Chemical Stoichiometry and Enzyme Activity Changes during Mixed Decomposition of <i<Camellia sinensis</i< Pruning Residues and Companion Tree Species Litter
(1) Background: In managing ecological tea gardens, litter composed of pruned and fallen tea leaves from companion tree species is an important component of tea garden soil. The decomposition of litter plays a crucial role in regulating nutrient cycling in tea garden ecosystems. (2) Methods: This st...
Ausführliche Beschreibung
Autor*in: |
Hongjiu Zhao [verfasserIn] Rui Yang [verfasserIn] Congjun Yuan [verfasserIn] Shaqian Liu [verfasserIn] Chunlan Hou [verfasserIn] Haodong Wang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Agronomy - MDPI AG, 2012, 13(2023), 7, p 1717 |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2023 ; number:7, p 1717 |
Links: |
---|
DOI / URN: |
10.3390/agronomy13071717 |
---|
Katalog-ID: |
DOAJ093962029 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ093962029 | ||
003 | DE-627 | ||
005 | 20240413023440.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/agronomy13071717 |2 doi | |
035 | |a (DE-627)DOAJ093962029 | ||
035 | |a (DE-599)DOAJdb53200cd51642589b6828bb35e4344d | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Hongjiu Zhao |e verfasserin |4 aut | |
245 | 1 | 0 | |a Chemical Stoichiometry and Enzyme Activity Changes during Mixed Decomposition of <i<Camellia sinensis</i< Pruning Residues and Companion Tree Species Litter |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a (1) Background: In managing ecological tea gardens, litter composed of pruned and fallen tea leaves from companion tree species is an important component of tea garden soil. The decomposition of litter plays a crucial role in regulating nutrient cycling in tea garden ecosystems. (2) Methods: This study employed the litterbag method to investigate chemical stoichiometry characteristics and enzyme activity changes during the decomposition process of pruned and fallen <i<Camellia sinensis</i< leaves from companion tree species in an ecological tea garden located in central Guizhou Province. (3) Results: With decomposition duration, the general trend of changes in the C/N and C/P ratios showed a decrease in the activity of UE (urease), AP (acid phosphatase), and PPO (polyphenol oxidase) followed by an increase, while CAT (catalase) and CEL (cellulase) activity decreased, then increased, and then decreased again. On the other hand, the N/P and the activity of SC (sucrase) first increased and then decreased. The C/N and the activities of UE, PPO, and AP generally reached their maximum values during the late decomposition stage (366–428 d), while the N/P and the CAT activity peaked during the mid-decomposition stage (305 d). In contrast, the activity of SC and CEL reached its maximum value during the early decomposition stage (123 d). The N/P ratios were significantly higher than those of the CS (<i<C. sinensis</i<) litter in the mixed treatment, while C/N and C/P ratios were significantly lower than those in the CS during decomposition for 184–366 days. The UE, CAT, AP, and SC activities of CBL (<i<C. sinensis + B. luminifera</i<) litter were significantly higher than those of the CS litter during decomposition. During the experiment, antagonistic effects were observed in the C/N and C/P ratios of the different litter types. Most mixed litter exhibited additive effects on enzyme activity, while a few showed nonadditive effects. For the nonadditive effects, most were antagonistic effects, mainly in the CPM (<i<C. sinensis + C. glanduliferum</i<) litter. A small portion, mainly observed in the CBL and CCG (<i<C. sinensis + C. glanduliferum</i<) litter, showed synergistic effects. (4) Conclusions: Selecting <i<B. luminifera</i< and <i<C. glanduliferum</i< to be part of the tree species composition in ecological tea gardens can produce positive mixed effects on enzyme activity during litter decomposition, increase nutrient return capacity, maintain tea garden fertility, and achieve the ecological development of tea gardens. | ||
650 | 4 | |a tea pruning | |
650 | 4 | |a associated tree species | |
650 | 4 | |a stoichiometric characteristics | |
650 | 4 | |a enzyme activity | |
650 | 4 | |a mixed effect | |
653 | 0 | |a Agriculture | |
653 | 0 | |a S | |
700 | 0 | |a Rui Yang |e verfasserin |4 aut | |
700 | 0 | |a Congjun Yuan |e verfasserin |4 aut | |
700 | 0 | |a Shaqian Liu |e verfasserin |4 aut | |
700 | 0 | |a Chunlan Hou |e verfasserin |4 aut | |
700 | 0 | |a Haodong Wang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Agronomy |d MDPI AG, 2012 |g 13(2023), 7, p 1717 |w (DE-627)658000543 |w (DE-600)2607043-1 |x 20734395 |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2023 |g number:7, p 1717 |
856 | 4 | 0 | |u https://doi.org/10.3390/agronomy13071717 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/db53200cd51642589b6828bb35e4344d |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2073-4395/13/7/1717 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2073-4395 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 13 |j 2023 |e 7, p 1717 |
author_variant |
h z hz r y ry c y cy s l sl c h ch h w hw |
---|---|
matchkey_str |
article:20734395:2023----::hmcltihoeradnyeciiyhnedrnmxdeopstooiaelaiesspuige |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.3390/agronomy13071717 doi (DE-627)DOAJ093962029 (DE-599)DOAJdb53200cd51642589b6828bb35e4344d DE-627 ger DE-627 rakwb eng Hongjiu Zhao verfasserin aut Chemical Stoichiometry and Enzyme Activity Changes during Mixed Decomposition of <i<Camellia sinensis</i< Pruning Residues and Companion Tree Species Litter 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier (1) Background: In managing ecological tea gardens, litter composed of pruned and fallen tea leaves from companion tree species is an important component of tea garden soil. The decomposition of litter plays a crucial role in regulating nutrient cycling in tea garden ecosystems. (2) Methods: This study employed the litterbag method to investigate chemical stoichiometry characteristics and enzyme activity changes during the decomposition process of pruned and fallen <i<Camellia sinensis</i< leaves from companion tree species in an ecological tea garden located in central Guizhou Province. (3) Results: With decomposition duration, the general trend of changes in the C/N and C/P ratios showed a decrease in the activity of UE (urease), AP (acid phosphatase), and PPO (polyphenol oxidase) followed by an increase, while CAT (catalase) and CEL (cellulase) activity decreased, then increased, and then decreased again. On the other hand, the N/P and the activity of SC (sucrase) first increased and then decreased. The C/N and the activities of UE, PPO, and AP generally reached their maximum values during the late decomposition stage (366–428 d), while the N/P and the CAT activity peaked during the mid-decomposition stage (305 d). In contrast, the activity of SC and CEL reached its maximum value during the early decomposition stage (123 d). The N/P ratios were significantly higher than those of the CS (<i<C. sinensis</i<) litter in the mixed treatment, while C/N and C/P ratios were significantly lower than those in the CS during decomposition for 184–366 days. The UE, CAT, AP, and SC activities of CBL (<i<C. sinensis + B. luminifera</i<) litter were significantly higher than those of the CS litter during decomposition. During the experiment, antagonistic effects were observed in the C/N and C/P ratios of the different litter types. Most mixed litter exhibited additive effects on enzyme activity, while a few showed nonadditive effects. For the nonadditive effects, most were antagonistic effects, mainly in the CPM (<i<C. sinensis + C. glanduliferum</i<) litter. A small portion, mainly observed in the CBL and CCG (<i<C. sinensis + C. glanduliferum</i<) litter, showed synergistic effects. (4) Conclusions: Selecting <i<B. luminifera</i< and <i<C. glanduliferum</i< to be part of the tree species composition in ecological tea gardens can produce positive mixed effects on enzyme activity during litter decomposition, increase nutrient return capacity, maintain tea garden fertility, and achieve the ecological development of tea gardens. tea pruning associated tree species stoichiometric characteristics enzyme activity mixed effect Agriculture S Rui Yang verfasserin aut Congjun Yuan verfasserin aut Shaqian Liu verfasserin aut Chunlan Hou verfasserin aut Haodong Wang verfasserin aut In Agronomy MDPI AG, 2012 13(2023), 7, p 1717 (DE-627)658000543 (DE-600)2607043-1 20734395 nnns volume:13 year:2023 number:7, p 1717 https://doi.org/10.3390/agronomy13071717 kostenfrei https://doaj.org/article/db53200cd51642589b6828bb35e4344d kostenfrei https://www.mdpi.com/2073-4395/13/7/1717 kostenfrei https://doaj.org/toc/2073-4395 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 7, p 1717 |
spelling |
10.3390/agronomy13071717 doi (DE-627)DOAJ093962029 (DE-599)DOAJdb53200cd51642589b6828bb35e4344d DE-627 ger DE-627 rakwb eng Hongjiu Zhao verfasserin aut Chemical Stoichiometry and Enzyme Activity Changes during Mixed Decomposition of <i<Camellia sinensis</i< Pruning Residues and Companion Tree Species Litter 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier (1) Background: In managing ecological tea gardens, litter composed of pruned and fallen tea leaves from companion tree species is an important component of tea garden soil. The decomposition of litter plays a crucial role in regulating nutrient cycling in tea garden ecosystems. (2) Methods: This study employed the litterbag method to investigate chemical stoichiometry characteristics and enzyme activity changes during the decomposition process of pruned and fallen <i<Camellia sinensis</i< leaves from companion tree species in an ecological tea garden located in central Guizhou Province. (3) Results: With decomposition duration, the general trend of changes in the C/N and C/P ratios showed a decrease in the activity of UE (urease), AP (acid phosphatase), and PPO (polyphenol oxidase) followed by an increase, while CAT (catalase) and CEL (cellulase) activity decreased, then increased, and then decreased again. On the other hand, the N/P and the activity of SC (sucrase) first increased and then decreased. The C/N and the activities of UE, PPO, and AP generally reached their maximum values during the late decomposition stage (366–428 d), while the N/P and the CAT activity peaked during the mid-decomposition stage (305 d). In contrast, the activity of SC and CEL reached its maximum value during the early decomposition stage (123 d). The N/P ratios were significantly higher than those of the CS (<i<C. sinensis</i<) litter in the mixed treatment, while C/N and C/P ratios were significantly lower than those in the CS during decomposition for 184–366 days. The UE, CAT, AP, and SC activities of CBL (<i<C. sinensis + B. luminifera</i<) litter were significantly higher than those of the CS litter during decomposition. During the experiment, antagonistic effects were observed in the C/N and C/P ratios of the different litter types. Most mixed litter exhibited additive effects on enzyme activity, while a few showed nonadditive effects. For the nonadditive effects, most were antagonistic effects, mainly in the CPM (<i<C. sinensis + C. glanduliferum</i<) litter. A small portion, mainly observed in the CBL and CCG (<i<C. sinensis + C. glanduliferum</i<) litter, showed synergistic effects. (4) Conclusions: Selecting <i<B. luminifera</i< and <i<C. glanduliferum</i< to be part of the tree species composition in ecological tea gardens can produce positive mixed effects on enzyme activity during litter decomposition, increase nutrient return capacity, maintain tea garden fertility, and achieve the ecological development of tea gardens. tea pruning associated tree species stoichiometric characteristics enzyme activity mixed effect Agriculture S Rui Yang verfasserin aut Congjun Yuan verfasserin aut Shaqian Liu verfasserin aut Chunlan Hou verfasserin aut Haodong Wang verfasserin aut In Agronomy MDPI AG, 2012 13(2023), 7, p 1717 (DE-627)658000543 (DE-600)2607043-1 20734395 nnns volume:13 year:2023 number:7, p 1717 https://doi.org/10.3390/agronomy13071717 kostenfrei https://doaj.org/article/db53200cd51642589b6828bb35e4344d kostenfrei https://www.mdpi.com/2073-4395/13/7/1717 kostenfrei https://doaj.org/toc/2073-4395 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 7, p 1717 |
allfields_unstemmed |
10.3390/agronomy13071717 doi (DE-627)DOAJ093962029 (DE-599)DOAJdb53200cd51642589b6828bb35e4344d DE-627 ger DE-627 rakwb eng Hongjiu Zhao verfasserin aut Chemical Stoichiometry and Enzyme Activity Changes during Mixed Decomposition of <i<Camellia sinensis</i< Pruning Residues and Companion Tree Species Litter 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier (1) Background: In managing ecological tea gardens, litter composed of pruned and fallen tea leaves from companion tree species is an important component of tea garden soil. The decomposition of litter plays a crucial role in regulating nutrient cycling in tea garden ecosystems. (2) Methods: This study employed the litterbag method to investigate chemical stoichiometry characteristics and enzyme activity changes during the decomposition process of pruned and fallen <i<Camellia sinensis</i< leaves from companion tree species in an ecological tea garden located in central Guizhou Province. (3) Results: With decomposition duration, the general trend of changes in the C/N and C/P ratios showed a decrease in the activity of UE (urease), AP (acid phosphatase), and PPO (polyphenol oxidase) followed by an increase, while CAT (catalase) and CEL (cellulase) activity decreased, then increased, and then decreased again. On the other hand, the N/P and the activity of SC (sucrase) first increased and then decreased. The C/N and the activities of UE, PPO, and AP generally reached their maximum values during the late decomposition stage (366–428 d), while the N/P and the CAT activity peaked during the mid-decomposition stage (305 d). In contrast, the activity of SC and CEL reached its maximum value during the early decomposition stage (123 d). The N/P ratios were significantly higher than those of the CS (<i<C. sinensis</i<) litter in the mixed treatment, while C/N and C/P ratios were significantly lower than those in the CS during decomposition for 184–366 days. The UE, CAT, AP, and SC activities of CBL (<i<C. sinensis + B. luminifera</i<) litter were significantly higher than those of the CS litter during decomposition. During the experiment, antagonistic effects were observed in the C/N and C/P ratios of the different litter types. Most mixed litter exhibited additive effects on enzyme activity, while a few showed nonadditive effects. For the nonadditive effects, most were antagonistic effects, mainly in the CPM (<i<C. sinensis + C. glanduliferum</i<) litter. A small portion, mainly observed in the CBL and CCG (<i<C. sinensis + C. glanduliferum</i<) litter, showed synergistic effects. (4) Conclusions: Selecting <i<B. luminifera</i< and <i<C. glanduliferum</i< to be part of the tree species composition in ecological tea gardens can produce positive mixed effects on enzyme activity during litter decomposition, increase nutrient return capacity, maintain tea garden fertility, and achieve the ecological development of tea gardens. tea pruning associated tree species stoichiometric characteristics enzyme activity mixed effect Agriculture S Rui Yang verfasserin aut Congjun Yuan verfasserin aut Shaqian Liu verfasserin aut Chunlan Hou verfasserin aut Haodong Wang verfasserin aut In Agronomy MDPI AG, 2012 13(2023), 7, p 1717 (DE-627)658000543 (DE-600)2607043-1 20734395 nnns volume:13 year:2023 number:7, p 1717 https://doi.org/10.3390/agronomy13071717 kostenfrei https://doaj.org/article/db53200cd51642589b6828bb35e4344d kostenfrei https://www.mdpi.com/2073-4395/13/7/1717 kostenfrei https://doaj.org/toc/2073-4395 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 7, p 1717 |
allfieldsGer |
10.3390/agronomy13071717 doi (DE-627)DOAJ093962029 (DE-599)DOAJdb53200cd51642589b6828bb35e4344d DE-627 ger DE-627 rakwb eng Hongjiu Zhao verfasserin aut Chemical Stoichiometry and Enzyme Activity Changes during Mixed Decomposition of <i<Camellia sinensis</i< Pruning Residues and Companion Tree Species Litter 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier (1) Background: In managing ecological tea gardens, litter composed of pruned and fallen tea leaves from companion tree species is an important component of tea garden soil. The decomposition of litter plays a crucial role in regulating nutrient cycling in tea garden ecosystems. (2) Methods: This study employed the litterbag method to investigate chemical stoichiometry characteristics and enzyme activity changes during the decomposition process of pruned and fallen <i<Camellia sinensis</i< leaves from companion tree species in an ecological tea garden located in central Guizhou Province. (3) Results: With decomposition duration, the general trend of changes in the C/N and C/P ratios showed a decrease in the activity of UE (urease), AP (acid phosphatase), and PPO (polyphenol oxidase) followed by an increase, while CAT (catalase) and CEL (cellulase) activity decreased, then increased, and then decreased again. On the other hand, the N/P and the activity of SC (sucrase) first increased and then decreased. The C/N and the activities of UE, PPO, and AP generally reached their maximum values during the late decomposition stage (366–428 d), while the N/P and the CAT activity peaked during the mid-decomposition stage (305 d). In contrast, the activity of SC and CEL reached its maximum value during the early decomposition stage (123 d). The N/P ratios were significantly higher than those of the CS (<i<C. sinensis</i<) litter in the mixed treatment, while C/N and C/P ratios were significantly lower than those in the CS during decomposition for 184–366 days. The UE, CAT, AP, and SC activities of CBL (<i<C. sinensis + B. luminifera</i<) litter were significantly higher than those of the CS litter during decomposition. During the experiment, antagonistic effects were observed in the C/N and C/P ratios of the different litter types. Most mixed litter exhibited additive effects on enzyme activity, while a few showed nonadditive effects. For the nonadditive effects, most were antagonistic effects, mainly in the CPM (<i<C. sinensis + C. glanduliferum</i<) litter. A small portion, mainly observed in the CBL and CCG (<i<C. sinensis + C. glanduliferum</i<) litter, showed synergistic effects. (4) Conclusions: Selecting <i<B. luminifera</i< and <i<C. glanduliferum</i< to be part of the tree species composition in ecological tea gardens can produce positive mixed effects on enzyme activity during litter decomposition, increase nutrient return capacity, maintain tea garden fertility, and achieve the ecological development of tea gardens. tea pruning associated tree species stoichiometric characteristics enzyme activity mixed effect Agriculture S Rui Yang verfasserin aut Congjun Yuan verfasserin aut Shaqian Liu verfasserin aut Chunlan Hou verfasserin aut Haodong Wang verfasserin aut In Agronomy MDPI AG, 2012 13(2023), 7, p 1717 (DE-627)658000543 (DE-600)2607043-1 20734395 nnns volume:13 year:2023 number:7, p 1717 https://doi.org/10.3390/agronomy13071717 kostenfrei https://doaj.org/article/db53200cd51642589b6828bb35e4344d kostenfrei https://www.mdpi.com/2073-4395/13/7/1717 kostenfrei https://doaj.org/toc/2073-4395 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 7, p 1717 |
allfieldsSound |
10.3390/agronomy13071717 doi (DE-627)DOAJ093962029 (DE-599)DOAJdb53200cd51642589b6828bb35e4344d DE-627 ger DE-627 rakwb eng Hongjiu Zhao verfasserin aut Chemical Stoichiometry and Enzyme Activity Changes during Mixed Decomposition of <i<Camellia sinensis</i< Pruning Residues and Companion Tree Species Litter 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier (1) Background: In managing ecological tea gardens, litter composed of pruned and fallen tea leaves from companion tree species is an important component of tea garden soil. The decomposition of litter plays a crucial role in regulating nutrient cycling in tea garden ecosystems. (2) Methods: This study employed the litterbag method to investigate chemical stoichiometry characteristics and enzyme activity changes during the decomposition process of pruned and fallen <i<Camellia sinensis</i< leaves from companion tree species in an ecological tea garden located in central Guizhou Province. (3) Results: With decomposition duration, the general trend of changes in the C/N and C/P ratios showed a decrease in the activity of UE (urease), AP (acid phosphatase), and PPO (polyphenol oxidase) followed by an increase, while CAT (catalase) and CEL (cellulase) activity decreased, then increased, and then decreased again. On the other hand, the N/P and the activity of SC (sucrase) first increased and then decreased. The C/N and the activities of UE, PPO, and AP generally reached their maximum values during the late decomposition stage (366–428 d), while the N/P and the CAT activity peaked during the mid-decomposition stage (305 d). In contrast, the activity of SC and CEL reached its maximum value during the early decomposition stage (123 d). The N/P ratios were significantly higher than those of the CS (<i<C. sinensis</i<) litter in the mixed treatment, while C/N and C/P ratios were significantly lower than those in the CS during decomposition for 184–366 days. The UE, CAT, AP, and SC activities of CBL (<i<C. sinensis + B. luminifera</i<) litter were significantly higher than those of the CS litter during decomposition. During the experiment, antagonistic effects were observed in the C/N and C/P ratios of the different litter types. Most mixed litter exhibited additive effects on enzyme activity, while a few showed nonadditive effects. For the nonadditive effects, most were antagonistic effects, mainly in the CPM (<i<C. sinensis + C. glanduliferum</i<) litter. A small portion, mainly observed in the CBL and CCG (<i<C. sinensis + C. glanduliferum</i<) litter, showed synergistic effects. (4) Conclusions: Selecting <i<B. luminifera</i< and <i<C. glanduliferum</i< to be part of the tree species composition in ecological tea gardens can produce positive mixed effects on enzyme activity during litter decomposition, increase nutrient return capacity, maintain tea garden fertility, and achieve the ecological development of tea gardens. tea pruning associated tree species stoichiometric characteristics enzyme activity mixed effect Agriculture S Rui Yang verfasserin aut Congjun Yuan verfasserin aut Shaqian Liu verfasserin aut Chunlan Hou verfasserin aut Haodong Wang verfasserin aut In Agronomy MDPI AG, 2012 13(2023), 7, p 1717 (DE-627)658000543 (DE-600)2607043-1 20734395 nnns volume:13 year:2023 number:7, p 1717 https://doi.org/10.3390/agronomy13071717 kostenfrei https://doaj.org/article/db53200cd51642589b6828bb35e4344d kostenfrei https://www.mdpi.com/2073-4395/13/7/1717 kostenfrei https://doaj.org/toc/2073-4395 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 7, p 1717 |
language |
English |
source |
In Agronomy 13(2023), 7, p 1717 volume:13 year:2023 number:7, p 1717 |
sourceStr |
In Agronomy 13(2023), 7, p 1717 volume:13 year:2023 number:7, p 1717 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
tea pruning associated tree species stoichiometric characteristics enzyme activity mixed effect Agriculture S |
isfreeaccess_bool |
true |
container_title |
Agronomy |
authorswithroles_txt_mv |
Hongjiu Zhao @@aut@@ Rui Yang @@aut@@ Congjun Yuan @@aut@@ Shaqian Liu @@aut@@ Chunlan Hou @@aut@@ Haodong Wang @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
658000543 |
id |
DOAJ093962029 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ093962029</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413023440.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/agronomy13071717</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ093962029</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJdb53200cd51642589b6828bb35e4344d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Hongjiu Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Chemical Stoichiometry and Enzyme Activity Changes during Mixed Decomposition of <i<Camellia sinensis</i< Pruning Residues and Companion Tree Species Litter</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">(1) Background: In managing ecological tea gardens, litter composed of pruned and fallen tea leaves from companion tree species is an important component of tea garden soil. The decomposition of litter plays a crucial role in regulating nutrient cycling in tea garden ecosystems. (2) Methods: This study employed the litterbag method to investigate chemical stoichiometry characteristics and enzyme activity changes during the decomposition process of pruned and fallen <i<Camellia sinensis</i< leaves from companion tree species in an ecological tea garden located in central Guizhou Province. (3) Results: With decomposition duration, the general trend of changes in the C/N and C/P ratios showed a decrease in the activity of UE (urease), AP (acid phosphatase), and PPO (polyphenol oxidase) followed by an increase, while CAT (catalase) and CEL (cellulase) activity decreased, then increased, and then decreased again. On the other hand, the N/P and the activity of SC (sucrase) first increased and then decreased. The C/N and the activities of UE, PPO, and AP generally reached their maximum values during the late decomposition stage (366–428 d), while the N/P and the CAT activity peaked during the mid-decomposition stage (305 d). In contrast, the activity of SC and CEL reached its maximum value during the early decomposition stage (123 d). The N/P ratios were significantly higher than those of the CS (<i<C. sinensis</i<) litter in the mixed treatment, while C/N and C/P ratios were significantly lower than those in the CS during decomposition for 184–366 days. The UE, CAT, AP, and SC activities of CBL (<i<C. sinensis + B. luminifera</i<) litter were significantly higher than those of the CS litter during decomposition. During the experiment, antagonistic effects were observed in the C/N and C/P ratios of the different litter types. Most mixed litter exhibited additive effects on enzyme activity, while a few showed nonadditive effects. For the nonadditive effects, most were antagonistic effects, mainly in the CPM (<i<C. sinensis + C. glanduliferum</i<) litter. A small portion, mainly observed in the CBL and CCG (<i<C. sinensis + C. glanduliferum</i<) litter, showed synergistic effects. (4) Conclusions: Selecting <i<B. luminifera</i< and <i<C. glanduliferum</i< to be part of the tree species composition in ecological tea gardens can produce positive mixed effects on enzyme activity during litter decomposition, increase nutrient return capacity, maintain tea garden fertility, and achieve the ecological development of tea gardens.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">tea pruning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">associated tree species</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stoichiometric characteristics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">enzyme activity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mixed effect</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Agriculture</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">S</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rui Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Congjun Yuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shaqian Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chunlan Hou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haodong Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Agronomy</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">13(2023), 7, p 1717</subfield><subfield code="w">(DE-627)658000543</subfield><subfield code="w">(DE-600)2607043-1</subfield><subfield code="x">20734395</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:7, p 1717</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/agronomy13071717</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/db53200cd51642589b6828bb35e4344d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2073-4395/13/7/1717</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2073-4395</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2023</subfield><subfield code="e">7, p 1717</subfield></datafield></record></collection>
|
author |
Hongjiu Zhao |
spellingShingle |
Hongjiu Zhao misc tea pruning misc associated tree species misc stoichiometric characteristics misc enzyme activity misc mixed effect misc Agriculture misc S Chemical Stoichiometry and Enzyme Activity Changes during Mixed Decomposition of <i<Camellia sinensis</i< Pruning Residues and Companion Tree Species Litter |
authorStr |
Hongjiu Zhao |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)658000543 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
20734395 |
topic_title |
Chemical Stoichiometry and Enzyme Activity Changes during Mixed Decomposition of <i<Camellia sinensis</i< Pruning Residues and Companion Tree Species Litter tea pruning associated tree species stoichiometric characteristics enzyme activity mixed effect |
topic |
misc tea pruning misc associated tree species misc stoichiometric characteristics misc enzyme activity misc mixed effect misc Agriculture misc S |
topic_unstemmed |
misc tea pruning misc associated tree species misc stoichiometric characteristics misc enzyme activity misc mixed effect misc Agriculture misc S |
topic_browse |
misc tea pruning misc associated tree species misc stoichiometric characteristics misc enzyme activity misc mixed effect misc Agriculture misc S |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Agronomy |
hierarchy_parent_id |
658000543 |
hierarchy_top_title |
Agronomy |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)658000543 (DE-600)2607043-1 |
title |
Chemical Stoichiometry and Enzyme Activity Changes during Mixed Decomposition of <i<Camellia sinensis</i< Pruning Residues and Companion Tree Species Litter |
ctrlnum |
(DE-627)DOAJ093962029 (DE-599)DOAJdb53200cd51642589b6828bb35e4344d |
title_full |
Chemical Stoichiometry and Enzyme Activity Changes during Mixed Decomposition of <i<Camellia sinensis</i< Pruning Residues and Companion Tree Species Litter |
author_sort |
Hongjiu Zhao |
journal |
Agronomy |
journalStr |
Agronomy |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Hongjiu Zhao Rui Yang Congjun Yuan Shaqian Liu Chunlan Hou Haodong Wang |
container_volume |
13 |
format_se |
Elektronische Aufsätze |
author-letter |
Hongjiu Zhao |
doi_str_mv |
10.3390/agronomy13071717 |
author2-role |
verfasserin |
title_sort |
chemical stoichiometry and enzyme activity changes during mixed decomposition of <i<camellia sinensis</i< pruning residues and companion tree species litter |
title_auth |
Chemical Stoichiometry and Enzyme Activity Changes during Mixed Decomposition of <i<Camellia sinensis</i< Pruning Residues and Companion Tree Species Litter |
abstract |
(1) Background: In managing ecological tea gardens, litter composed of pruned and fallen tea leaves from companion tree species is an important component of tea garden soil. The decomposition of litter plays a crucial role in regulating nutrient cycling in tea garden ecosystems. (2) Methods: This study employed the litterbag method to investigate chemical stoichiometry characteristics and enzyme activity changes during the decomposition process of pruned and fallen <i<Camellia sinensis</i< leaves from companion tree species in an ecological tea garden located in central Guizhou Province. (3) Results: With decomposition duration, the general trend of changes in the C/N and C/P ratios showed a decrease in the activity of UE (urease), AP (acid phosphatase), and PPO (polyphenol oxidase) followed by an increase, while CAT (catalase) and CEL (cellulase) activity decreased, then increased, and then decreased again. On the other hand, the N/P and the activity of SC (sucrase) first increased and then decreased. The C/N and the activities of UE, PPO, and AP generally reached their maximum values during the late decomposition stage (366–428 d), while the N/P and the CAT activity peaked during the mid-decomposition stage (305 d). In contrast, the activity of SC and CEL reached its maximum value during the early decomposition stage (123 d). The N/P ratios were significantly higher than those of the CS (<i<C. sinensis</i<) litter in the mixed treatment, while C/N and C/P ratios were significantly lower than those in the CS during decomposition for 184–366 days. The UE, CAT, AP, and SC activities of CBL (<i<C. sinensis + B. luminifera</i<) litter were significantly higher than those of the CS litter during decomposition. During the experiment, antagonistic effects were observed in the C/N and C/P ratios of the different litter types. Most mixed litter exhibited additive effects on enzyme activity, while a few showed nonadditive effects. For the nonadditive effects, most were antagonistic effects, mainly in the CPM (<i<C. sinensis + C. glanduliferum</i<) litter. A small portion, mainly observed in the CBL and CCG (<i<C. sinensis + C. glanduliferum</i<) litter, showed synergistic effects. (4) Conclusions: Selecting <i<B. luminifera</i< and <i<C. glanduliferum</i< to be part of the tree species composition in ecological tea gardens can produce positive mixed effects on enzyme activity during litter decomposition, increase nutrient return capacity, maintain tea garden fertility, and achieve the ecological development of tea gardens. |
abstractGer |
(1) Background: In managing ecological tea gardens, litter composed of pruned and fallen tea leaves from companion tree species is an important component of tea garden soil. The decomposition of litter plays a crucial role in regulating nutrient cycling in tea garden ecosystems. (2) Methods: This study employed the litterbag method to investigate chemical stoichiometry characteristics and enzyme activity changes during the decomposition process of pruned and fallen <i<Camellia sinensis</i< leaves from companion tree species in an ecological tea garden located in central Guizhou Province. (3) Results: With decomposition duration, the general trend of changes in the C/N and C/P ratios showed a decrease in the activity of UE (urease), AP (acid phosphatase), and PPO (polyphenol oxidase) followed by an increase, while CAT (catalase) and CEL (cellulase) activity decreased, then increased, and then decreased again. On the other hand, the N/P and the activity of SC (sucrase) first increased and then decreased. The C/N and the activities of UE, PPO, and AP generally reached their maximum values during the late decomposition stage (366–428 d), while the N/P and the CAT activity peaked during the mid-decomposition stage (305 d). In contrast, the activity of SC and CEL reached its maximum value during the early decomposition stage (123 d). The N/P ratios were significantly higher than those of the CS (<i<C. sinensis</i<) litter in the mixed treatment, while C/N and C/P ratios were significantly lower than those in the CS during decomposition for 184–366 days. The UE, CAT, AP, and SC activities of CBL (<i<C. sinensis + B. luminifera</i<) litter were significantly higher than those of the CS litter during decomposition. During the experiment, antagonistic effects were observed in the C/N and C/P ratios of the different litter types. Most mixed litter exhibited additive effects on enzyme activity, while a few showed nonadditive effects. For the nonadditive effects, most were antagonistic effects, mainly in the CPM (<i<C. sinensis + C. glanduliferum</i<) litter. A small portion, mainly observed in the CBL and CCG (<i<C. sinensis + C. glanduliferum</i<) litter, showed synergistic effects. (4) Conclusions: Selecting <i<B. luminifera</i< and <i<C. glanduliferum</i< to be part of the tree species composition in ecological tea gardens can produce positive mixed effects on enzyme activity during litter decomposition, increase nutrient return capacity, maintain tea garden fertility, and achieve the ecological development of tea gardens. |
abstract_unstemmed |
(1) Background: In managing ecological tea gardens, litter composed of pruned and fallen tea leaves from companion tree species is an important component of tea garden soil. The decomposition of litter plays a crucial role in regulating nutrient cycling in tea garden ecosystems. (2) Methods: This study employed the litterbag method to investigate chemical stoichiometry characteristics and enzyme activity changes during the decomposition process of pruned and fallen <i<Camellia sinensis</i< leaves from companion tree species in an ecological tea garden located in central Guizhou Province. (3) Results: With decomposition duration, the general trend of changes in the C/N and C/P ratios showed a decrease in the activity of UE (urease), AP (acid phosphatase), and PPO (polyphenol oxidase) followed by an increase, while CAT (catalase) and CEL (cellulase) activity decreased, then increased, and then decreased again. On the other hand, the N/P and the activity of SC (sucrase) first increased and then decreased. The C/N and the activities of UE, PPO, and AP generally reached their maximum values during the late decomposition stage (366–428 d), while the N/P and the CAT activity peaked during the mid-decomposition stage (305 d). In contrast, the activity of SC and CEL reached its maximum value during the early decomposition stage (123 d). The N/P ratios were significantly higher than those of the CS (<i<C. sinensis</i<) litter in the mixed treatment, while C/N and C/P ratios were significantly lower than those in the CS during decomposition for 184–366 days. The UE, CAT, AP, and SC activities of CBL (<i<C. sinensis + B. luminifera</i<) litter were significantly higher than those of the CS litter during decomposition. During the experiment, antagonistic effects were observed in the C/N and C/P ratios of the different litter types. Most mixed litter exhibited additive effects on enzyme activity, while a few showed nonadditive effects. For the nonadditive effects, most were antagonistic effects, mainly in the CPM (<i<C. sinensis + C. glanduliferum</i<) litter. A small portion, mainly observed in the CBL and CCG (<i<C. sinensis + C. glanduliferum</i<) litter, showed synergistic effects. (4) Conclusions: Selecting <i<B. luminifera</i< and <i<C. glanduliferum</i< to be part of the tree species composition in ecological tea gardens can produce positive mixed effects on enzyme activity during litter decomposition, increase nutrient return capacity, maintain tea garden fertility, and achieve the ecological development of tea gardens. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
7, p 1717 |
title_short |
Chemical Stoichiometry and Enzyme Activity Changes during Mixed Decomposition of <i<Camellia sinensis</i< Pruning Residues and Companion Tree Species Litter |
url |
https://doi.org/10.3390/agronomy13071717 https://doaj.org/article/db53200cd51642589b6828bb35e4344d https://www.mdpi.com/2073-4395/13/7/1717 https://doaj.org/toc/2073-4395 |
remote_bool |
true |
author2 |
Rui Yang Congjun Yuan Shaqian Liu Chunlan Hou Haodong Wang |
author2Str |
Rui Yang Congjun Yuan Shaqian Liu Chunlan Hou Haodong Wang |
ppnlink |
658000543 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/agronomy13071717 |
up_date |
2024-07-03T20:26:12.079Z |
_version_ |
1803590956043206656 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ093962029</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413023440.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/agronomy13071717</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ093962029</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJdb53200cd51642589b6828bb35e4344d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Hongjiu Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Chemical Stoichiometry and Enzyme Activity Changes during Mixed Decomposition of <i<Camellia sinensis</i< Pruning Residues and Companion Tree Species Litter</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">(1) Background: In managing ecological tea gardens, litter composed of pruned and fallen tea leaves from companion tree species is an important component of tea garden soil. The decomposition of litter plays a crucial role in regulating nutrient cycling in tea garden ecosystems. (2) Methods: This study employed the litterbag method to investigate chemical stoichiometry characteristics and enzyme activity changes during the decomposition process of pruned and fallen <i<Camellia sinensis</i< leaves from companion tree species in an ecological tea garden located in central Guizhou Province. (3) Results: With decomposition duration, the general trend of changes in the C/N and C/P ratios showed a decrease in the activity of UE (urease), AP (acid phosphatase), and PPO (polyphenol oxidase) followed by an increase, while CAT (catalase) and CEL (cellulase) activity decreased, then increased, and then decreased again. On the other hand, the N/P and the activity of SC (sucrase) first increased and then decreased. The C/N and the activities of UE, PPO, and AP generally reached their maximum values during the late decomposition stage (366–428 d), while the N/P and the CAT activity peaked during the mid-decomposition stage (305 d). In contrast, the activity of SC and CEL reached its maximum value during the early decomposition stage (123 d). The N/P ratios were significantly higher than those of the CS (<i<C. sinensis</i<) litter in the mixed treatment, while C/N and C/P ratios were significantly lower than those in the CS during decomposition for 184–366 days. The UE, CAT, AP, and SC activities of CBL (<i<C. sinensis + B. luminifera</i<) litter were significantly higher than those of the CS litter during decomposition. During the experiment, antagonistic effects were observed in the C/N and C/P ratios of the different litter types. Most mixed litter exhibited additive effects on enzyme activity, while a few showed nonadditive effects. For the nonadditive effects, most were antagonistic effects, mainly in the CPM (<i<C. sinensis + C. glanduliferum</i<) litter. A small portion, mainly observed in the CBL and CCG (<i<C. sinensis + C. glanduliferum</i<) litter, showed synergistic effects. (4) Conclusions: Selecting <i<B. luminifera</i< and <i<C. glanduliferum</i< to be part of the tree species composition in ecological tea gardens can produce positive mixed effects on enzyme activity during litter decomposition, increase nutrient return capacity, maintain tea garden fertility, and achieve the ecological development of tea gardens.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">tea pruning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">associated tree species</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stoichiometric characteristics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">enzyme activity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mixed effect</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Agriculture</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">S</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rui Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Congjun Yuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shaqian Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chunlan Hou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haodong Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Agronomy</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">13(2023), 7, p 1717</subfield><subfield code="w">(DE-627)658000543</subfield><subfield code="w">(DE-600)2607043-1</subfield><subfield code="x">20734395</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:7, p 1717</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/agronomy13071717</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/db53200cd51642589b6828bb35e4344d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2073-4395/13/7/1717</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2073-4395</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2023</subfield><subfield code="e">7, p 1717</subfield></datafield></record></collection>
|
score |
7.401374 |