Greenhouse Gas Emissions Forecasts in Countries of the European Union by Means of a Multifactor Algorithm
A novel multifactor algorithm is developed with the aim of estimating GHG emissions in the EU countries and forecasting different future scenarios. This is created starting from (1) GDP, (2) population and (3) renewable energy share (RES). The determination coefficient (R<sup<2</sup<) of...
Ausführliche Beschreibung
Autor*in: |
Antonio Marotta [verfasserIn] César Porras-Amores [verfasserIn] Antonio Rodríguez Sánchez [verfasserIn] Paola Villoria Sáez [verfasserIn] Gabriele Masera [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Applied Sciences - MDPI AG, 2012, 13(2023), 14, p 8520 |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2023 ; number:14, p 8520 |
Links: |
---|
DOI / URN: |
10.3390/app13148520 |
---|
Katalog-ID: |
DOAJ093949197 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ093949197 | ||
003 | DE-627 | ||
005 | 20240413023228.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/app13148520 |2 doi | |
035 | |a (DE-627)DOAJ093949197 | ||
035 | |a (DE-599)DOAJ2e9239ebc795489c88bcc7bd124ff155 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TA1-2040 | |
050 | 0 | |a QH301-705.5 | |
050 | 0 | |a QC1-999 | |
050 | 0 | |a QD1-999 | |
100 | 0 | |a Antonio Marotta |e verfasserin |4 aut | |
245 | 1 | 0 | |a Greenhouse Gas Emissions Forecasts in Countries of the European Union by Means of a Multifactor Algorithm |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a A novel multifactor algorithm is developed with the aim of estimating GHG emissions in the EU countries and forecasting different future scenarios. This is created starting from (1) GDP, (2) population and (3) renewable energy share (RES). The determination coefficient (R<sup<2</sup<) of the multiple regression adopted reaches a value of 0.96; thus, only 4% of the GHG variation cannot be explained by the combination of the three variables. Germany is removed from the model after analysing the statistical outliers, as it presents an unusual behaviour within the European context. Also, France, Italy and Ireland are removed in the forecast analysis since they are characterised by corrected weighting values above the threshold value of the algorithm (0.156). The results show that GHG emissions decrease 14% in a low-growth-rate scenario, increase 24% in an average-growth scenario and increase 104% in a high-growth-rate scenario. Countries that improve the most are the ones that are currently underdeveloped in RES and are expected to decrease their population in the future (Croatia, Latvia, Cyprus and Greece). Other countries currently well positioned but with expected population growth (Sweden, Luxemburg and Denmark) or with expected intense GDP growth (Estonia and Malta) may lack decarbonisation levers. Therefore, policy makers should introduce additional subsidy schemes and tax exemptions in both developed and less developed countries to meet EU decarbonisation targets. | ||
650 | 4 | |a European Union | |
650 | 4 | |a sustainable development | |
650 | 4 | |a greenhouse gas emissions | |
650 | 4 | |a carbon neutrality | |
650 | 4 | |a gross domestic product | |
650 | 4 | |a renewable energy | |
653 | 0 | |a Technology | |
653 | 0 | |a T | |
653 | 0 | |a Engineering (General). Civil engineering (General) | |
653 | 0 | |a Biology (General) | |
653 | 0 | |a Physics | |
653 | 0 | |a Chemistry | |
700 | 0 | |a César Porras-Amores |e verfasserin |4 aut | |
700 | 0 | |a Antonio Rodríguez Sánchez |e verfasserin |4 aut | |
700 | 0 | |a Paola Villoria Sáez |e verfasserin |4 aut | |
700 | 0 | |a Gabriele Masera |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Applied Sciences |d MDPI AG, 2012 |g 13(2023), 14, p 8520 |w (DE-627)737287640 |w (DE-600)2704225-X |x 20763417 |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2023 |g number:14, p 8520 |
856 | 4 | 0 | |u https://doi.org/10.3390/app13148520 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/2e9239ebc795489c88bcc7bd124ff155 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2076-3417/13/14/8520 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2076-3417 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 13 |j 2023 |e 14, p 8520 |
author_variant |
a m am c p a cpa a r s ars p v s pvs g m gm |
---|---|
matchkey_str |
article:20763417:2023----::rehueaeisosoeaticutisfherpauinyen |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
TA |
publishDate |
2023 |
allfields |
10.3390/app13148520 doi (DE-627)DOAJ093949197 (DE-599)DOAJ2e9239ebc795489c88bcc7bd124ff155 DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Antonio Marotta verfasserin aut Greenhouse Gas Emissions Forecasts in Countries of the European Union by Means of a Multifactor Algorithm 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A novel multifactor algorithm is developed with the aim of estimating GHG emissions in the EU countries and forecasting different future scenarios. This is created starting from (1) GDP, (2) population and (3) renewable energy share (RES). The determination coefficient (R<sup<2</sup<) of the multiple regression adopted reaches a value of 0.96; thus, only 4% of the GHG variation cannot be explained by the combination of the three variables. Germany is removed from the model after analysing the statistical outliers, as it presents an unusual behaviour within the European context. Also, France, Italy and Ireland are removed in the forecast analysis since they are characterised by corrected weighting values above the threshold value of the algorithm (0.156). The results show that GHG emissions decrease 14% in a low-growth-rate scenario, increase 24% in an average-growth scenario and increase 104% in a high-growth-rate scenario. Countries that improve the most are the ones that are currently underdeveloped in RES and are expected to decrease their population in the future (Croatia, Latvia, Cyprus and Greece). Other countries currently well positioned but with expected population growth (Sweden, Luxemburg and Denmark) or with expected intense GDP growth (Estonia and Malta) may lack decarbonisation levers. Therefore, policy makers should introduce additional subsidy schemes and tax exemptions in both developed and less developed countries to meet EU decarbonisation targets. European Union sustainable development greenhouse gas emissions carbon neutrality gross domestic product renewable energy Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry César Porras-Amores verfasserin aut Antonio Rodríguez Sánchez verfasserin aut Paola Villoria Sáez verfasserin aut Gabriele Masera verfasserin aut In Applied Sciences MDPI AG, 2012 13(2023), 14, p 8520 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:13 year:2023 number:14, p 8520 https://doi.org/10.3390/app13148520 kostenfrei https://doaj.org/article/2e9239ebc795489c88bcc7bd124ff155 kostenfrei https://www.mdpi.com/2076-3417/13/14/8520 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 14, p 8520 |
spelling |
10.3390/app13148520 doi (DE-627)DOAJ093949197 (DE-599)DOAJ2e9239ebc795489c88bcc7bd124ff155 DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Antonio Marotta verfasserin aut Greenhouse Gas Emissions Forecasts in Countries of the European Union by Means of a Multifactor Algorithm 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A novel multifactor algorithm is developed with the aim of estimating GHG emissions in the EU countries and forecasting different future scenarios. This is created starting from (1) GDP, (2) population and (3) renewable energy share (RES). The determination coefficient (R<sup<2</sup<) of the multiple regression adopted reaches a value of 0.96; thus, only 4% of the GHG variation cannot be explained by the combination of the three variables. Germany is removed from the model after analysing the statistical outliers, as it presents an unusual behaviour within the European context. Also, France, Italy and Ireland are removed in the forecast analysis since they are characterised by corrected weighting values above the threshold value of the algorithm (0.156). The results show that GHG emissions decrease 14% in a low-growth-rate scenario, increase 24% in an average-growth scenario and increase 104% in a high-growth-rate scenario. Countries that improve the most are the ones that are currently underdeveloped in RES and are expected to decrease their population in the future (Croatia, Latvia, Cyprus and Greece). Other countries currently well positioned but with expected population growth (Sweden, Luxemburg and Denmark) or with expected intense GDP growth (Estonia and Malta) may lack decarbonisation levers. Therefore, policy makers should introduce additional subsidy schemes and tax exemptions in both developed and less developed countries to meet EU decarbonisation targets. European Union sustainable development greenhouse gas emissions carbon neutrality gross domestic product renewable energy Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry César Porras-Amores verfasserin aut Antonio Rodríguez Sánchez verfasserin aut Paola Villoria Sáez verfasserin aut Gabriele Masera verfasserin aut In Applied Sciences MDPI AG, 2012 13(2023), 14, p 8520 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:13 year:2023 number:14, p 8520 https://doi.org/10.3390/app13148520 kostenfrei https://doaj.org/article/2e9239ebc795489c88bcc7bd124ff155 kostenfrei https://www.mdpi.com/2076-3417/13/14/8520 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 14, p 8520 |
allfields_unstemmed |
10.3390/app13148520 doi (DE-627)DOAJ093949197 (DE-599)DOAJ2e9239ebc795489c88bcc7bd124ff155 DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Antonio Marotta verfasserin aut Greenhouse Gas Emissions Forecasts in Countries of the European Union by Means of a Multifactor Algorithm 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A novel multifactor algorithm is developed with the aim of estimating GHG emissions in the EU countries and forecasting different future scenarios. This is created starting from (1) GDP, (2) population and (3) renewable energy share (RES). The determination coefficient (R<sup<2</sup<) of the multiple regression adopted reaches a value of 0.96; thus, only 4% of the GHG variation cannot be explained by the combination of the three variables. Germany is removed from the model after analysing the statistical outliers, as it presents an unusual behaviour within the European context. Also, France, Italy and Ireland are removed in the forecast analysis since they are characterised by corrected weighting values above the threshold value of the algorithm (0.156). The results show that GHG emissions decrease 14% in a low-growth-rate scenario, increase 24% in an average-growth scenario and increase 104% in a high-growth-rate scenario. Countries that improve the most are the ones that are currently underdeveloped in RES and are expected to decrease their population in the future (Croatia, Latvia, Cyprus and Greece). Other countries currently well positioned but with expected population growth (Sweden, Luxemburg and Denmark) or with expected intense GDP growth (Estonia and Malta) may lack decarbonisation levers. Therefore, policy makers should introduce additional subsidy schemes and tax exemptions in both developed and less developed countries to meet EU decarbonisation targets. European Union sustainable development greenhouse gas emissions carbon neutrality gross domestic product renewable energy Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry César Porras-Amores verfasserin aut Antonio Rodríguez Sánchez verfasserin aut Paola Villoria Sáez verfasserin aut Gabriele Masera verfasserin aut In Applied Sciences MDPI AG, 2012 13(2023), 14, p 8520 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:13 year:2023 number:14, p 8520 https://doi.org/10.3390/app13148520 kostenfrei https://doaj.org/article/2e9239ebc795489c88bcc7bd124ff155 kostenfrei https://www.mdpi.com/2076-3417/13/14/8520 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 14, p 8520 |
allfieldsGer |
10.3390/app13148520 doi (DE-627)DOAJ093949197 (DE-599)DOAJ2e9239ebc795489c88bcc7bd124ff155 DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Antonio Marotta verfasserin aut Greenhouse Gas Emissions Forecasts in Countries of the European Union by Means of a Multifactor Algorithm 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A novel multifactor algorithm is developed with the aim of estimating GHG emissions in the EU countries and forecasting different future scenarios. This is created starting from (1) GDP, (2) population and (3) renewable energy share (RES). The determination coefficient (R<sup<2</sup<) of the multiple regression adopted reaches a value of 0.96; thus, only 4% of the GHG variation cannot be explained by the combination of the three variables. Germany is removed from the model after analysing the statistical outliers, as it presents an unusual behaviour within the European context. Also, France, Italy and Ireland are removed in the forecast analysis since they are characterised by corrected weighting values above the threshold value of the algorithm (0.156). The results show that GHG emissions decrease 14% in a low-growth-rate scenario, increase 24% in an average-growth scenario and increase 104% in a high-growth-rate scenario. Countries that improve the most are the ones that are currently underdeveloped in RES and are expected to decrease their population in the future (Croatia, Latvia, Cyprus and Greece). Other countries currently well positioned but with expected population growth (Sweden, Luxemburg and Denmark) or with expected intense GDP growth (Estonia and Malta) may lack decarbonisation levers. Therefore, policy makers should introduce additional subsidy schemes and tax exemptions in both developed and less developed countries to meet EU decarbonisation targets. European Union sustainable development greenhouse gas emissions carbon neutrality gross domestic product renewable energy Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry César Porras-Amores verfasserin aut Antonio Rodríguez Sánchez verfasserin aut Paola Villoria Sáez verfasserin aut Gabriele Masera verfasserin aut In Applied Sciences MDPI AG, 2012 13(2023), 14, p 8520 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:13 year:2023 number:14, p 8520 https://doi.org/10.3390/app13148520 kostenfrei https://doaj.org/article/2e9239ebc795489c88bcc7bd124ff155 kostenfrei https://www.mdpi.com/2076-3417/13/14/8520 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 14, p 8520 |
allfieldsSound |
10.3390/app13148520 doi (DE-627)DOAJ093949197 (DE-599)DOAJ2e9239ebc795489c88bcc7bd124ff155 DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Antonio Marotta verfasserin aut Greenhouse Gas Emissions Forecasts in Countries of the European Union by Means of a Multifactor Algorithm 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A novel multifactor algorithm is developed with the aim of estimating GHG emissions in the EU countries and forecasting different future scenarios. This is created starting from (1) GDP, (2) population and (3) renewable energy share (RES). The determination coefficient (R<sup<2</sup<) of the multiple regression adopted reaches a value of 0.96; thus, only 4% of the GHG variation cannot be explained by the combination of the three variables. Germany is removed from the model after analysing the statistical outliers, as it presents an unusual behaviour within the European context. Also, France, Italy and Ireland are removed in the forecast analysis since they are characterised by corrected weighting values above the threshold value of the algorithm (0.156). The results show that GHG emissions decrease 14% in a low-growth-rate scenario, increase 24% in an average-growth scenario and increase 104% in a high-growth-rate scenario. Countries that improve the most are the ones that are currently underdeveloped in RES and are expected to decrease their population in the future (Croatia, Latvia, Cyprus and Greece). Other countries currently well positioned but with expected population growth (Sweden, Luxemburg and Denmark) or with expected intense GDP growth (Estonia and Malta) may lack decarbonisation levers. Therefore, policy makers should introduce additional subsidy schemes and tax exemptions in both developed and less developed countries to meet EU decarbonisation targets. European Union sustainable development greenhouse gas emissions carbon neutrality gross domestic product renewable energy Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry César Porras-Amores verfasserin aut Antonio Rodríguez Sánchez verfasserin aut Paola Villoria Sáez verfasserin aut Gabriele Masera verfasserin aut In Applied Sciences MDPI AG, 2012 13(2023), 14, p 8520 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:13 year:2023 number:14, p 8520 https://doi.org/10.3390/app13148520 kostenfrei https://doaj.org/article/2e9239ebc795489c88bcc7bd124ff155 kostenfrei https://www.mdpi.com/2076-3417/13/14/8520 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 14, p 8520 |
language |
English |
source |
In Applied Sciences 13(2023), 14, p 8520 volume:13 year:2023 number:14, p 8520 |
sourceStr |
In Applied Sciences 13(2023), 14, p 8520 volume:13 year:2023 number:14, p 8520 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
European Union sustainable development greenhouse gas emissions carbon neutrality gross domestic product renewable energy Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry |
isfreeaccess_bool |
true |
container_title |
Applied Sciences |
authorswithroles_txt_mv |
Antonio Marotta @@aut@@ César Porras-Amores @@aut@@ Antonio Rodríguez Sánchez @@aut@@ Paola Villoria Sáez @@aut@@ Gabriele Masera @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
737287640 |
id |
DOAJ093949197 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ093949197</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413023228.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/app13148520</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ093949197</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ2e9239ebc795489c88bcc7bd124ff155</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Antonio Marotta</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Greenhouse Gas Emissions Forecasts in Countries of the European Union by Means of a Multifactor Algorithm</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A novel multifactor algorithm is developed with the aim of estimating GHG emissions in the EU countries and forecasting different future scenarios. This is created starting from (1) GDP, (2) population and (3) renewable energy share (RES). The determination coefficient (R<sup<2</sup<) of the multiple regression adopted reaches a value of 0.96; thus, only 4% of the GHG variation cannot be explained by the combination of the three variables. Germany is removed from the model after analysing the statistical outliers, as it presents an unusual behaviour within the European context. Also, France, Italy and Ireland are removed in the forecast analysis since they are characterised by corrected weighting values above the threshold value of the algorithm (0.156). The results show that GHG emissions decrease 14% in a low-growth-rate scenario, increase 24% in an average-growth scenario and increase 104% in a high-growth-rate scenario. Countries that improve the most are the ones that are currently underdeveloped in RES and are expected to decrease their population in the future (Croatia, Latvia, Cyprus and Greece). Other countries currently well positioned but with expected population growth (Sweden, Luxemburg and Denmark) or with expected intense GDP growth (Estonia and Malta) may lack decarbonisation levers. Therefore, policy makers should introduce additional subsidy schemes and tax exemptions in both developed and less developed countries to meet EU decarbonisation targets.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">European Union</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sustainable development</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">greenhouse gas emissions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">carbon neutrality</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">gross domestic product</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">renewable energy</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">César Porras-Amores</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Antonio Rodríguez Sánchez</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Paola Villoria Sáez</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gabriele Masera</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Applied Sciences</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">13(2023), 14, p 8520</subfield><subfield code="w">(DE-627)737287640</subfield><subfield code="w">(DE-600)2704225-X</subfield><subfield code="x">20763417</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:14, p 8520</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/app13148520</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/2e9239ebc795489c88bcc7bd124ff155</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2076-3417/13/14/8520</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2076-3417</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2023</subfield><subfield code="e">14, p 8520</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Antonio Marotta |
spellingShingle |
Antonio Marotta misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc European Union misc sustainable development misc greenhouse gas emissions misc carbon neutrality misc gross domestic product misc renewable energy misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry Greenhouse Gas Emissions Forecasts in Countries of the European Union by Means of a Multifactor Algorithm |
authorStr |
Antonio Marotta |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)737287640 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA1-2040 |
illustrated |
Not Illustrated |
issn |
20763417 |
topic_title |
TA1-2040 QH301-705.5 QC1-999 QD1-999 Greenhouse Gas Emissions Forecasts in Countries of the European Union by Means of a Multifactor Algorithm European Union sustainable development greenhouse gas emissions carbon neutrality gross domestic product renewable energy |
topic |
misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc European Union misc sustainable development misc greenhouse gas emissions misc carbon neutrality misc gross domestic product misc renewable energy misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry |
topic_unstemmed |
misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc European Union misc sustainable development misc greenhouse gas emissions misc carbon neutrality misc gross domestic product misc renewable energy misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry |
topic_browse |
misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc European Union misc sustainable development misc greenhouse gas emissions misc carbon neutrality misc gross domestic product misc renewable energy misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Applied Sciences |
hierarchy_parent_id |
737287640 |
hierarchy_top_title |
Applied Sciences |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)737287640 (DE-600)2704225-X |
title |
Greenhouse Gas Emissions Forecasts in Countries of the European Union by Means of a Multifactor Algorithm |
ctrlnum |
(DE-627)DOAJ093949197 (DE-599)DOAJ2e9239ebc795489c88bcc7bd124ff155 |
title_full |
Greenhouse Gas Emissions Forecasts in Countries of the European Union by Means of a Multifactor Algorithm |
author_sort |
Antonio Marotta |
journal |
Applied Sciences |
journalStr |
Applied Sciences |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Antonio Marotta César Porras-Amores Antonio Rodríguez Sánchez Paola Villoria Sáez Gabriele Masera |
container_volume |
13 |
class |
TA1-2040 QH301-705.5 QC1-999 QD1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Antonio Marotta |
doi_str_mv |
10.3390/app13148520 |
author2-role |
verfasserin |
title_sort |
greenhouse gas emissions forecasts in countries of the european union by means of a multifactor algorithm |
callnumber |
TA1-2040 |
title_auth |
Greenhouse Gas Emissions Forecasts in Countries of the European Union by Means of a Multifactor Algorithm |
abstract |
A novel multifactor algorithm is developed with the aim of estimating GHG emissions in the EU countries and forecasting different future scenarios. This is created starting from (1) GDP, (2) population and (3) renewable energy share (RES). The determination coefficient (R<sup<2</sup<) of the multiple regression adopted reaches a value of 0.96; thus, only 4% of the GHG variation cannot be explained by the combination of the three variables. Germany is removed from the model after analysing the statistical outliers, as it presents an unusual behaviour within the European context. Also, France, Italy and Ireland are removed in the forecast analysis since they are characterised by corrected weighting values above the threshold value of the algorithm (0.156). The results show that GHG emissions decrease 14% in a low-growth-rate scenario, increase 24% in an average-growth scenario and increase 104% in a high-growth-rate scenario. Countries that improve the most are the ones that are currently underdeveloped in RES and are expected to decrease their population in the future (Croatia, Latvia, Cyprus and Greece). Other countries currently well positioned but with expected population growth (Sweden, Luxemburg and Denmark) or with expected intense GDP growth (Estonia and Malta) may lack decarbonisation levers. Therefore, policy makers should introduce additional subsidy schemes and tax exemptions in both developed and less developed countries to meet EU decarbonisation targets. |
abstractGer |
A novel multifactor algorithm is developed with the aim of estimating GHG emissions in the EU countries and forecasting different future scenarios. This is created starting from (1) GDP, (2) population and (3) renewable energy share (RES). The determination coefficient (R<sup<2</sup<) of the multiple regression adopted reaches a value of 0.96; thus, only 4% of the GHG variation cannot be explained by the combination of the three variables. Germany is removed from the model after analysing the statistical outliers, as it presents an unusual behaviour within the European context. Also, France, Italy and Ireland are removed in the forecast analysis since they are characterised by corrected weighting values above the threshold value of the algorithm (0.156). The results show that GHG emissions decrease 14% in a low-growth-rate scenario, increase 24% in an average-growth scenario and increase 104% in a high-growth-rate scenario. Countries that improve the most are the ones that are currently underdeveloped in RES and are expected to decrease their population in the future (Croatia, Latvia, Cyprus and Greece). Other countries currently well positioned but with expected population growth (Sweden, Luxemburg and Denmark) or with expected intense GDP growth (Estonia and Malta) may lack decarbonisation levers. Therefore, policy makers should introduce additional subsidy schemes and tax exemptions in both developed and less developed countries to meet EU decarbonisation targets. |
abstract_unstemmed |
A novel multifactor algorithm is developed with the aim of estimating GHG emissions in the EU countries and forecasting different future scenarios. This is created starting from (1) GDP, (2) population and (3) renewable energy share (RES). The determination coefficient (R<sup<2</sup<) of the multiple regression adopted reaches a value of 0.96; thus, only 4% of the GHG variation cannot be explained by the combination of the three variables. Germany is removed from the model after analysing the statistical outliers, as it presents an unusual behaviour within the European context. Also, France, Italy and Ireland are removed in the forecast analysis since they are characterised by corrected weighting values above the threshold value of the algorithm (0.156). The results show that GHG emissions decrease 14% in a low-growth-rate scenario, increase 24% in an average-growth scenario and increase 104% in a high-growth-rate scenario. Countries that improve the most are the ones that are currently underdeveloped in RES and are expected to decrease their population in the future (Croatia, Latvia, Cyprus and Greece). Other countries currently well positioned but with expected population growth (Sweden, Luxemburg and Denmark) or with expected intense GDP growth (Estonia and Malta) may lack decarbonisation levers. Therefore, policy makers should introduce additional subsidy schemes and tax exemptions in both developed and less developed countries to meet EU decarbonisation targets. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
14, p 8520 |
title_short |
Greenhouse Gas Emissions Forecasts in Countries of the European Union by Means of a Multifactor Algorithm |
url |
https://doi.org/10.3390/app13148520 https://doaj.org/article/2e9239ebc795489c88bcc7bd124ff155 https://www.mdpi.com/2076-3417/13/14/8520 https://doaj.org/toc/2076-3417 |
remote_bool |
true |
author2 |
César Porras-Amores Antonio Rodríguez Sánchez Paola Villoria Sáez Gabriele Masera |
author2Str |
César Porras-Amores Antonio Rodríguez Sánchez Paola Villoria Sáez Gabriele Masera |
ppnlink |
737287640 |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/app13148520 |
callnumber-a |
TA1-2040 |
up_date |
2024-07-03T20:21:28.283Z |
_version_ |
1803590658461532160 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ093949197</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413023228.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/app13148520</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ093949197</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ2e9239ebc795489c88bcc7bd124ff155</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Antonio Marotta</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Greenhouse Gas Emissions Forecasts in Countries of the European Union by Means of a Multifactor Algorithm</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A novel multifactor algorithm is developed with the aim of estimating GHG emissions in the EU countries and forecasting different future scenarios. This is created starting from (1) GDP, (2) population and (3) renewable energy share (RES). The determination coefficient (R<sup<2</sup<) of the multiple regression adopted reaches a value of 0.96; thus, only 4% of the GHG variation cannot be explained by the combination of the three variables. Germany is removed from the model after analysing the statistical outliers, as it presents an unusual behaviour within the European context. Also, France, Italy and Ireland are removed in the forecast analysis since they are characterised by corrected weighting values above the threshold value of the algorithm (0.156). The results show that GHG emissions decrease 14% in a low-growth-rate scenario, increase 24% in an average-growth scenario and increase 104% in a high-growth-rate scenario. Countries that improve the most are the ones that are currently underdeveloped in RES and are expected to decrease their population in the future (Croatia, Latvia, Cyprus and Greece). Other countries currently well positioned but with expected population growth (Sweden, Luxemburg and Denmark) or with expected intense GDP growth (Estonia and Malta) may lack decarbonisation levers. Therefore, policy makers should introduce additional subsidy schemes and tax exemptions in both developed and less developed countries to meet EU decarbonisation targets.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">European Union</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sustainable development</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">greenhouse gas emissions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">carbon neutrality</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">gross domestic product</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">renewable energy</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">César Porras-Amores</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Antonio Rodríguez Sánchez</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Paola Villoria Sáez</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gabriele Masera</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Applied Sciences</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">13(2023), 14, p 8520</subfield><subfield code="w">(DE-627)737287640</subfield><subfield code="w">(DE-600)2704225-X</subfield><subfield code="x">20763417</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:14, p 8520</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/app13148520</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/2e9239ebc795489c88bcc7bd124ff155</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2076-3417/13/14/8520</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2076-3417</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2023</subfield><subfield code="e">14, p 8520</subfield></datafield></record></collection>
|
score |
7.399617 |