Bias-Corrected CMIP5 Projections for Climate Change and Assessments of Impact on Malaria in Senegal under the VECTRI Model
On the climate-health issue, studies have already attempted to understand the influence of climate change on the transmission of malaria. Extreme weather events such as floods, droughts, or heat waves can alter the course and distribution of malaria. This study aims to understand the impact of futur...
Ausführliche Beschreibung
Autor*in: |
Papa Fall [verfasserIn] Ibrahima Diouf [verfasserIn] Abdoulaye Deme [verfasserIn] Semou Diouf [verfasserIn] Doudou Sene [verfasserIn] Benjamin Sultan [verfasserIn] Adjoua Moïse Famien [verfasserIn] Serge Janicot [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Tropical Medicine and Infectious Disease - MDPI AG, 2017, 8(2023), 6, p 310 |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:2023 ; number:6, p 310 |
Links: |
---|
DOI / URN: |
10.3390/tropicalmed8060310 |
---|
Katalog-ID: |
DOAJ094046743 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ094046743 | ||
003 | DE-627 | ||
005 | 20240413024827.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/tropicalmed8060310 |2 doi | |
035 | |a (DE-627)DOAJ094046743 | ||
035 | |a (DE-599)DOAJad8502bd58364eb08129f74d1522d5ae | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Papa Fall |e verfasserin |4 aut | |
245 | 1 | 0 | |a Bias-Corrected CMIP5 Projections for Climate Change and Assessments of Impact on Malaria in Senegal under the VECTRI Model |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a On the climate-health issue, studies have already attempted to understand the influence of climate change on the transmission of malaria. Extreme weather events such as floods, droughts, or heat waves can alter the course and distribution of malaria. This study aims to understand the impact of future climate change on malaria transmission using, for the first time in Senegal, the ICTP’s community-based vector-borne disease model, TRIeste (VECTRI). This biological model is a dynamic mathematical model for the study of malaria transmission that considers the impact of climate and population variability. A new approach for VECTRI input parameters was also used. A bias correction technique, the cumulative distribution function transform (CDF-t) method, was applied to climate simulations to remove systematic biases in the Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models (GCMs) that could alter impact predictions. Beforehand, we use reference data for validation such as CPC global unified gauge-based analysis of daily precipitation (CPC for Climate Prediction Center), ERA5-land reanalysis, Climate Hazards InfraRed Precipitation with Station data (CHIRPS), and African Rainfall Climatology 2.0 (ARC2). The results were analyzed for two CMIP5 scenarios for the different time periods: assessment: 1983–2005; near future: 2006–2028; medium term: 2030–2052; and far future: 2077–2099). The validation results show that the models reproduce the annual cycle well. Except for the IPSL-CM5B model, which gives a peak in August, all the other models (ACCESS1–3, CanESM2, CSIRO, CMCC-CM, CMCC-CMS, CNRM-CM5, GFDL-CM3, GFDL-ESM2G, GFDL-ESM2M, inmcm4, and IPSL-CM5B) agree with the validation data on a maximum peak in September with a period of strong transmission in August–October. With spatial variation, the CMIP5 model simulations show more of a difference in the number of malaria cases between the south and the north. Malaria transmission is much higher in the south than in the north. However, the results predicted by the models on the occurrence of malaria by 2100 show differences between the RCP8.5 scenario, considered a high emission scenario, and the RCP4.5 scenario, considered an intermediate mitigation scenario. The CanESM2, CMCC-CM, CMCC-CMS, inmcm4, and IPSL-CM5B models predict decreases with the RCP4.5 scenario. However, ACCESS1–3, CSIRO, NRCM-CM5, GFDL-CM3, GFDL-ESM2G, and GFDL-ESM2M predict increases in malaria under all scenarios (RCP4.5 and RCP8.5). The projected decrease in malaria in the future with these models is much more visible in the RCP8.5 scenario. The results of this study are of paramount importance in the climate-health field. These results will assist in decision-making and will allow for the establishment of preventive surveillance systems for local climate-sensitive diseases, including malaria, in the targeted regions of Senegal. | ||
650 | 4 | |a climate change | |
650 | 4 | |a malaria | |
650 | 4 | |a Senegal | |
650 | 4 | |a VECTRI | |
650 | 4 | |a GCM | |
650 | 4 | |a CDF-t method | |
653 | 0 | |a Medicine | |
653 | 0 | |a R | |
700 | 0 | |a Ibrahima Diouf |e verfasserin |4 aut | |
700 | 0 | |a Abdoulaye Deme |e verfasserin |4 aut | |
700 | 0 | |a Semou Diouf |e verfasserin |4 aut | |
700 | 0 | |a Doudou Sene |e verfasserin |4 aut | |
700 | 0 | |a Benjamin Sultan |e verfasserin |4 aut | |
700 | 0 | |a Adjoua Moïse Famien |e verfasserin |4 aut | |
700 | 0 | |a Serge Janicot |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Tropical Medicine and Infectious Disease |d MDPI AG, 2017 |g 8(2023), 6, p 310 |w (DE-627)102556488X |x 24146366 |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:2023 |g number:6, p 310 |
856 | 4 | 0 | |u https://doi.org/10.3390/tropicalmed8060310 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/ad8502bd58364eb08129f74d1522d5ae |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2414-6366/8/6/310 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2414-6366 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 8 |j 2023 |e 6, p 310 |
author_variant |
p f pf i d id a d ad s d sd d s ds b s bs a m f amf s j sj |
---|---|
matchkey_str |
article:24146366:2023----::isorceci5rjcinfrlmtcagadsesetoipcomlran |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.3390/tropicalmed8060310 doi (DE-627)DOAJ094046743 (DE-599)DOAJad8502bd58364eb08129f74d1522d5ae DE-627 ger DE-627 rakwb eng Papa Fall verfasserin aut Bias-Corrected CMIP5 Projections for Climate Change and Assessments of Impact on Malaria in Senegal under the VECTRI Model 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier On the climate-health issue, studies have already attempted to understand the influence of climate change on the transmission of malaria. Extreme weather events such as floods, droughts, or heat waves can alter the course and distribution of malaria. This study aims to understand the impact of future climate change on malaria transmission using, for the first time in Senegal, the ICTP’s community-based vector-borne disease model, TRIeste (VECTRI). This biological model is a dynamic mathematical model for the study of malaria transmission that considers the impact of climate and population variability. A new approach for VECTRI input parameters was also used. A bias correction technique, the cumulative distribution function transform (CDF-t) method, was applied to climate simulations to remove systematic biases in the Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models (GCMs) that could alter impact predictions. Beforehand, we use reference data for validation such as CPC global unified gauge-based analysis of daily precipitation (CPC for Climate Prediction Center), ERA5-land reanalysis, Climate Hazards InfraRed Precipitation with Station data (CHIRPS), and African Rainfall Climatology 2.0 (ARC2). The results were analyzed for two CMIP5 scenarios for the different time periods: assessment: 1983–2005; near future: 2006–2028; medium term: 2030–2052; and far future: 2077–2099). The validation results show that the models reproduce the annual cycle well. Except for the IPSL-CM5B model, which gives a peak in August, all the other models (ACCESS1–3, CanESM2, CSIRO, CMCC-CM, CMCC-CMS, CNRM-CM5, GFDL-CM3, GFDL-ESM2G, GFDL-ESM2M, inmcm4, and IPSL-CM5B) agree with the validation data on a maximum peak in September with a period of strong transmission in August–October. With spatial variation, the CMIP5 model simulations show more of a difference in the number of malaria cases between the south and the north. Malaria transmission is much higher in the south than in the north. However, the results predicted by the models on the occurrence of malaria by 2100 show differences between the RCP8.5 scenario, considered a high emission scenario, and the RCP4.5 scenario, considered an intermediate mitigation scenario. The CanESM2, CMCC-CM, CMCC-CMS, inmcm4, and IPSL-CM5B models predict decreases with the RCP4.5 scenario. However, ACCESS1–3, CSIRO, NRCM-CM5, GFDL-CM3, GFDL-ESM2G, and GFDL-ESM2M predict increases in malaria under all scenarios (RCP4.5 and RCP8.5). The projected decrease in malaria in the future with these models is much more visible in the RCP8.5 scenario. The results of this study are of paramount importance in the climate-health field. These results will assist in decision-making and will allow for the establishment of preventive surveillance systems for local climate-sensitive diseases, including malaria, in the targeted regions of Senegal. climate change malaria Senegal VECTRI GCM CDF-t method Medicine R Ibrahima Diouf verfasserin aut Abdoulaye Deme verfasserin aut Semou Diouf verfasserin aut Doudou Sene verfasserin aut Benjamin Sultan verfasserin aut Adjoua Moïse Famien verfasserin aut Serge Janicot verfasserin aut In Tropical Medicine and Infectious Disease MDPI AG, 2017 8(2023), 6, p 310 (DE-627)102556488X 24146366 nnns volume:8 year:2023 number:6, p 310 https://doi.org/10.3390/tropicalmed8060310 kostenfrei https://doaj.org/article/ad8502bd58364eb08129f74d1522d5ae kostenfrei https://www.mdpi.com/2414-6366/8/6/310 kostenfrei https://doaj.org/toc/2414-6366 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2023 6, p 310 |
spelling |
10.3390/tropicalmed8060310 doi (DE-627)DOAJ094046743 (DE-599)DOAJad8502bd58364eb08129f74d1522d5ae DE-627 ger DE-627 rakwb eng Papa Fall verfasserin aut Bias-Corrected CMIP5 Projections for Climate Change and Assessments of Impact on Malaria in Senegal under the VECTRI Model 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier On the climate-health issue, studies have already attempted to understand the influence of climate change on the transmission of malaria. Extreme weather events such as floods, droughts, or heat waves can alter the course and distribution of malaria. This study aims to understand the impact of future climate change on malaria transmission using, for the first time in Senegal, the ICTP’s community-based vector-borne disease model, TRIeste (VECTRI). This biological model is a dynamic mathematical model for the study of malaria transmission that considers the impact of climate and population variability. A new approach for VECTRI input parameters was also used. A bias correction technique, the cumulative distribution function transform (CDF-t) method, was applied to climate simulations to remove systematic biases in the Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models (GCMs) that could alter impact predictions. Beforehand, we use reference data for validation such as CPC global unified gauge-based analysis of daily precipitation (CPC for Climate Prediction Center), ERA5-land reanalysis, Climate Hazards InfraRed Precipitation with Station data (CHIRPS), and African Rainfall Climatology 2.0 (ARC2). The results were analyzed for two CMIP5 scenarios for the different time periods: assessment: 1983–2005; near future: 2006–2028; medium term: 2030–2052; and far future: 2077–2099). The validation results show that the models reproduce the annual cycle well. Except for the IPSL-CM5B model, which gives a peak in August, all the other models (ACCESS1–3, CanESM2, CSIRO, CMCC-CM, CMCC-CMS, CNRM-CM5, GFDL-CM3, GFDL-ESM2G, GFDL-ESM2M, inmcm4, and IPSL-CM5B) agree with the validation data on a maximum peak in September with a period of strong transmission in August–October. With spatial variation, the CMIP5 model simulations show more of a difference in the number of malaria cases between the south and the north. Malaria transmission is much higher in the south than in the north. However, the results predicted by the models on the occurrence of malaria by 2100 show differences between the RCP8.5 scenario, considered a high emission scenario, and the RCP4.5 scenario, considered an intermediate mitigation scenario. The CanESM2, CMCC-CM, CMCC-CMS, inmcm4, and IPSL-CM5B models predict decreases with the RCP4.5 scenario. However, ACCESS1–3, CSIRO, NRCM-CM5, GFDL-CM3, GFDL-ESM2G, and GFDL-ESM2M predict increases in malaria under all scenarios (RCP4.5 and RCP8.5). The projected decrease in malaria in the future with these models is much more visible in the RCP8.5 scenario. The results of this study are of paramount importance in the climate-health field. These results will assist in decision-making and will allow for the establishment of preventive surveillance systems for local climate-sensitive diseases, including malaria, in the targeted regions of Senegal. climate change malaria Senegal VECTRI GCM CDF-t method Medicine R Ibrahima Diouf verfasserin aut Abdoulaye Deme verfasserin aut Semou Diouf verfasserin aut Doudou Sene verfasserin aut Benjamin Sultan verfasserin aut Adjoua Moïse Famien verfasserin aut Serge Janicot verfasserin aut In Tropical Medicine and Infectious Disease MDPI AG, 2017 8(2023), 6, p 310 (DE-627)102556488X 24146366 nnns volume:8 year:2023 number:6, p 310 https://doi.org/10.3390/tropicalmed8060310 kostenfrei https://doaj.org/article/ad8502bd58364eb08129f74d1522d5ae kostenfrei https://www.mdpi.com/2414-6366/8/6/310 kostenfrei https://doaj.org/toc/2414-6366 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2023 6, p 310 |
allfields_unstemmed |
10.3390/tropicalmed8060310 doi (DE-627)DOAJ094046743 (DE-599)DOAJad8502bd58364eb08129f74d1522d5ae DE-627 ger DE-627 rakwb eng Papa Fall verfasserin aut Bias-Corrected CMIP5 Projections for Climate Change and Assessments of Impact on Malaria in Senegal under the VECTRI Model 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier On the climate-health issue, studies have already attempted to understand the influence of climate change on the transmission of malaria. Extreme weather events such as floods, droughts, or heat waves can alter the course and distribution of malaria. This study aims to understand the impact of future climate change on malaria transmission using, for the first time in Senegal, the ICTP’s community-based vector-borne disease model, TRIeste (VECTRI). This biological model is a dynamic mathematical model for the study of malaria transmission that considers the impact of climate and population variability. A new approach for VECTRI input parameters was also used. A bias correction technique, the cumulative distribution function transform (CDF-t) method, was applied to climate simulations to remove systematic biases in the Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models (GCMs) that could alter impact predictions. Beforehand, we use reference data for validation such as CPC global unified gauge-based analysis of daily precipitation (CPC for Climate Prediction Center), ERA5-land reanalysis, Climate Hazards InfraRed Precipitation with Station data (CHIRPS), and African Rainfall Climatology 2.0 (ARC2). The results were analyzed for two CMIP5 scenarios for the different time periods: assessment: 1983–2005; near future: 2006–2028; medium term: 2030–2052; and far future: 2077–2099). The validation results show that the models reproduce the annual cycle well. Except for the IPSL-CM5B model, which gives a peak in August, all the other models (ACCESS1–3, CanESM2, CSIRO, CMCC-CM, CMCC-CMS, CNRM-CM5, GFDL-CM3, GFDL-ESM2G, GFDL-ESM2M, inmcm4, and IPSL-CM5B) agree with the validation data on a maximum peak in September with a period of strong transmission in August–October. With spatial variation, the CMIP5 model simulations show more of a difference in the number of malaria cases between the south and the north. Malaria transmission is much higher in the south than in the north. However, the results predicted by the models on the occurrence of malaria by 2100 show differences between the RCP8.5 scenario, considered a high emission scenario, and the RCP4.5 scenario, considered an intermediate mitigation scenario. The CanESM2, CMCC-CM, CMCC-CMS, inmcm4, and IPSL-CM5B models predict decreases with the RCP4.5 scenario. However, ACCESS1–3, CSIRO, NRCM-CM5, GFDL-CM3, GFDL-ESM2G, and GFDL-ESM2M predict increases in malaria under all scenarios (RCP4.5 and RCP8.5). The projected decrease in malaria in the future with these models is much more visible in the RCP8.5 scenario. The results of this study are of paramount importance in the climate-health field. These results will assist in decision-making and will allow for the establishment of preventive surveillance systems for local climate-sensitive diseases, including malaria, in the targeted regions of Senegal. climate change malaria Senegal VECTRI GCM CDF-t method Medicine R Ibrahima Diouf verfasserin aut Abdoulaye Deme verfasserin aut Semou Diouf verfasserin aut Doudou Sene verfasserin aut Benjamin Sultan verfasserin aut Adjoua Moïse Famien verfasserin aut Serge Janicot verfasserin aut In Tropical Medicine and Infectious Disease MDPI AG, 2017 8(2023), 6, p 310 (DE-627)102556488X 24146366 nnns volume:8 year:2023 number:6, p 310 https://doi.org/10.3390/tropicalmed8060310 kostenfrei https://doaj.org/article/ad8502bd58364eb08129f74d1522d5ae kostenfrei https://www.mdpi.com/2414-6366/8/6/310 kostenfrei https://doaj.org/toc/2414-6366 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2023 6, p 310 |
allfieldsGer |
10.3390/tropicalmed8060310 doi (DE-627)DOAJ094046743 (DE-599)DOAJad8502bd58364eb08129f74d1522d5ae DE-627 ger DE-627 rakwb eng Papa Fall verfasserin aut Bias-Corrected CMIP5 Projections for Climate Change and Assessments of Impact on Malaria in Senegal under the VECTRI Model 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier On the climate-health issue, studies have already attempted to understand the influence of climate change on the transmission of malaria. Extreme weather events such as floods, droughts, or heat waves can alter the course and distribution of malaria. This study aims to understand the impact of future climate change on malaria transmission using, for the first time in Senegal, the ICTP’s community-based vector-borne disease model, TRIeste (VECTRI). This biological model is a dynamic mathematical model for the study of malaria transmission that considers the impact of climate and population variability. A new approach for VECTRI input parameters was also used. A bias correction technique, the cumulative distribution function transform (CDF-t) method, was applied to climate simulations to remove systematic biases in the Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models (GCMs) that could alter impact predictions. Beforehand, we use reference data for validation such as CPC global unified gauge-based analysis of daily precipitation (CPC for Climate Prediction Center), ERA5-land reanalysis, Climate Hazards InfraRed Precipitation with Station data (CHIRPS), and African Rainfall Climatology 2.0 (ARC2). The results were analyzed for two CMIP5 scenarios for the different time periods: assessment: 1983–2005; near future: 2006–2028; medium term: 2030–2052; and far future: 2077–2099). The validation results show that the models reproduce the annual cycle well. Except for the IPSL-CM5B model, which gives a peak in August, all the other models (ACCESS1–3, CanESM2, CSIRO, CMCC-CM, CMCC-CMS, CNRM-CM5, GFDL-CM3, GFDL-ESM2G, GFDL-ESM2M, inmcm4, and IPSL-CM5B) agree with the validation data on a maximum peak in September with a period of strong transmission in August–October. With spatial variation, the CMIP5 model simulations show more of a difference in the number of malaria cases between the south and the north. Malaria transmission is much higher in the south than in the north. However, the results predicted by the models on the occurrence of malaria by 2100 show differences between the RCP8.5 scenario, considered a high emission scenario, and the RCP4.5 scenario, considered an intermediate mitigation scenario. The CanESM2, CMCC-CM, CMCC-CMS, inmcm4, and IPSL-CM5B models predict decreases with the RCP4.5 scenario. However, ACCESS1–3, CSIRO, NRCM-CM5, GFDL-CM3, GFDL-ESM2G, and GFDL-ESM2M predict increases in malaria under all scenarios (RCP4.5 and RCP8.5). The projected decrease in malaria in the future with these models is much more visible in the RCP8.5 scenario. The results of this study are of paramount importance in the climate-health field. These results will assist in decision-making and will allow for the establishment of preventive surveillance systems for local climate-sensitive diseases, including malaria, in the targeted regions of Senegal. climate change malaria Senegal VECTRI GCM CDF-t method Medicine R Ibrahima Diouf verfasserin aut Abdoulaye Deme verfasserin aut Semou Diouf verfasserin aut Doudou Sene verfasserin aut Benjamin Sultan verfasserin aut Adjoua Moïse Famien verfasserin aut Serge Janicot verfasserin aut In Tropical Medicine and Infectious Disease MDPI AG, 2017 8(2023), 6, p 310 (DE-627)102556488X 24146366 nnns volume:8 year:2023 number:6, p 310 https://doi.org/10.3390/tropicalmed8060310 kostenfrei https://doaj.org/article/ad8502bd58364eb08129f74d1522d5ae kostenfrei https://www.mdpi.com/2414-6366/8/6/310 kostenfrei https://doaj.org/toc/2414-6366 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2023 6, p 310 |
allfieldsSound |
10.3390/tropicalmed8060310 doi (DE-627)DOAJ094046743 (DE-599)DOAJad8502bd58364eb08129f74d1522d5ae DE-627 ger DE-627 rakwb eng Papa Fall verfasserin aut Bias-Corrected CMIP5 Projections for Climate Change and Assessments of Impact on Malaria in Senegal under the VECTRI Model 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier On the climate-health issue, studies have already attempted to understand the influence of climate change on the transmission of malaria. Extreme weather events such as floods, droughts, or heat waves can alter the course and distribution of malaria. This study aims to understand the impact of future climate change on malaria transmission using, for the first time in Senegal, the ICTP’s community-based vector-borne disease model, TRIeste (VECTRI). This biological model is a dynamic mathematical model for the study of malaria transmission that considers the impact of climate and population variability. A new approach for VECTRI input parameters was also used. A bias correction technique, the cumulative distribution function transform (CDF-t) method, was applied to climate simulations to remove systematic biases in the Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models (GCMs) that could alter impact predictions. Beforehand, we use reference data for validation such as CPC global unified gauge-based analysis of daily precipitation (CPC for Climate Prediction Center), ERA5-land reanalysis, Climate Hazards InfraRed Precipitation with Station data (CHIRPS), and African Rainfall Climatology 2.0 (ARC2). The results were analyzed for two CMIP5 scenarios for the different time periods: assessment: 1983–2005; near future: 2006–2028; medium term: 2030–2052; and far future: 2077–2099). The validation results show that the models reproduce the annual cycle well. Except for the IPSL-CM5B model, which gives a peak in August, all the other models (ACCESS1–3, CanESM2, CSIRO, CMCC-CM, CMCC-CMS, CNRM-CM5, GFDL-CM3, GFDL-ESM2G, GFDL-ESM2M, inmcm4, and IPSL-CM5B) agree with the validation data on a maximum peak in September with a period of strong transmission in August–October. With spatial variation, the CMIP5 model simulations show more of a difference in the number of malaria cases between the south and the north. Malaria transmission is much higher in the south than in the north. However, the results predicted by the models on the occurrence of malaria by 2100 show differences between the RCP8.5 scenario, considered a high emission scenario, and the RCP4.5 scenario, considered an intermediate mitigation scenario. The CanESM2, CMCC-CM, CMCC-CMS, inmcm4, and IPSL-CM5B models predict decreases with the RCP4.5 scenario. However, ACCESS1–3, CSIRO, NRCM-CM5, GFDL-CM3, GFDL-ESM2G, and GFDL-ESM2M predict increases in malaria under all scenarios (RCP4.5 and RCP8.5). The projected decrease in malaria in the future with these models is much more visible in the RCP8.5 scenario. The results of this study are of paramount importance in the climate-health field. These results will assist in decision-making and will allow for the establishment of preventive surveillance systems for local climate-sensitive diseases, including malaria, in the targeted regions of Senegal. climate change malaria Senegal VECTRI GCM CDF-t method Medicine R Ibrahima Diouf verfasserin aut Abdoulaye Deme verfasserin aut Semou Diouf verfasserin aut Doudou Sene verfasserin aut Benjamin Sultan verfasserin aut Adjoua Moïse Famien verfasserin aut Serge Janicot verfasserin aut In Tropical Medicine and Infectious Disease MDPI AG, 2017 8(2023), 6, p 310 (DE-627)102556488X 24146366 nnns volume:8 year:2023 number:6, p 310 https://doi.org/10.3390/tropicalmed8060310 kostenfrei https://doaj.org/article/ad8502bd58364eb08129f74d1522d5ae kostenfrei https://www.mdpi.com/2414-6366/8/6/310 kostenfrei https://doaj.org/toc/2414-6366 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2023 6, p 310 |
language |
English |
source |
In Tropical Medicine and Infectious Disease 8(2023), 6, p 310 volume:8 year:2023 number:6, p 310 |
sourceStr |
In Tropical Medicine and Infectious Disease 8(2023), 6, p 310 volume:8 year:2023 number:6, p 310 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
climate change malaria Senegal VECTRI GCM CDF-t method Medicine R |
isfreeaccess_bool |
true |
container_title |
Tropical Medicine and Infectious Disease |
authorswithroles_txt_mv |
Papa Fall @@aut@@ Ibrahima Diouf @@aut@@ Abdoulaye Deme @@aut@@ Semou Diouf @@aut@@ Doudou Sene @@aut@@ Benjamin Sultan @@aut@@ Adjoua Moïse Famien @@aut@@ Serge Janicot @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
102556488X |
id |
DOAJ094046743 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ094046743</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413024827.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/tropicalmed8060310</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ094046743</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJad8502bd58364eb08129f74d1522d5ae</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Papa Fall</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Bias-Corrected CMIP5 Projections for Climate Change and Assessments of Impact on Malaria in Senegal under the VECTRI Model</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">On the climate-health issue, studies have already attempted to understand the influence of climate change on the transmission of malaria. Extreme weather events such as floods, droughts, or heat waves can alter the course and distribution of malaria. This study aims to understand the impact of future climate change on malaria transmission using, for the first time in Senegal, the ICTP’s community-based vector-borne disease model, TRIeste (VECTRI). This biological model is a dynamic mathematical model for the study of malaria transmission that considers the impact of climate and population variability. A new approach for VECTRI input parameters was also used. A bias correction technique, the cumulative distribution function transform (CDF-t) method, was applied to climate simulations to remove systematic biases in the Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models (GCMs) that could alter impact predictions. Beforehand, we use reference data for validation such as CPC global unified gauge-based analysis of daily precipitation (CPC for Climate Prediction Center), ERA5-land reanalysis, Climate Hazards InfraRed Precipitation with Station data (CHIRPS), and African Rainfall Climatology 2.0 (ARC2). The results were analyzed for two CMIP5 scenarios for the different time periods: assessment: 1983–2005; near future: 2006–2028; medium term: 2030–2052; and far future: 2077–2099). The validation results show that the models reproduce the annual cycle well. Except for the IPSL-CM5B model, which gives a peak in August, all the other models (ACCESS1–3, CanESM2, CSIRO, CMCC-CM, CMCC-CMS, CNRM-CM5, GFDL-CM3, GFDL-ESM2G, GFDL-ESM2M, inmcm4, and IPSL-CM5B) agree with the validation data on a maximum peak in September with a period of strong transmission in August–October. With spatial variation, the CMIP5 model simulations show more of a difference in the number of malaria cases between the south and the north. Malaria transmission is much higher in the south than in the north. However, the results predicted by the models on the occurrence of malaria by 2100 show differences between the RCP8.5 scenario, considered a high emission scenario, and the RCP4.5 scenario, considered an intermediate mitigation scenario. The CanESM2, CMCC-CM, CMCC-CMS, inmcm4, and IPSL-CM5B models predict decreases with the RCP4.5 scenario. However, ACCESS1–3, CSIRO, NRCM-CM5, GFDL-CM3, GFDL-ESM2G, and GFDL-ESM2M predict increases in malaria under all scenarios (RCP4.5 and RCP8.5). The projected decrease in malaria in the future with these models is much more visible in the RCP8.5 scenario. The results of this study are of paramount importance in the climate-health field. These results will assist in decision-making and will allow for the establishment of preventive surveillance systems for local climate-sensitive diseases, including malaria, in the targeted regions of Senegal.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">climate change</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">malaria</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Senegal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">VECTRI</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">GCM</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CDF-t method</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ibrahima Diouf</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Abdoulaye Deme</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Semou Diouf</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Doudou Sene</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Benjamin Sultan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Adjoua Moïse Famien</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Serge Janicot</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Tropical Medicine and Infectious Disease</subfield><subfield code="d">MDPI AG, 2017</subfield><subfield code="g">8(2023), 6, p 310</subfield><subfield code="w">(DE-627)102556488X</subfield><subfield code="x">24146366</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:6, p 310</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/tropicalmed8060310</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/ad8502bd58364eb08129f74d1522d5ae</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2414-6366/8/6/310</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2414-6366</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2023</subfield><subfield code="e">6, p 310</subfield></datafield></record></collection>
|
author |
Papa Fall |
spellingShingle |
Papa Fall misc climate change misc malaria misc Senegal misc VECTRI misc GCM misc CDF-t method misc Medicine misc R Bias-Corrected CMIP5 Projections for Climate Change and Assessments of Impact on Malaria in Senegal under the VECTRI Model |
authorStr |
Papa Fall |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)102556488X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
24146366 |
topic_title |
Bias-Corrected CMIP5 Projections for Climate Change and Assessments of Impact on Malaria in Senegal under the VECTRI Model climate change malaria Senegal VECTRI GCM CDF-t method |
topic |
misc climate change misc malaria misc Senegal misc VECTRI misc GCM misc CDF-t method misc Medicine misc R |
topic_unstemmed |
misc climate change misc malaria misc Senegal misc VECTRI misc GCM misc CDF-t method misc Medicine misc R |
topic_browse |
misc climate change misc malaria misc Senegal misc VECTRI misc GCM misc CDF-t method misc Medicine misc R |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Tropical Medicine and Infectious Disease |
hierarchy_parent_id |
102556488X |
hierarchy_top_title |
Tropical Medicine and Infectious Disease |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)102556488X |
title |
Bias-Corrected CMIP5 Projections for Climate Change and Assessments of Impact on Malaria in Senegal under the VECTRI Model |
ctrlnum |
(DE-627)DOAJ094046743 (DE-599)DOAJad8502bd58364eb08129f74d1522d5ae |
title_full |
Bias-Corrected CMIP5 Projections for Climate Change and Assessments of Impact on Malaria in Senegal under the VECTRI Model |
author_sort |
Papa Fall |
journal |
Tropical Medicine and Infectious Disease |
journalStr |
Tropical Medicine and Infectious Disease |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Papa Fall Ibrahima Diouf Abdoulaye Deme Semou Diouf Doudou Sene Benjamin Sultan Adjoua Moïse Famien Serge Janicot |
container_volume |
8 |
format_se |
Elektronische Aufsätze |
author-letter |
Papa Fall |
doi_str_mv |
10.3390/tropicalmed8060310 |
author2-role |
verfasserin |
title_sort |
bias-corrected cmip5 projections for climate change and assessments of impact on malaria in senegal under the vectri model |
title_auth |
Bias-Corrected CMIP5 Projections for Climate Change and Assessments of Impact on Malaria in Senegal under the VECTRI Model |
abstract |
On the climate-health issue, studies have already attempted to understand the influence of climate change on the transmission of malaria. Extreme weather events such as floods, droughts, or heat waves can alter the course and distribution of malaria. This study aims to understand the impact of future climate change on malaria transmission using, for the first time in Senegal, the ICTP’s community-based vector-borne disease model, TRIeste (VECTRI). This biological model is a dynamic mathematical model for the study of malaria transmission that considers the impact of climate and population variability. A new approach for VECTRI input parameters was also used. A bias correction technique, the cumulative distribution function transform (CDF-t) method, was applied to climate simulations to remove systematic biases in the Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models (GCMs) that could alter impact predictions. Beforehand, we use reference data for validation such as CPC global unified gauge-based analysis of daily precipitation (CPC for Climate Prediction Center), ERA5-land reanalysis, Climate Hazards InfraRed Precipitation with Station data (CHIRPS), and African Rainfall Climatology 2.0 (ARC2). The results were analyzed for two CMIP5 scenarios for the different time periods: assessment: 1983–2005; near future: 2006–2028; medium term: 2030–2052; and far future: 2077–2099). The validation results show that the models reproduce the annual cycle well. Except for the IPSL-CM5B model, which gives a peak in August, all the other models (ACCESS1–3, CanESM2, CSIRO, CMCC-CM, CMCC-CMS, CNRM-CM5, GFDL-CM3, GFDL-ESM2G, GFDL-ESM2M, inmcm4, and IPSL-CM5B) agree with the validation data on a maximum peak in September with a period of strong transmission in August–October. With spatial variation, the CMIP5 model simulations show more of a difference in the number of malaria cases between the south and the north. Malaria transmission is much higher in the south than in the north. However, the results predicted by the models on the occurrence of malaria by 2100 show differences between the RCP8.5 scenario, considered a high emission scenario, and the RCP4.5 scenario, considered an intermediate mitigation scenario. The CanESM2, CMCC-CM, CMCC-CMS, inmcm4, and IPSL-CM5B models predict decreases with the RCP4.5 scenario. However, ACCESS1–3, CSIRO, NRCM-CM5, GFDL-CM3, GFDL-ESM2G, and GFDL-ESM2M predict increases in malaria under all scenarios (RCP4.5 and RCP8.5). The projected decrease in malaria in the future with these models is much more visible in the RCP8.5 scenario. The results of this study are of paramount importance in the climate-health field. These results will assist in decision-making and will allow for the establishment of preventive surveillance systems for local climate-sensitive diseases, including malaria, in the targeted regions of Senegal. |
abstractGer |
On the climate-health issue, studies have already attempted to understand the influence of climate change on the transmission of malaria. Extreme weather events such as floods, droughts, or heat waves can alter the course and distribution of malaria. This study aims to understand the impact of future climate change on malaria transmission using, for the first time in Senegal, the ICTP’s community-based vector-borne disease model, TRIeste (VECTRI). This biological model is a dynamic mathematical model for the study of malaria transmission that considers the impact of climate and population variability. A new approach for VECTRI input parameters was also used. A bias correction technique, the cumulative distribution function transform (CDF-t) method, was applied to climate simulations to remove systematic biases in the Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models (GCMs) that could alter impact predictions. Beforehand, we use reference data for validation such as CPC global unified gauge-based analysis of daily precipitation (CPC for Climate Prediction Center), ERA5-land reanalysis, Climate Hazards InfraRed Precipitation with Station data (CHIRPS), and African Rainfall Climatology 2.0 (ARC2). The results were analyzed for two CMIP5 scenarios for the different time periods: assessment: 1983–2005; near future: 2006–2028; medium term: 2030–2052; and far future: 2077–2099). The validation results show that the models reproduce the annual cycle well. Except for the IPSL-CM5B model, which gives a peak in August, all the other models (ACCESS1–3, CanESM2, CSIRO, CMCC-CM, CMCC-CMS, CNRM-CM5, GFDL-CM3, GFDL-ESM2G, GFDL-ESM2M, inmcm4, and IPSL-CM5B) agree with the validation data on a maximum peak in September with a period of strong transmission in August–October. With spatial variation, the CMIP5 model simulations show more of a difference in the number of malaria cases between the south and the north. Malaria transmission is much higher in the south than in the north. However, the results predicted by the models on the occurrence of malaria by 2100 show differences between the RCP8.5 scenario, considered a high emission scenario, and the RCP4.5 scenario, considered an intermediate mitigation scenario. The CanESM2, CMCC-CM, CMCC-CMS, inmcm4, and IPSL-CM5B models predict decreases with the RCP4.5 scenario. However, ACCESS1–3, CSIRO, NRCM-CM5, GFDL-CM3, GFDL-ESM2G, and GFDL-ESM2M predict increases in malaria under all scenarios (RCP4.5 and RCP8.5). The projected decrease in malaria in the future with these models is much more visible in the RCP8.5 scenario. The results of this study are of paramount importance in the climate-health field. These results will assist in decision-making and will allow for the establishment of preventive surveillance systems for local climate-sensitive diseases, including malaria, in the targeted regions of Senegal. |
abstract_unstemmed |
On the climate-health issue, studies have already attempted to understand the influence of climate change on the transmission of malaria. Extreme weather events such as floods, droughts, or heat waves can alter the course and distribution of malaria. This study aims to understand the impact of future climate change on malaria transmission using, for the first time in Senegal, the ICTP’s community-based vector-borne disease model, TRIeste (VECTRI). This biological model is a dynamic mathematical model for the study of malaria transmission that considers the impact of climate and population variability. A new approach for VECTRI input parameters was also used. A bias correction technique, the cumulative distribution function transform (CDF-t) method, was applied to climate simulations to remove systematic biases in the Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models (GCMs) that could alter impact predictions. Beforehand, we use reference data for validation such as CPC global unified gauge-based analysis of daily precipitation (CPC for Climate Prediction Center), ERA5-land reanalysis, Climate Hazards InfraRed Precipitation with Station data (CHIRPS), and African Rainfall Climatology 2.0 (ARC2). The results were analyzed for two CMIP5 scenarios for the different time periods: assessment: 1983–2005; near future: 2006–2028; medium term: 2030–2052; and far future: 2077–2099). The validation results show that the models reproduce the annual cycle well. Except for the IPSL-CM5B model, which gives a peak in August, all the other models (ACCESS1–3, CanESM2, CSIRO, CMCC-CM, CMCC-CMS, CNRM-CM5, GFDL-CM3, GFDL-ESM2G, GFDL-ESM2M, inmcm4, and IPSL-CM5B) agree with the validation data on a maximum peak in September with a period of strong transmission in August–October. With spatial variation, the CMIP5 model simulations show more of a difference in the number of malaria cases between the south and the north. Malaria transmission is much higher in the south than in the north. However, the results predicted by the models on the occurrence of malaria by 2100 show differences between the RCP8.5 scenario, considered a high emission scenario, and the RCP4.5 scenario, considered an intermediate mitigation scenario. The CanESM2, CMCC-CM, CMCC-CMS, inmcm4, and IPSL-CM5B models predict decreases with the RCP4.5 scenario. However, ACCESS1–3, CSIRO, NRCM-CM5, GFDL-CM3, GFDL-ESM2G, and GFDL-ESM2M predict increases in malaria under all scenarios (RCP4.5 and RCP8.5). The projected decrease in malaria in the future with these models is much more visible in the RCP8.5 scenario. The results of this study are of paramount importance in the climate-health field. These results will assist in decision-making and will allow for the establishment of preventive surveillance systems for local climate-sensitive diseases, including malaria, in the targeted regions of Senegal. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
6, p 310 |
title_short |
Bias-Corrected CMIP5 Projections for Climate Change and Assessments of Impact on Malaria in Senegal under the VECTRI Model |
url |
https://doi.org/10.3390/tropicalmed8060310 https://doaj.org/article/ad8502bd58364eb08129f74d1522d5ae https://www.mdpi.com/2414-6366/8/6/310 https://doaj.org/toc/2414-6366 |
remote_bool |
true |
author2 |
Ibrahima Diouf Abdoulaye Deme Semou Diouf Doudou Sene Benjamin Sultan Adjoua Moïse Famien Serge Janicot |
author2Str |
Ibrahima Diouf Abdoulaye Deme Semou Diouf Doudou Sene Benjamin Sultan Adjoua Moïse Famien Serge Janicot |
ppnlink |
102556488X |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/tropicalmed8060310 |
up_date |
2024-07-03T20:56:52.011Z |
_version_ |
1803592885353840641 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ094046743</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413024827.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/tropicalmed8060310</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ094046743</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJad8502bd58364eb08129f74d1522d5ae</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Papa Fall</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Bias-Corrected CMIP5 Projections for Climate Change and Assessments of Impact on Malaria in Senegal under the VECTRI Model</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">On the climate-health issue, studies have already attempted to understand the influence of climate change on the transmission of malaria. Extreme weather events such as floods, droughts, or heat waves can alter the course and distribution of malaria. This study aims to understand the impact of future climate change on malaria transmission using, for the first time in Senegal, the ICTP’s community-based vector-borne disease model, TRIeste (VECTRI). This biological model is a dynamic mathematical model for the study of malaria transmission that considers the impact of climate and population variability. A new approach for VECTRI input parameters was also used. A bias correction technique, the cumulative distribution function transform (CDF-t) method, was applied to climate simulations to remove systematic biases in the Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models (GCMs) that could alter impact predictions. Beforehand, we use reference data for validation such as CPC global unified gauge-based analysis of daily precipitation (CPC for Climate Prediction Center), ERA5-land reanalysis, Climate Hazards InfraRed Precipitation with Station data (CHIRPS), and African Rainfall Climatology 2.0 (ARC2). The results were analyzed for two CMIP5 scenarios for the different time periods: assessment: 1983–2005; near future: 2006–2028; medium term: 2030–2052; and far future: 2077–2099). The validation results show that the models reproduce the annual cycle well. Except for the IPSL-CM5B model, which gives a peak in August, all the other models (ACCESS1–3, CanESM2, CSIRO, CMCC-CM, CMCC-CMS, CNRM-CM5, GFDL-CM3, GFDL-ESM2G, GFDL-ESM2M, inmcm4, and IPSL-CM5B) agree with the validation data on a maximum peak in September with a period of strong transmission in August–October. With spatial variation, the CMIP5 model simulations show more of a difference in the number of malaria cases between the south and the north. Malaria transmission is much higher in the south than in the north. However, the results predicted by the models on the occurrence of malaria by 2100 show differences between the RCP8.5 scenario, considered a high emission scenario, and the RCP4.5 scenario, considered an intermediate mitigation scenario. The CanESM2, CMCC-CM, CMCC-CMS, inmcm4, and IPSL-CM5B models predict decreases with the RCP4.5 scenario. However, ACCESS1–3, CSIRO, NRCM-CM5, GFDL-CM3, GFDL-ESM2G, and GFDL-ESM2M predict increases in malaria under all scenarios (RCP4.5 and RCP8.5). The projected decrease in malaria in the future with these models is much more visible in the RCP8.5 scenario. The results of this study are of paramount importance in the climate-health field. These results will assist in decision-making and will allow for the establishment of preventive surveillance systems for local climate-sensitive diseases, including malaria, in the targeted regions of Senegal.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">climate change</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">malaria</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Senegal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">VECTRI</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">GCM</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CDF-t method</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ibrahima Diouf</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Abdoulaye Deme</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Semou Diouf</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Doudou Sene</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Benjamin Sultan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Adjoua Moïse Famien</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Serge Janicot</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Tropical Medicine and Infectious Disease</subfield><subfield code="d">MDPI AG, 2017</subfield><subfield code="g">8(2023), 6, p 310</subfield><subfield code="w">(DE-627)102556488X</subfield><subfield code="x">24146366</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:6, p 310</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/tropicalmed8060310</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/ad8502bd58364eb08129f74d1522d5ae</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2414-6366/8/6/310</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2414-6366</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2023</subfield><subfield code="e">6, p 310</subfield></datafield></record></collection>
|
score |
7.4018335 |