiate these tumors from more aggressive forms. This study combined radiomics analysis with the uptake of <sup<99m</sup<Tc Sestamibi on SPECT/CT to differentiate benign renal oncocytic neoplasms from renal cell carcinoma. A total of 57 renal tumors were prospectively collected. Histopathological analysis and radiomics data extraction were performed. XGBoost classifiers were trained using the radiomics features alone and combined with the results from the visual evaluation of <sup<99m</sup<Tc Sestamibi SPECT/CT examination. The combined SPECT/radiomics model achieved higher accuracy (95%) with an area under the curve (AUC) of 98.3% (95% CI 93.7–100%) than the radiomics-only model (71.67%) with an AUC of 75% (95% CI 49.7–100%) and visual evaluation of <sup<99m</sup<Tc Sestamibi SPECT/CT alone (90.8%) with an AUC of 90.8% (95%CI 82.5–99.1%). The positive predictive values of SPECT/radiomics, radiomics-only, and <sup<99m</sup<Tc Sestamibi SPECT/CT-only models were 100%, 85.71%, and 85%, respectively, whereas the negative predictive values were 85.71%, 55.56%, and 94.6%, respectively. Feature importance analysis revealed that <sup<99m</sup<Tc Sestamibi uptake was the most influential attribute in the combined model. This study highlights the potential of combining radiomics analysis with <sup<99m</sup<Tc Sestamibi SPECT/CT to improve the preoperative characterization of benign renal oncocytic neoplasms. The proposed SPECT/radiomics classifier outperformed the visual evaluation of <sup<99m</sup<Tc Sestamibii SPECT/CT and the radiomics-only model, demonstrating that the integration of <sup<99m</sup<Tc Sestamibi SPECT/CT and radiomics data provides improved diagnostic performance, with minimal false positive and false negative results. <sup<99m</sup<Tc Sestamibi SPECT/CT artificial intelligence machine learning radiomics renal cell carcinoma renal oncocytoma Neoplasms. Tumors. Oncology. Including cancer and carcinogens Emmanouil Koltsakis verfasserin aut Georgios Kalarakis verfasserin aut Kiril Trpkov verfasserin aut Thomas Papathomas verfasserin aut Apostolos H. Karantanas verfasserin aut Antonios Tzortzakakis verfasserin aut In Cancers MDPI AG, 2010 15(2023), 14, p 3553 (DE-627)614095670 (DE-600)2527080-1 20726694 nnns volume:15 year:2023 number:14, p 3553 https://doi.org/10.3390/cancers15143553 kostenfrei https://doaj.org/article/06c65198288243edadccc7ef61d2dbf9 kostenfrei https://www.mdpi.com/2072-6694/15/14/3553 kostenfrei https://doaj.org/toc/2072-6694 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2023 14, p 3553 |
allfieldsGer |
10.3390/cancers15143553 doi (DE-627)DOAJ093931026 (DE-599)DOAJ06c65198288243edadccc7ef61d2dbf9 DE-627 ger DE-627 rakwb eng RC254-282 Michail E. Klontzas verfasserin aut Machine Learning Integrating <sup<99m</sup<Tc Sestamibi SPECT/CT and Radiomics Data Achieves Optimal Characterization of Renal Oncocytic Tumors 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The increasing evidence of oncocytic renal tumors positive in <sup<99m</sup<Tc Sestamibi Single Photon Emission Tomography/Computed Tomography (SPECT/CT) examination calls for the development of diagnostic tools to differentiate these tumors from more aggressive forms. This study combined radiomics analysis with the uptake of <sup<99m</sup<Tc Sestamibi on SPECT/CT to differentiate benign renal oncocytic neoplasms from renal cell carcinoma. A total of 57 renal tumors were prospectively collected. Histopathological analysis and radiomics data extraction were performed. XGBoost classifiers were trained using the radiomics features alone and combined with the results from the visual evaluation of <sup<99m</sup<Tc Sestamibi SPECT/CT examination. The combined SPECT/radiomics model achieved higher accuracy (95%) with an area under the curve (AUC) of 98.3% (95% CI 93.7–100%) than the radiomics-only model (71.67%) with an AUC of 75% (95% CI 49.7–100%) and visual evaluation of <sup<99m</sup<Tc Sestamibi SPECT/CT alone (90.8%) with an AUC of 90.8% (95%CI 82.5–99.1%). The positive predictive values of SPECT/radiomics, radiomics-only, and <sup<99m</sup<Tc Sestamibi SPECT/CT-only models were 100%, 85.71%, and 85%, respectively, whereas the negative predictive values were 85.71%, 55.56%, and 94.6%, respectively. Feature importance analysis revealed that <sup<99m</sup<Tc Sestamibi uptake was the most influential attribute in the combined model. This study highlights the potential of combining radiomics analysis with <sup<99m</sup<Tc Sestamibi SPECT/CT to improve the preoperative characterization of benign renal oncocytic neoplasms. The proposed SPECT/radiomics classifier outperformed the visual evaluation of <sup<99m</sup<Tc Sestamibii SPECT/CT and the radiomics-only model, demonstrating that the integration of <sup<99m</sup<Tc Sestamibi SPECT/CT and radiomics data provides improved diagnostic performance, with minimal false positive and false negative results. <sup<99m</sup<Tc Sestamibi SPECT/CT artificial intelligence machine learning radiomics renal cell carcinoma renal oncocytoma Neoplasms. Tumors. Oncology. Including cancer and carcinogens Emmanouil Koltsakis verfasserin aut Georgios Kalarakis verfasserin aut Kiril Trpkov verfasserin aut Thomas Papathomas verfasserin aut Apostolos H. Karantanas verfasserin aut Antonios Tzortzakakis verfasserin aut In Cancers MDPI AG, 2010 15(2023), 14, p 3553 (DE-627)614095670 (DE-600)2527080-1 20726694 nnns volume:15 year:2023 number:14, p 3553 https://doi.org/10.3390/cancers15143553 kostenfrei https://doaj.org/article/06c65198288243edadccc7ef61d2dbf9 kostenfrei https://www.mdpi.com/2072-6694/15/14/3553 kostenfrei https://doaj.org/toc/2072-6694 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2023 14, p 3553 |
allfieldsSound |
10.3390/cancers15143553 doi (DE-627)DOAJ093931026 (DE-599)DOAJ06c65198288243edadccc7ef61d2dbf9 DE-627 ger DE-627 rakwb eng RC254-282 Michail E. Klontzas verfasserin aut Machine Learning Integrating <sup<99m</sup<Tc Sestamibi SPECT/CT and Radiomics Data Achieves Optimal Characterization of Renal Oncocytic Tumors 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The increasing evidence of oncocytic renal tumors positive in <sup<99m</sup<Tc Sestamibi Single Photon Emission Tomography/Computed Tomography (SPECT/CT) examination calls for the development of diagnostic tools to differentiate these tumors from more aggressive forms. This study combined radiomics analysis with the uptake of <sup<99m</sup<Tc Sestamibi on SPECT/CT to differentiate benign renal oncocytic neoplasms from renal cell carcinoma. A total of 57 renal tumors were prospectively collected. Histopathological analysis and radiomics data extraction were performed. XGBoost classifiers were trained using the radiomics features alone and combined with the results from the visual evaluation of <sup<99m</sup<Tc Sestamibi SPECT/CT examination. The combined SPECT/radiomics model achieved higher accuracy (95%) with an area under the curve (AUC) of 98.3% (95% CI 93.7–100%) than the radiomics-only model (71.67%) with an AUC of 75% (95% CI 49.7–100%) and visual evaluation of <sup<99m</sup<Tc Sestamibi SPECT/CT alone (90.8%) with an AUC of 90.8% (95%CI 82.5–99.1%). The positive predictive values of SPECT/radiomics, radiomics-only, and <sup<99m</sup<Tc Sestamibi SPECT/CT-only models were 100%, 85.71%, and 85%, respectively, whereas the negative predictive values were 85.71%, 55.56%, and 94.6%, respectively. Feature importance analysis revealed that <sup<99m</sup<Tc Sestamibi uptake was the most influential attribute in the combined model. This study highlights the potential of combining radiomics analysis with <sup<99m</sup<Tc Sestamibi SPECT/CT to improve the preoperative characterization of benign renal oncocytic neoplasms. The proposed SPECT/radiomics classifier outperformed the visual evaluation of <sup<99m</sup<Tc Sestamibii SPECT/CT and the radiomics-only model, demonstrating that the integration of <sup<99m</sup<Tc Sestamibi SPECT/CT and radiomics data provides improved diagnostic performance, with minimal false positive and false negative results. <sup<99m</sup<Tc Sestamibi SPECT/CT artificial intelligence machine learning radiomics renal cell carcinoma renal oncocytoma Neoplasms. Tumors. Oncology. Including cancer and carcinogens Emmanouil Koltsakis verfasserin aut Georgios Kalarakis verfasserin aut Kiril Trpkov verfasserin aut Thomas Papathomas verfasserin aut Apostolos H. Karantanas verfasserin aut Antonios Tzortzakakis verfasserin aut In Cancers MDPI AG, 2010 15(2023), 14, p 3553 (DE-627)614095670 (DE-600)2527080-1 20726694 nnns volume:15 year:2023 number:14, p 3553 https://doi.org/10.3390/cancers15143553 kostenfrei https://doaj.org/article/06c65198288243edadccc7ef61d2dbf9 kostenfrei https://www.mdpi.com/2072-6694/15/14/3553 kostenfrei https://doaj.org/toc/2072-6694 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2023 14, p 3553 |
language |
English |
source |
In Cancers 15(2023), 14, p 3553 volume:15 year:2023 number:14, p 3553 |
sourceStr |
In Cancers 15(2023), 14, p 3553 volume:15 year:2023 number:14, p 3553 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
<sup<99m</sup<Tc Sestamibi SPECT/CT artificial intelligence machine learning radiomics renal cell carcinoma renal oncocytoma Neoplasms. Tumors. Oncology. Including cancer and carcinogens |
isfreeaccess_bool |
true |
container_title |
Cancers |
authorswithroles_txt_mv |
Michail E. Klontzas @@aut@@ Emmanouil Koltsakis @@aut@@ Georgios Kalarakis @@aut@@ Kiril Trpkov @@aut@@ Thomas Papathomas @@aut@@ Apostolos H. Karantanas @@aut@@ Antonios Tzortzakakis @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
614095670 |
id |
DOAJ093931026 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ093931026</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413022933.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/cancers15143553</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ093931026</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ06c65198288243edadccc7ef61d2dbf9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC254-282</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Michail E. Klontzas</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Machine Learning Integrating <sup<99m</sup<Tc Sestamibi SPECT/CT and Radiomics Data Achieves Optimal Characterization of Renal Oncocytic Tumors</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The increasing evidence of oncocytic renal tumors positive in <sup<99m</sup<Tc Sestamibi Single Photon Emission Tomography/Computed Tomography (SPECT/CT) examination calls for the development of diagnostic tools to differentiate these tumors from more aggressive forms. This study combined radiomics analysis with the uptake of <sup<99m</sup<Tc Sestamibi on SPECT/CT to differentiate benign renal oncocytic neoplasms from renal cell carcinoma. A total of 57 renal tumors were prospectively collected. Histopathological analysis and radiomics data extraction were performed. XGBoost classifiers were trained using the radiomics features alone and combined with the results from the visual evaluation of <sup<99m</sup<Tc Sestamibi SPECT/CT examination. The combined SPECT/radiomics model achieved higher accuracy (95%) with an area under the curve (AUC) of 98.3% (95% CI 93.7–100%) than the radiomics-only model (71.67%) with an AUC of 75% (95% CI 49.7–100%) and visual evaluation of <sup<99m</sup<Tc Sestamibi SPECT/CT alone (90.8%) with an AUC of 90.8% (95%CI 82.5–99.1%). The positive predictive values of SPECT/radiomics, radiomics-only, and <sup<99m</sup<Tc Sestamibi SPECT/CT-only models were 100%, 85.71%, and 85%, respectively, whereas the negative predictive values were 85.71%, 55.56%, and 94.6%, respectively. Feature importance analysis revealed that <sup<99m</sup<Tc Sestamibi uptake was the most influential attribute in the combined model. This study highlights the potential of combining radiomics analysis with <sup<99m</sup<Tc Sestamibi SPECT/CT to improve the preoperative characterization of benign renal oncocytic neoplasms. The proposed SPECT/radiomics classifier outperformed the visual evaluation of <sup<99m</sup<Tc Sestamibii SPECT/CT and the radiomics-only model, demonstrating that the integration of <sup<99m</sup<Tc Sestamibi SPECT/CT and radiomics data provides improved diagnostic performance, with minimal false positive and false negative results.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><sup<99m</sup<Tc Sestamibi SPECT/CT</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">radiomics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">renal cell carcinoma</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">renal oncocytoma</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Neoplasms. Tumors. Oncology. Including cancer and carcinogens</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Emmanouil Koltsakis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Georgios Kalarakis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kiril Trpkov</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Thomas Papathomas</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Apostolos H. Karantanas</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Antonios Tzortzakakis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Cancers</subfield><subfield code="d">MDPI AG, 2010</subfield><subfield code="g">15(2023), 14, p 3553</subfield><subfield code="w">(DE-627)614095670</subfield><subfield code="w">(DE-600)2527080-1</subfield><subfield code="x">20726694</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:14, p 3553</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/cancers15143553</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/06c65198288243edadccc7ef61d2dbf9</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2072-6694/15/14/3553</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2072-6694</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2023</subfield><subfield code="e">14, p 3553</subfield></datafield></record></collection>
|
callnumber-first |
R - Medicine |
author |
Michail E. Klontzas |
spellingShingle |
Michail E. Klontzas misc RC254-282 misc <sup<99m</sup<Tc Sestamibi SPECT/CT misc artificial intelligence misc machine learning misc radiomics misc renal cell carcinoma misc renal oncocytoma misc Neoplasms. Tumors. Oncology. Including cancer and carcinogens Machine Learning Integrating <sup<99m</sup<Tc Sestamibi SPECT/CT and Radiomics Data Achieves Optimal Characterization of Renal Oncocytic Tumors |
authorStr |
Michail E. Klontzas |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)614095670 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
RC254-282 |
illustrated |
Not Illustrated |
issn |
20726694 |
topic_title |
RC254-282 Machine Learning Integrating <sup<99m</sup<Tc Sestamibi SPECT/CT and Radiomics Data Achieves Optimal Characterization of Renal Oncocytic Tumors <sup<99m</sup<Tc Sestamibi SPECT/CT artificial intelligence machine learning radiomics renal cell carcinoma renal oncocytoma |
topic |
misc RC254-282 misc <sup<99m</sup<Tc Sestamibi SPECT/CT misc artificial intelligence misc machine learning misc radiomics misc renal cell carcinoma misc renal oncocytoma misc Neoplasms. Tumors. Oncology. Including cancer and carcinogens |
topic_unstemmed |
misc RC254-282 misc <sup<99m</sup<Tc Sestamibi SPECT/CT misc artificial intelligence misc machine learning misc radiomics misc renal cell carcinoma misc renal oncocytoma misc Neoplasms. Tumors. Oncology. Including cancer and carcinogens |
topic_browse |
misc RC254-282 misc <sup<99m</sup<Tc Sestamibi SPECT/CT misc artificial intelligence misc machine learning misc radiomics misc renal cell carcinoma misc renal oncocytoma misc Neoplasms. Tumors. Oncology. Including cancer and carcinogens |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Cancers |
hierarchy_parent_id |
614095670 |
hierarchy_top_title |
Cancers |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)614095670 (DE-600)2527080-1 |
title |
Machine Learning Integrating <sup<99m</sup<Tc Sestamibi SPECT/CT and Radiomics Data Achieves Optimal Characterization of Renal Oncocytic Tumors |
ctrlnum |
(DE-627)DOAJ093931026 (DE-599)DOAJ06c65198288243edadccc7ef61d2dbf9 |
title_full |
Machine Learning Integrating <sup<99m</sup<Tc Sestamibi SPECT/CT and Radiomics Data Achieves Optimal Characterization of Renal Oncocytic Tumors |
author_sort |
Michail E. Klontzas |
journal |
Cancers |
journalStr |
Cancers |
callnumber-first-code |
R |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Michail E. Klontzas Emmanouil Koltsakis Georgios Kalarakis Kiril Trpkov Thomas Papathomas Apostolos H. Karantanas Antonios Tzortzakakis |
container_volume |
15 |
class |
RC254-282 |
format_se |
Elektronische Aufsätze |
author-letter |
Michail E. Klontzas |
doi_str_mv |
10.3390/cancers15143553 |
author2-role |
verfasserin |
title_sort |
machine learning integrating <sup<99m</sup<tc sestamibi spect/ct and radiomics data achieves optimal characterization of renal oncocytic tumors |
callnumber |
RC254-282 |
title_auth |
Machine Learning Integrating <sup<99m</sup<Tc Sestamibi SPECT/CT and Radiomics Data Achieves Optimal Characterization of Renal Oncocytic Tumors |
abstract |
The increasing evidence of oncocytic renal tumors positive in <sup<99m</sup<Tc Sestamibi Single Photon Emission Tomography/Computed Tomography (SPECT/CT) examination calls for the development of diagnostic tools to differentiate these tumors from more aggressive forms. This study combined radiomics analysis with the uptake of <sup<99m</sup<Tc Sestamibi on SPECT/CT to differentiate benign renal oncocytic neoplasms from renal cell carcinoma. A total of 57 renal tumors were prospectively collected. Histopathological analysis and radiomics data extraction were performed. XGBoost classifiers were trained using the radiomics features alone and combined with the results from the visual evaluation of <sup<99m</sup<Tc Sestamibi SPECT/CT examination. The combined SPECT/radiomics model achieved higher accuracy (95%) with an area under the curve (AUC) of 98.3% (95% CI 93.7–100%) than the radiomics-only model (71.67%) with an AUC of 75% (95% CI 49.7–100%) and visual evaluation of <sup<99m</sup<Tc Sestamibi SPECT/CT alone (90.8%) with an AUC of 90.8% (95%CI 82.5–99.1%). The positive predictive values of SPECT/radiomics, radiomics-only, and <sup<99m</sup<Tc Sestamibi SPECT/CT-only models were 100%, 85.71%, and 85%, respectively, whereas the negative predictive values were 85.71%, 55.56%, and 94.6%, respectively. Feature importance analysis revealed that <sup<99m</sup<Tc Sestamibi uptake was the most influential attribute in the combined model. This study highlights the potential of combining radiomics analysis with <sup<99m</sup<Tc Sestamibi SPECT/CT to improve the preoperative characterization of benign renal oncocytic neoplasms. The proposed SPECT/radiomics classifier outperformed the visual evaluation of <sup<99m</sup<Tc Sestamibii SPECT/CT and the radiomics-only model, demonstrating that the integration of <sup<99m</sup<Tc Sestamibi SPECT/CT and radiomics data provides improved diagnostic performance, with minimal false positive and false negative results. |
abstractGer |
The increasing evidence of oncocytic renal tumors positive in <sup<99m</sup<Tc Sestamibi Single Photon Emission Tomography/Computed Tomography (SPECT/CT) examination calls for the development of diagnostic tools to differentiate these tumors from more aggressive forms. This study combined radiomics analysis with the uptake of <sup<99m</sup<Tc Sestamibi on SPECT/CT to differentiate benign renal oncocytic neoplasms from renal cell carcinoma. A total of 57 renal tumors were prospectively collected. Histopathological analysis and radiomics data extraction were performed. XGBoost classifiers were trained using the radiomics features alone and combined with the results from the visual evaluation of <sup<99m</sup<Tc Sestamibi SPECT/CT examination. The combined SPECT/radiomics model achieved higher accuracy (95%) with an area under the curve (AUC) of 98.3% (95% CI 93.7–100%) than the radiomics-only model (71.67%) with an AUC of 75% (95% CI 49.7–100%) and visual evaluation of <sup<99m</sup<Tc Sestamibi SPECT/CT alone (90.8%) with an AUC of 90.8% (95%CI 82.5–99.1%). The positive predictive values of SPECT/radiomics, radiomics-only, and <sup<99m</sup<Tc Sestamibi SPECT/CT-only models were 100%, 85.71%, and 85%, respectively, whereas the negative predictive values were 85.71%, 55.56%, and 94.6%, respectively. Feature importance analysis revealed that <sup<99m</sup<Tc Sestamibi uptake was the most influential attribute in the combined model. This study highlights the potential of combining radiomics analysis with <sup<99m</sup<Tc Sestamibi SPECT/CT to improve the preoperative characterization of benign renal oncocytic neoplasms. The proposed SPECT/radiomics classifier outperformed the visual evaluation of <sup<99m</sup<Tc Sestamibii SPECT/CT and the radiomics-only model, demonstrating that the integration of <sup<99m</sup<Tc Sestamibi SPECT/CT and radiomics data provides improved diagnostic performance, with minimal false positive and false negative results. |
abstract_unstemmed |
The increasing evidence of oncocytic renal tumors positive in <sup<99m</sup<Tc Sestamibi Single Photon Emission Tomography/Computed Tomography (SPECT/CT) examination calls for the development of diagnostic tools to differentiate these tumors from more aggressive forms. This study combined radiomics analysis with the uptake of <sup<99m</sup<Tc Sestamibi on SPECT/CT to differentiate benign renal oncocytic neoplasms from renal cell carcinoma. A total of 57 renal tumors were prospectively collected. Histopathological analysis and radiomics data extraction were performed. XGBoost classifiers were trained using the radiomics features alone and combined with the results from the visual evaluation of <sup<99m</sup<Tc Sestamibi SPECT/CT examination. The combined SPECT/radiomics model achieved higher accuracy (95%) with an area under the curve (AUC) of 98.3% (95% CI 93.7–100%) than the radiomics-only model (71.67%) with an AUC of 75% (95% CI 49.7–100%) and visual evaluation of <sup<99m</sup<Tc Sestamibi SPECT/CT alone (90.8%) with an AUC of 90.8% (95%CI 82.5–99.1%). The positive predictive values of SPECT/radiomics, radiomics-only, and <sup<99m</sup<Tc Sestamibi SPECT/CT-only models were 100%, 85.71%, and 85%, respectively, whereas the negative predictive values were 85.71%, 55.56%, and 94.6%, respectively. Feature importance analysis revealed that <sup<99m</sup<Tc Sestamibi uptake was the most influential attribute in the combined model. This study highlights the potential of combining radiomics analysis with <sup<99m</sup<Tc Sestamibi SPECT/CT to improve the preoperative characterization of benign renal oncocytic neoplasms. The proposed SPECT/radiomics classifier outperformed the visual evaluation of <sup<99m</sup<Tc Sestamibii SPECT/CT and the radiomics-only model, demonstrating that the integration of <sup<99m</sup<Tc Sestamibi SPECT/CT and radiomics data provides improved diagnostic performance, with minimal false positive and false negative results. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
14, p 3553 |
title_short |
Machine Learning Integrating <sup<99m</sup<Tc Sestamibi SPECT/CT and Radiomics Data Achieves Optimal Characterization of Renal Oncocytic Tumors |
url |
https://doi.org/10.3390/cancers15143553 https://doaj.org/article/06c65198288243edadccc7ef61d2dbf9 https://www.mdpi.com/2072-6694/15/14/3553 https://doaj.org/toc/2072-6694 |
remote_bool |
true |
author2 |
Emmanouil Koltsakis Georgios Kalarakis Kiril Trpkov Thomas Papathomas Apostolos H. Karantanas Antonios Tzortzakakis |
author2Str |
Emmanouil Koltsakis Georgios Kalarakis Kiril Trpkov Thomas Papathomas Apostolos H. Karantanas Antonios Tzortzakakis |
ppnlink |
614095670 |
callnumber-subject |
RC - Internal Medicine |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/cancers15143553 |
callnumber-a |
RC254-282 |
up_date |
2024-07-03T20:15:03.267Z |
_version_ |
1803590254746140672 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ093931026</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413022933.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/cancers15143553</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ093931026</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ06c65198288243edadccc7ef61d2dbf9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC254-282</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Michail E. Klontzas</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Machine Learning Integrating <sup<99m</sup<Tc Sestamibi SPECT/CT and Radiomics Data Achieves Optimal Characterization of Renal Oncocytic Tumors</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The increasing evidence of oncocytic renal tumors positive in <sup<99m</sup<Tc Sestamibi Single Photon Emission Tomography/Computed Tomography (SPECT/CT) examination calls for the development of diagnostic tools to differentiate these tumors from more aggressive forms. This study combined radiomics analysis with the uptake of <sup<99m</sup<Tc Sestamibi on SPECT/CT to differentiate benign renal oncocytic neoplasms from renal cell carcinoma. A total of 57 renal tumors were prospectively collected. Histopathological analysis and radiomics data extraction were performed. XGBoost classifiers were trained using the radiomics features alone and combined with the results from the visual evaluation of <sup<99m</sup<Tc Sestamibi SPECT/CT examination. The combined SPECT/radiomics model achieved higher accuracy (95%) with an area under the curve (AUC) of 98.3% (95% CI 93.7–100%) than the radiomics-only model (71.67%) with an AUC of 75% (95% CI 49.7–100%) and visual evaluation of <sup<99m</sup<Tc Sestamibi SPECT/CT alone (90.8%) with an AUC of 90.8% (95%CI 82.5–99.1%). The positive predictive values of SPECT/radiomics, radiomics-only, and <sup<99m</sup<Tc Sestamibi SPECT/CT-only models were 100%, 85.71%, and 85%, respectively, whereas the negative predictive values were 85.71%, 55.56%, and 94.6%, respectively. Feature importance analysis revealed that <sup<99m</sup<Tc Sestamibi uptake was the most influential attribute in the combined model. This study highlights the potential of combining radiomics analysis with <sup<99m</sup<Tc Sestamibi SPECT/CT to improve the preoperative characterization of benign renal oncocytic neoplasms. The proposed SPECT/radiomics classifier outperformed the visual evaluation of <sup<99m</sup<Tc Sestamibii SPECT/CT and the radiomics-only model, demonstrating that the integration of <sup<99m</sup<Tc Sestamibi SPECT/CT and radiomics data provides improved diagnostic performance, with minimal false positive and false negative results.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><sup<99m</sup<Tc Sestamibi SPECT/CT</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">radiomics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">renal cell carcinoma</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">renal oncocytoma</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Neoplasms. Tumors. Oncology. Including cancer and carcinogens</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Emmanouil Koltsakis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Georgios Kalarakis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kiril Trpkov</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Thomas Papathomas</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Apostolos H. Karantanas</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Antonios Tzortzakakis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Cancers</subfield><subfield code="d">MDPI AG, 2010</subfield><subfield code="g">15(2023), 14, p 3553</subfield><subfield code="w">(DE-627)614095670</subfield><subfield code="w">(DE-600)2527080-1</subfield><subfield code="x">20726694</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:14, p 3553</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/cancers15143553</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/06c65198288243edadccc7ef61d2dbf9</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2072-6694/15/14/3553</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2072-6694</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2023</subfield><subfield code="e">14, p 3553</subfield></datafield></record></collection>
|
score |
7.4010506 |