Exploring the Potential of Broadband Complementary Metal Oxide Semiconductor Micro-Coil Nuclear Magnetic Resonance for Environmental Research
With sensitivity being the Achilles’ heel of nuclear magnetic resonance (NMR), the superior mass sensitivity offered by micro-coils can be an excellent choice for tiny, mass limited samples such as eggs and small organisms. Recently, complementary metal oxide semiconductor (CMOS)-based micro-coil tr...
Ausführliche Beschreibung
Autor*in: |
Daniel H. Lysak [verfasserIn] Marco Grisi [verfasserIn] Kathryn Marable [verfasserIn] Gaurasundar M. Conley [verfasserIn] Carl A. Michal [verfasserIn] Vincent Moxley-Paquette [verfasserIn] William W. Wolff [verfasserIn] Katelyn Downey [verfasserIn] Flavio V. C. Kock [verfasserIn] Peter M. Costa [verfasserIn] Kiera Ronda [verfasserIn] Tiago B. Moraes [verfasserIn] Katrina Steiner [verfasserIn] Luiz A. Colnago [verfasserIn] Andre J. Simpson [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Molecules - MDPI AG, 2003, 28(2023), 13, p 5080 |
---|---|
Übergeordnetes Werk: |
volume:28 ; year:2023 ; number:13, p 5080 |
Links: |
---|
DOI / URN: |
10.3390/molecules28135080 |
---|
Katalog-ID: |
DOAJ093993455 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ093993455 | ||
003 | DE-627 | ||
005 | 20240413023944.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/molecules28135080 |2 doi | |
035 | |a (DE-627)DOAJ093993455 | ||
035 | |a (DE-599)DOAJ81c62ae32b584e3f8f47e9e90f55354b | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QD241-441 | |
100 | 0 | |a Daniel H. Lysak |e verfasserin |4 aut | |
245 | 1 | 0 | |a Exploring the Potential of Broadband Complementary Metal Oxide Semiconductor Micro-Coil Nuclear Magnetic Resonance for Environmental Research |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a With sensitivity being the Achilles’ heel of nuclear magnetic resonance (NMR), the superior mass sensitivity offered by micro-coils can be an excellent choice for tiny, mass limited samples such as eggs and small organisms. Recently, complementary metal oxide semiconductor (CMOS)-based micro-coil transceivers have been reported and demonstrate excellent mass sensitivity. However, the ability of broadband CMOS micro-coils to study heteronuclei has yet to be investigated, and here their potential is explored within the lens of environmental research. Eleven nuclei including <sup<7</sup<Li, <sup<19</sup<F, <sup<31</sup<P and, <sup<205</sup<Tl were studied and detection limits in the low to mid picomole range were found for an extended experiment. Further, two environmentally relevant samples (a sprouting broccoli seed and a <i<D. magna</i< egg) were successfully studied using the CMOS micro-coil system. <sup<13</sup<C NMR was used to help resolve broad signals in the <sup<1</sup<H spectrum of the <sup<13</sup<C enriched broccoli seed, and steady state free precession was used to improve the signal-to-noise ratio by a factor of six. <sup<19</sup<F NMR was used to track fluorinated contaminants in a single <i<D. magna</i< egg, showing potential for studying egg–pollutant interactions. Overall, CMOS micro-coil NMR demonstrates significant promise in environmental research, especially when the future potential to scale to multiple coil arrays (greatly improving throughput) is considered. | ||
650 | 4 | |a micro-coil NMR | |
650 | 4 | |a environmental NMR | |
650 | 4 | |a CMOS | |
650 | 4 | |a heteronuclei | |
650 | 4 | |a steady state free precession | |
653 | 0 | |a Organic chemistry | |
700 | 0 | |a Marco Grisi |e verfasserin |4 aut | |
700 | 0 | |a Kathryn Marable |e verfasserin |4 aut | |
700 | 0 | |a Gaurasundar M. Conley |e verfasserin |4 aut | |
700 | 0 | |a Carl A. Michal |e verfasserin |4 aut | |
700 | 0 | |a Vincent Moxley-Paquette |e verfasserin |4 aut | |
700 | 0 | |a William W. Wolff |e verfasserin |4 aut | |
700 | 0 | |a Katelyn Downey |e verfasserin |4 aut | |
700 | 0 | |a Flavio V. C. Kock |e verfasserin |4 aut | |
700 | 0 | |a Peter M. Costa |e verfasserin |4 aut | |
700 | 0 | |a Kiera Ronda |e verfasserin |4 aut | |
700 | 0 | |a Tiago B. Moraes |e verfasserin |4 aut | |
700 | 0 | |a Katrina Steiner |e verfasserin |4 aut | |
700 | 0 | |a Luiz A. Colnago |e verfasserin |4 aut | |
700 | 0 | |a Andre J. Simpson |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Molecules |d MDPI AG, 2003 |g 28(2023), 13, p 5080 |w (DE-627)311313132 |w (DE-600)2008644-1 |x 14203049 |7 nnns |
773 | 1 | 8 | |g volume:28 |g year:2023 |g number:13, p 5080 |
856 | 4 | 0 | |u https://doi.org/10.3390/molecules28135080 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/81c62ae32b584e3f8f47e9e90f55354b |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/1420-3049/28/13/5080 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1420-3049 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 28 |j 2023 |e 13, p 5080 |
author_variant |
d h l dhl m g mg k m km g m c gmc c a m cam v m p vmp w w w www k d kd f v c k fvck p m c pmc k r kr t b m tbm k s ks l a c lac a j s ajs |
---|---|
matchkey_str |
article:14203049:2023----::xlrnteoetaobodadopeetrmtlxdsmcnutrircincerantc |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
QD |
publishDate |
2023 |
allfields |
10.3390/molecules28135080 doi (DE-627)DOAJ093993455 (DE-599)DOAJ81c62ae32b584e3f8f47e9e90f55354b DE-627 ger DE-627 rakwb eng QD241-441 Daniel H. Lysak verfasserin aut Exploring the Potential of Broadband Complementary Metal Oxide Semiconductor Micro-Coil Nuclear Magnetic Resonance for Environmental Research 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier With sensitivity being the Achilles’ heel of nuclear magnetic resonance (NMR), the superior mass sensitivity offered by micro-coils can be an excellent choice for tiny, mass limited samples such as eggs and small organisms. Recently, complementary metal oxide semiconductor (CMOS)-based micro-coil transceivers have been reported and demonstrate excellent mass sensitivity. However, the ability of broadband CMOS micro-coils to study heteronuclei has yet to be investigated, and here their potential is explored within the lens of environmental research. Eleven nuclei including <sup<7</sup<Li, <sup<19</sup<F, <sup<31</sup<P and, <sup<205</sup<Tl were studied and detection limits in the low to mid picomole range were found for an extended experiment. Further, two environmentally relevant samples (a sprouting broccoli seed and a <i<D. magna</i< egg) were successfully studied using the CMOS micro-coil system. <sup<13</sup<C NMR was used to help resolve broad signals in the <sup<1</sup<H spectrum of the <sup<13</sup<C enriched broccoli seed, and steady state free precession was used to improve the signal-to-noise ratio by a factor of six. <sup<19</sup<F NMR was used to track fluorinated contaminants in a single <i<D. magna</i< egg, showing potential for studying egg–pollutant interactions. Overall, CMOS micro-coil NMR demonstrates significant promise in environmental research, especially when the future potential to scale to multiple coil arrays (greatly improving throughput) is considered. micro-coil NMR environmental NMR CMOS heteronuclei steady state free precession Organic chemistry Marco Grisi verfasserin aut Kathryn Marable verfasserin aut Gaurasundar M. Conley verfasserin aut Carl A. Michal verfasserin aut Vincent Moxley-Paquette verfasserin aut William W. Wolff verfasserin aut Katelyn Downey verfasserin aut Flavio V. C. Kock verfasserin aut Peter M. Costa verfasserin aut Kiera Ronda verfasserin aut Tiago B. Moraes verfasserin aut Katrina Steiner verfasserin aut Luiz A. Colnago verfasserin aut Andre J. Simpson verfasserin aut In Molecules MDPI AG, 2003 28(2023), 13, p 5080 (DE-627)311313132 (DE-600)2008644-1 14203049 nnns volume:28 year:2023 number:13, p 5080 https://doi.org/10.3390/molecules28135080 kostenfrei https://doaj.org/article/81c62ae32b584e3f8f47e9e90f55354b kostenfrei https://www.mdpi.com/1420-3049/28/13/5080 kostenfrei https://doaj.org/toc/1420-3049 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 28 2023 13, p 5080 |
spelling |
10.3390/molecules28135080 doi (DE-627)DOAJ093993455 (DE-599)DOAJ81c62ae32b584e3f8f47e9e90f55354b DE-627 ger DE-627 rakwb eng QD241-441 Daniel H. Lysak verfasserin aut Exploring the Potential of Broadband Complementary Metal Oxide Semiconductor Micro-Coil Nuclear Magnetic Resonance for Environmental Research 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier With sensitivity being the Achilles’ heel of nuclear magnetic resonance (NMR), the superior mass sensitivity offered by micro-coils can be an excellent choice for tiny, mass limited samples such as eggs and small organisms. Recently, complementary metal oxide semiconductor (CMOS)-based micro-coil transceivers have been reported and demonstrate excellent mass sensitivity. However, the ability of broadband CMOS micro-coils to study heteronuclei has yet to be investigated, and here their potential is explored within the lens of environmental research. Eleven nuclei including <sup<7</sup<Li, <sup<19</sup<F, <sup<31</sup<P and, <sup<205</sup<Tl were studied and detection limits in the low to mid picomole range were found for an extended experiment. Further, two environmentally relevant samples (a sprouting broccoli seed and a <i<D. magna</i< egg) were successfully studied using the CMOS micro-coil system. <sup<13</sup<C NMR was used to help resolve broad signals in the <sup<1</sup<H spectrum of the <sup<13</sup<C enriched broccoli seed, and steady state free precession was used to improve the signal-to-noise ratio by a factor of six. <sup<19</sup<F NMR was used to track fluorinated contaminants in a single <i<D. magna</i< egg, showing potential for studying egg–pollutant interactions. Overall, CMOS micro-coil NMR demonstrates significant promise in environmental research, especially when the future potential to scale to multiple coil arrays (greatly improving throughput) is considered. micro-coil NMR environmental NMR CMOS heteronuclei steady state free precession Organic chemistry Marco Grisi verfasserin aut Kathryn Marable verfasserin aut Gaurasundar M. Conley verfasserin aut Carl A. Michal verfasserin aut Vincent Moxley-Paquette verfasserin aut William W. Wolff verfasserin aut Katelyn Downey verfasserin aut Flavio V. C. Kock verfasserin aut Peter M. Costa verfasserin aut Kiera Ronda verfasserin aut Tiago B. Moraes verfasserin aut Katrina Steiner verfasserin aut Luiz A. Colnago verfasserin aut Andre J. Simpson verfasserin aut In Molecules MDPI AG, 2003 28(2023), 13, p 5080 (DE-627)311313132 (DE-600)2008644-1 14203049 nnns volume:28 year:2023 number:13, p 5080 https://doi.org/10.3390/molecules28135080 kostenfrei https://doaj.org/article/81c62ae32b584e3f8f47e9e90f55354b kostenfrei https://www.mdpi.com/1420-3049/28/13/5080 kostenfrei https://doaj.org/toc/1420-3049 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 28 2023 13, p 5080 |
allfields_unstemmed |
10.3390/molecules28135080 doi (DE-627)DOAJ093993455 (DE-599)DOAJ81c62ae32b584e3f8f47e9e90f55354b DE-627 ger DE-627 rakwb eng QD241-441 Daniel H. Lysak verfasserin aut Exploring the Potential of Broadband Complementary Metal Oxide Semiconductor Micro-Coil Nuclear Magnetic Resonance for Environmental Research 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier With sensitivity being the Achilles’ heel of nuclear magnetic resonance (NMR), the superior mass sensitivity offered by micro-coils can be an excellent choice for tiny, mass limited samples such as eggs and small organisms. Recently, complementary metal oxide semiconductor (CMOS)-based micro-coil transceivers have been reported and demonstrate excellent mass sensitivity. However, the ability of broadband CMOS micro-coils to study heteronuclei has yet to be investigated, and here their potential is explored within the lens of environmental research. Eleven nuclei including <sup<7</sup<Li, <sup<19</sup<F, <sup<31</sup<P and, <sup<205</sup<Tl were studied and detection limits in the low to mid picomole range were found for an extended experiment. Further, two environmentally relevant samples (a sprouting broccoli seed and a <i<D. magna</i< egg) were successfully studied using the CMOS micro-coil system. <sup<13</sup<C NMR was used to help resolve broad signals in the <sup<1</sup<H spectrum of the <sup<13</sup<C enriched broccoli seed, and steady state free precession was used to improve the signal-to-noise ratio by a factor of six. <sup<19</sup<F NMR was used to track fluorinated contaminants in a single <i<D. magna</i< egg, showing potential for studying egg–pollutant interactions. Overall, CMOS micro-coil NMR demonstrates significant promise in environmental research, especially when the future potential to scale to multiple coil arrays (greatly improving throughput) is considered. micro-coil NMR environmental NMR CMOS heteronuclei steady state free precession Organic chemistry Marco Grisi verfasserin aut Kathryn Marable verfasserin aut Gaurasundar M. Conley verfasserin aut Carl A. Michal verfasserin aut Vincent Moxley-Paquette verfasserin aut William W. Wolff verfasserin aut Katelyn Downey verfasserin aut Flavio V. C. Kock verfasserin aut Peter M. Costa verfasserin aut Kiera Ronda verfasserin aut Tiago B. Moraes verfasserin aut Katrina Steiner verfasserin aut Luiz A. Colnago verfasserin aut Andre J. Simpson verfasserin aut In Molecules MDPI AG, 2003 28(2023), 13, p 5080 (DE-627)311313132 (DE-600)2008644-1 14203049 nnns volume:28 year:2023 number:13, p 5080 https://doi.org/10.3390/molecules28135080 kostenfrei https://doaj.org/article/81c62ae32b584e3f8f47e9e90f55354b kostenfrei https://www.mdpi.com/1420-3049/28/13/5080 kostenfrei https://doaj.org/toc/1420-3049 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 28 2023 13, p 5080 |
allfieldsGer |
10.3390/molecules28135080 doi (DE-627)DOAJ093993455 (DE-599)DOAJ81c62ae32b584e3f8f47e9e90f55354b DE-627 ger DE-627 rakwb eng QD241-441 Daniel H. Lysak verfasserin aut Exploring the Potential of Broadband Complementary Metal Oxide Semiconductor Micro-Coil Nuclear Magnetic Resonance for Environmental Research 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier With sensitivity being the Achilles’ heel of nuclear magnetic resonance (NMR), the superior mass sensitivity offered by micro-coils can be an excellent choice for tiny, mass limited samples such as eggs and small organisms. Recently, complementary metal oxide semiconductor (CMOS)-based micro-coil transceivers have been reported and demonstrate excellent mass sensitivity. However, the ability of broadband CMOS micro-coils to study heteronuclei has yet to be investigated, and here their potential is explored within the lens of environmental research. Eleven nuclei including <sup<7</sup<Li, <sup<19</sup<F, <sup<31</sup<P and, <sup<205</sup<Tl were studied and detection limits in the low to mid picomole range were found for an extended experiment. Further, two environmentally relevant samples (a sprouting broccoli seed and a <i<D. magna</i< egg) were successfully studied using the CMOS micro-coil system. <sup<13</sup<C NMR was used to help resolve broad signals in the <sup<1</sup<H spectrum of the <sup<13</sup<C enriched broccoli seed, and steady state free precession was used to improve the signal-to-noise ratio by a factor of six. <sup<19</sup<F NMR was used to track fluorinated contaminants in a single <i<D. magna</i< egg, showing potential for studying egg–pollutant interactions. Overall, CMOS micro-coil NMR demonstrates significant promise in environmental research, especially when the future potential to scale to multiple coil arrays (greatly improving throughput) is considered. micro-coil NMR environmental NMR CMOS heteronuclei steady state free precession Organic chemistry Marco Grisi verfasserin aut Kathryn Marable verfasserin aut Gaurasundar M. Conley verfasserin aut Carl A. Michal verfasserin aut Vincent Moxley-Paquette verfasserin aut William W. Wolff verfasserin aut Katelyn Downey verfasserin aut Flavio V. C. Kock verfasserin aut Peter M. Costa verfasserin aut Kiera Ronda verfasserin aut Tiago B. Moraes verfasserin aut Katrina Steiner verfasserin aut Luiz A. Colnago verfasserin aut Andre J. Simpson verfasserin aut In Molecules MDPI AG, 2003 28(2023), 13, p 5080 (DE-627)311313132 (DE-600)2008644-1 14203049 nnns volume:28 year:2023 number:13, p 5080 https://doi.org/10.3390/molecules28135080 kostenfrei https://doaj.org/article/81c62ae32b584e3f8f47e9e90f55354b kostenfrei https://www.mdpi.com/1420-3049/28/13/5080 kostenfrei https://doaj.org/toc/1420-3049 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 28 2023 13, p 5080 |
allfieldsSound |
10.3390/molecules28135080 doi (DE-627)DOAJ093993455 (DE-599)DOAJ81c62ae32b584e3f8f47e9e90f55354b DE-627 ger DE-627 rakwb eng QD241-441 Daniel H. Lysak verfasserin aut Exploring the Potential of Broadband Complementary Metal Oxide Semiconductor Micro-Coil Nuclear Magnetic Resonance for Environmental Research 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier With sensitivity being the Achilles’ heel of nuclear magnetic resonance (NMR), the superior mass sensitivity offered by micro-coils can be an excellent choice for tiny, mass limited samples such as eggs and small organisms. Recently, complementary metal oxide semiconductor (CMOS)-based micro-coil transceivers have been reported and demonstrate excellent mass sensitivity. However, the ability of broadband CMOS micro-coils to study heteronuclei has yet to be investigated, and here their potential is explored within the lens of environmental research. Eleven nuclei including <sup<7</sup<Li, <sup<19</sup<F, <sup<31</sup<P and, <sup<205</sup<Tl were studied and detection limits in the low to mid picomole range were found for an extended experiment. Further, two environmentally relevant samples (a sprouting broccoli seed and a <i<D. magna</i< egg) were successfully studied using the CMOS micro-coil system. <sup<13</sup<C NMR was used to help resolve broad signals in the <sup<1</sup<H spectrum of the <sup<13</sup<C enriched broccoli seed, and steady state free precession was used to improve the signal-to-noise ratio by a factor of six. <sup<19</sup<F NMR was used to track fluorinated contaminants in a single <i<D. magna</i< egg, showing potential for studying egg–pollutant interactions. Overall, CMOS micro-coil NMR demonstrates significant promise in environmental research, especially when the future potential to scale to multiple coil arrays (greatly improving throughput) is considered. micro-coil NMR environmental NMR CMOS heteronuclei steady state free precession Organic chemistry Marco Grisi verfasserin aut Kathryn Marable verfasserin aut Gaurasundar M. Conley verfasserin aut Carl A. Michal verfasserin aut Vincent Moxley-Paquette verfasserin aut William W. Wolff verfasserin aut Katelyn Downey verfasserin aut Flavio V. C. Kock verfasserin aut Peter M. Costa verfasserin aut Kiera Ronda verfasserin aut Tiago B. Moraes verfasserin aut Katrina Steiner verfasserin aut Luiz A. Colnago verfasserin aut Andre J. Simpson verfasserin aut In Molecules MDPI AG, 2003 28(2023), 13, p 5080 (DE-627)311313132 (DE-600)2008644-1 14203049 nnns volume:28 year:2023 number:13, p 5080 https://doi.org/10.3390/molecules28135080 kostenfrei https://doaj.org/article/81c62ae32b584e3f8f47e9e90f55354b kostenfrei https://www.mdpi.com/1420-3049/28/13/5080 kostenfrei https://doaj.org/toc/1420-3049 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 28 2023 13, p 5080 |
language |
English |
source |
In Molecules 28(2023), 13, p 5080 volume:28 year:2023 number:13, p 5080 |
sourceStr |
In Molecules 28(2023), 13, p 5080 volume:28 year:2023 number:13, p 5080 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
micro-coil NMR environmental NMR CMOS heteronuclei steady state free precession Organic chemistry |
isfreeaccess_bool |
true |
container_title |
Molecules |
authorswithroles_txt_mv |
Daniel H. Lysak @@aut@@ Marco Grisi @@aut@@ Kathryn Marable @@aut@@ Gaurasundar M. Conley @@aut@@ Carl A. Michal @@aut@@ Vincent Moxley-Paquette @@aut@@ William W. Wolff @@aut@@ Katelyn Downey @@aut@@ Flavio V. C. Kock @@aut@@ Peter M. Costa @@aut@@ Kiera Ronda @@aut@@ Tiago B. Moraes @@aut@@ Katrina Steiner @@aut@@ Luiz A. Colnago @@aut@@ Andre J. Simpson @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
311313132 |
id |
DOAJ093993455 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ093993455</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413023944.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/molecules28135080</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ093993455</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ81c62ae32b584e3f8f47e9e90f55354b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD241-441</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Daniel H. Lysak</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Exploring the Potential of Broadband Complementary Metal Oxide Semiconductor Micro-Coil Nuclear Magnetic Resonance for Environmental Research</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">With sensitivity being the Achilles’ heel of nuclear magnetic resonance (NMR), the superior mass sensitivity offered by micro-coils can be an excellent choice for tiny, mass limited samples such as eggs and small organisms. Recently, complementary metal oxide semiconductor (CMOS)-based micro-coil transceivers have been reported and demonstrate excellent mass sensitivity. However, the ability of broadband CMOS micro-coils to study heteronuclei has yet to be investigated, and here their potential is explored within the lens of environmental research. Eleven nuclei including <sup<7</sup<Li, <sup<19</sup<F, <sup<31</sup<P and, <sup<205</sup<Tl were studied and detection limits in the low to mid picomole range were found for an extended experiment. Further, two environmentally relevant samples (a sprouting broccoli seed and a <i<D. magna</i< egg) were successfully studied using the CMOS micro-coil system. <sup<13</sup<C NMR was used to help resolve broad signals in the <sup<1</sup<H spectrum of the <sup<13</sup<C enriched broccoli seed, and steady state free precession was used to improve the signal-to-noise ratio by a factor of six. <sup<19</sup<F NMR was used to track fluorinated contaminants in a single <i<D. magna</i< egg, showing potential for studying egg–pollutant interactions. Overall, CMOS micro-coil NMR demonstrates significant promise in environmental research, especially when the future potential to scale to multiple coil arrays (greatly improving throughput) is considered.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">micro-coil NMR</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">environmental NMR</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CMOS</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">heteronuclei</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">steady state free precession</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Organic chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marco Grisi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kathryn Marable</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gaurasundar M. Conley</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Carl A. Michal</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Vincent Moxley-Paquette</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">William W. Wolff</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Katelyn Downey</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Flavio V. C. Kock</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Peter M. Costa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kiera Ronda</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tiago B. Moraes</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Katrina Steiner</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Luiz A. Colnago</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Andre J. Simpson</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Molecules</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">28(2023), 13, p 5080</subfield><subfield code="w">(DE-627)311313132</subfield><subfield code="w">(DE-600)2008644-1</subfield><subfield code="x">14203049</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:28</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:13, p 5080</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/molecules28135080</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/81c62ae32b584e3f8f47e9e90f55354b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1420-3049/28/13/5080</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1420-3049</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">28</subfield><subfield code="j">2023</subfield><subfield code="e">13, p 5080</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Daniel H. Lysak |
spellingShingle |
Daniel H. Lysak misc QD241-441 misc micro-coil NMR misc environmental NMR misc CMOS misc heteronuclei misc steady state free precession misc Organic chemistry Exploring the Potential of Broadband Complementary Metal Oxide Semiconductor Micro-Coil Nuclear Magnetic Resonance for Environmental Research |
authorStr |
Daniel H. Lysak |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)311313132 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QD241-441 |
illustrated |
Not Illustrated |
issn |
14203049 |
topic_title |
QD241-441 Exploring the Potential of Broadband Complementary Metal Oxide Semiconductor Micro-Coil Nuclear Magnetic Resonance for Environmental Research micro-coil NMR environmental NMR CMOS heteronuclei steady state free precession |
topic |
misc QD241-441 misc micro-coil NMR misc environmental NMR misc CMOS misc heteronuclei misc steady state free precession misc Organic chemistry |
topic_unstemmed |
misc QD241-441 misc micro-coil NMR misc environmental NMR misc CMOS misc heteronuclei misc steady state free precession misc Organic chemistry |
topic_browse |
misc QD241-441 misc micro-coil NMR misc environmental NMR misc CMOS misc heteronuclei misc steady state free precession misc Organic chemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Molecules |
hierarchy_parent_id |
311313132 |
hierarchy_top_title |
Molecules |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)311313132 (DE-600)2008644-1 |
title |
Exploring the Potential of Broadband Complementary Metal Oxide Semiconductor Micro-Coil Nuclear Magnetic Resonance for Environmental Research |
ctrlnum |
(DE-627)DOAJ093993455 (DE-599)DOAJ81c62ae32b584e3f8f47e9e90f55354b |
title_full |
Exploring the Potential of Broadband Complementary Metal Oxide Semiconductor Micro-Coil Nuclear Magnetic Resonance for Environmental Research |
author_sort |
Daniel H. Lysak |
journal |
Molecules |
journalStr |
Molecules |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Daniel H. Lysak Marco Grisi Kathryn Marable Gaurasundar M. Conley Carl A. Michal Vincent Moxley-Paquette William W. Wolff Katelyn Downey Flavio V. C. Kock Peter M. Costa Kiera Ronda Tiago B. Moraes Katrina Steiner Luiz A. Colnago Andre J. Simpson |
container_volume |
28 |
class |
QD241-441 |
format_se |
Elektronische Aufsätze |
author-letter |
Daniel H. Lysak |
doi_str_mv |
10.3390/molecules28135080 |
author2-role |
verfasserin |
title_sort |
exploring the potential of broadband complementary metal oxide semiconductor micro-coil nuclear magnetic resonance for environmental research |
callnumber |
QD241-441 |
title_auth |
Exploring the Potential of Broadband Complementary Metal Oxide Semiconductor Micro-Coil Nuclear Magnetic Resonance for Environmental Research |
abstract |
With sensitivity being the Achilles’ heel of nuclear magnetic resonance (NMR), the superior mass sensitivity offered by micro-coils can be an excellent choice for tiny, mass limited samples such as eggs and small organisms. Recently, complementary metal oxide semiconductor (CMOS)-based micro-coil transceivers have been reported and demonstrate excellent mass sensitivity. However, the ability of broadband CMOS micro-coils to study heteronuclei has yet to be investigated, and here their potential is explored within the lens of environmental research. Eleven nuclei including <sup<7</sup<Li, <sup<19</sup<F, <sup<31</sup<P and, <sup<205</sup<Tl were studied and detection limits in the low to mid picomole range were found for an extended experiment. Further, two environmentally relevant samples (a sprouting broccoli seed and a <i<D. magna</i< egg) were successfully studied using the CMOS micro-coil system. <sup<13</sup<C NMR was used to help resolve broad signals in the <sup<1</sup<H spectrum of the <sup<13</sup<C enriched broccoli seed, and steady state free precession was used to improve the signal-to-noise ratio by a factor of six. <sup<19</sup<F NMR was used to track fluorinated contaminants in a single <i<D. magna</i< egg, showing potential for studying egg–pollutant interactions. Overall, CMOS micro-coil NMR demonstrates significant promise in environmental research, especially when the future potential to scale to multiple coil arrays (greatly improving throughput) is considered. |
abstractGer |
With sensitivity being the Achilles’ heel of nuclear magnetic resonance (NMR), the superior mass sensitivity offered by micro-coils can be an excellent choice for tiny, mass limited samples such as eggs and small organisms. Recently, complementary metal oxide semiconductor (CMOS)-based micro-coil transceivers have been reported and demonstrate excellent mass sensitivity. However, the ability of broadband CMOS micro-coils to study heteronuclei has yet to be investigated, and here their potential is explored within the lens of environmental research. Eleven nuclei including <sup<7</sup<Li, <sup<19</sup<F, <sup<31</sup<P and, <sup<205</sup<Tl were studied and detection limits in the low to mid picomole range were found for an extended experiment. Further, two environmentally relevant samples (a sprouting broccoli seed and a <i<D. magna</i< egg) were successfully studied using the CMOS micro-coil system. <sup<13</sup<C NMR was used to help resolve broad signals in the <sup<1</sup<H spectrum of the <sup<13</sup<C enriched broccoli seed, and steady state free precession was used to improve the signal-to-noise ratio by a factor of six. <sup<19</sup<F NMR was used to track fluorinated contaminants in a single <i<D. magna</i< egg, showing potential for studying egg–pollutant interactions. Overall, CMOS micro-coil NMR demonstrates significant promise in environmental research, especially when the future potential to scale to multiple coil arrays (greatly improving throughput) is considered. |
abstract_unstemmed |
With sensitivity being the Achilles’ heel of nuclear magnetic resonance (NMR), the superior mass sensitivity offered by micro-coils can be an excellent choice for tiny, mass limited samples such as eggs and small organisms. Recently, complementary metal oxide semiconductor (CMOS)-based micro-coil transceivers have been reported and demonstrate excellent mass sensitivity. However, the ability of broadband CMOS micro-coils to study heteronuclei has yet to be investigated, and here their potential is explored within the lens of environmental research. Eleven nuclei including <sup<7</sup<Li, <sup<19</sup<F, <sup<31</sup<P and, <sup<205</sup<Tl were studied and detection limits in the low to mid picomole range were found for an extended experiment. Further, two environmentally relevant samples (a sprouting broccoli seed and a <i<D. magna</i< egg) were successfully studied using the CMOS micro-coil system. <sup<13</sup<C NMR was used to help resolve broad signals in the <sup<1</sup<H spectrum of the <sup<13</sup<C enriched broccoli seed, and steady state free precession was used to improve the signal-to-noise ratio by a factor of six. <sup<19</sup<F NMR was used to track fluorinated contaminants in a single <i<D. magna</i< egg, showing potential for studying egg–pollutant interactions. Overall, CMOS micro-coil NMR demonstrates significant promise in environmental research, especially when the future potential to scale to multiple coil arrays (greatly improving throughput) is considered. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
13, p 5080 |
title_short |
Exploring the Potential of Broadband Complementary Metal Oxide Semiconductor Micro-Coil Nuclear Magnetic Resonance for Environmental Research |
url |
https://doi.org/10.3390/molecules28135080 https://doaj.org/article/81c62ae32b584e3f8f47e9e90f55354b https://www.mdpi.com/1420-3049/28/13/5080 https://doaj.org/toc/1420-3049 |
remote_bool |
true |
author2 |
Marco Grisi Kathryn Marable Gaurasundar M. Conley Carl A. Michal Vincent Moxley-Paquette William W. Wolff Katelyn Downey Flavio V. C. Kock Peter M. Costa Kiera Ronda Tiago B. Moraes Katrina Steiner Luiz A. Colnago Andre J. Simpson |
author2Str |
Marco Grisi Kathryn Marable Gaurasundar M. Conley Carl A. Michal Vincent Moxley-Paquette William W. Wolff Katelyn Downey Flavio V. C. Kock Peter M. Costa Kiera Ronda Tiago B. Moraes Katrina Steiner Luiz A. Colnago Andre J. Simpson |
ppnlink |
311313132 |
callnumber-subject |
QD - Chemistry |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/molecules28135080 |
callnumber-a |
QD241-441 |
up_date |
2024-07-03T20:37:24.639Z |
_version_ |
1803591661275578368 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ093993455</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413023944.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/molecules28135080</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ093993455</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ81c62ae32b584e3f8f47e9e90f55354b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD241-441</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Daniel H. Lysak</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Exploring the Potential of Broadband Complementary Metal Oxide Semiconductor Micro-Coil Nuclear Magnetic Resonance for Environmental Research</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">With sensitivity being the Achilles’ heel of nuclear magnetic resonance (NMR), the superior mass sensitivity offered by micro-coils can be an excellent choice for tiny, mass limited samples such as eggs and small organisms. Recently, complementary metal oxide semiconductor (CMOS)-based micro-coil transceivers have been reported and demonstrate excellent mass sensitivity. However, the ability of broadband CMOS micro-coils to study heteronuclei has yet to be investigated, and here their potential is explored within the lens of environmental research. Eleven nuclei including <sup<7</sup<Li, <sup<19</sup<F, <sup<31</sup<P and, <sup<205</sup<Tl were studied and detection limits in the low to mid picomole range were found for an extended experiment. Further, two environmentally relevant samples (a sprouting broccoli seed and a <i<D. magna</i< egg) were successfully studied using the CMOS micro-coil system. <sup<13</sup<C NMR was used to help resolve broad signals in the <sup<1</sup<H spectrum of the <sup<13</sup<C enriched broccoli seed, and steady state free precession was used to improve the signal-to-noise ratio by a factor of six. <sup<19</sup<F NMR was used to track fluorinated contaminants in a single <i<D. magna</i< egg, showing potential for studying egg–pollutant interactions. Overall, CMOS micro-coil NMR demonstrates significant promise in environmental research, especially when the future potential to scale to multiple coil arrays (greatly improving throughput) is considered.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">micro-coil NMR</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">environmental NMR</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CMOS</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">heteronuclei</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">steady state free precession</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Organic chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marco Grisi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kathryn Marable</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gaurasundar M. Conley</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Carl A. Michal</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Vincent Moxley-Paquette</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">William W. Wolff</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Katelyn Downey</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Flavio V. C. Kock</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Peter M. Costa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kiera Ronda</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tiago B. Moraes</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Katrina Steiner</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Luiz A. Colnago</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Andre J. Simpson</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Molecules</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">28(2023), 13, p 5080</subfield><subfield code="w">(DE-627)311313132</subfield><subfield code="w">(DE-600)2008644-1</subfield><subfield code="x">14203049</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:28</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:13, p 5080</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/molecules28135080</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/81c62ae32b584e3f8f47e9e90f55354b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1420-3049/28/13/5080</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1420-3049</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">28</subfield><subfield code="j">2023</subfield><subfield code="e">13, p 5080</subfield></datafield></record></collection>
|
score |
7.401412 |