Development and Characterization of a Novel Wheat–Tetraploid <i<Thinopyrum elongatum</i< 6E (6D) Disomic Substitution Line with Stripe Rust Resistance at the Adult Stage
Stripe rust, which is caused by <i<Puccinia striiformis</i< f. sp. <i<tritici</i<, is one of the most devastating foliar diseases of common wheat worldwide. Breeding new wheat varieties with durable resistance is the most effective way of controlling the disease. Tetraploid &...
Ausführliche Beschreibung
Autor*in: |
Biran Gong [verfasserIn] Lei Zhao [verfasserIn] Chunyan Zeng [verfasserIn] Wei Zhu [verfasserIn] Lili Xu [verfasserIn] Dandan Wu [verfasserIn] Yiran Cheng [verfasserIn] Yi Wang [verfasserIn] Jian Zeng [verfasserIn] Xing Fan [verfasserIn] Lina Sha [verfasserIn] Haiqin Zhang [verfasserIn] Guoyue Chen [verfasserIn] Yonghong Zhou [verfasserIn] Houyang Kang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Plants - MDPI AG, 2013, 12(2023), 12, p 2311 |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2023 ; number:12, p 2311 |
Links: |
---|
DOI / URN: |
10.3390/plants12122311 |
---|
Katalog-ID: |
DOAJ094076499 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ094076499 | ||
003 | DE-627 | ||
005 | 20240413025300.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/plants12122311 |2 doi | |
035 | |a (DE-627)DOAJ094076499 | ||
035 | |a (DE-599)DOAJ5dbd20ceaf2543888265f310acddb9fc | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QK1-989 | |
100 | 0 | |a Biran Gong |e verfasserin |4 aut | |
245 | 1 | 0 | |a Development and Characterization of a Novel Wheat–Tetraploid <i<Thinopyrum elongatum</i< 6E (6D) Disomic Substitution Line with Stripe Rust Resistance at the Adult Stage |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Stripe rust, which is caused by <i<Puccinia striiformis</i< f. sp. <i<tritici</i<, is one of the most devastating foliar diseases of common wheat worldwide. Breeding new wheat varieties with durable resistance is the most effective way of controlling the disease. Tetraploid <i<Thinopyrum elongatum</i< (2n = 4x = 28, EEEE) carries a variety of genes conferring resistance to multiple diseases, including stripe rust, Fusarium head blight, and powdery mildew, which makes it a valuable tertiary genetic resource for enhancing wheat cultivar improvement. Here, a novel wheat–tetraploid <i<Th. elongatum</i< 6E (6D) disomic substitution line (K17-1065-4) was characterized using genomic in situ hybridization and fluorescence in situ hybridization chromosome painting analyses. The evaluation of disease responses revealed that K17-1065-4 is highly resistant to stripe rust at the adult stage. By analyzing the whole-genome sequence of diploid <i<Th. elongatum</i<, we detected 3382 specific SSR sequences on chromosome 6E. Sixty SSR markers were developed, and thirty-three of them can accurately trace chromosome 6E of tetraploid <i<Th. elongatum,</i< which were linked to the disease resistance gene(s) in the wheat genetic background. The molecular marker analysis indicated that 10 markers may be used to distinguish <i<Th. elongatum</i< from other wheat-related species. Thus, K17-1065-4 carrying the stripe rust resistance gene(s) is a novel germplasm useful for breeding disease-resistant wheat cultivars. The molecular markers developed in this study may facilitate the mapping of the stripe rust resistance gene on chromosome 6E of tetraploid <i<Th. elongatum</i<. | ||
650 | 4 | |a chromosomal substitution | |
650 | 4 | |a molecular markers | |
650 | 4 | |a stripe rust | |
650 | 4 | |a tetraploid <i<Thinopyrum elongatum</i< | |
653 | 0 | |a Botany | |
700 | 0 | |a Lei Zhao |e verfasserin |4 aut | |
700 | 0 | |a Chunyan Zeng |e verfasserin |4 aut | |
700 | 0 | |a Wei Zhu |e verfasserin |4 aut | |
700 | 0 | |a Lili Xu |e verfasserin |4 aut | |
700 | 0 | |a Dandan Wu |e verfasserin |4 aut | |
700 | 0 | |a Yiran Cheng |e verfasserin |4 aut | |
700 | 0 | |a Yi Wang |e verfasserin |4 aut | |
700 | 0 | |a Jian Zeng |e verfasserin |4 aut | |
700 | 0 | |a Xing Fan |e verfasserin |4 aut | |
700 | 0 | |a Lina Sha |e verfasserin |4 aut | |
700 | 0 | |a Haiqin Zhang |e verfasserin |4 aut | |
700 | 0 | |a Guoyue Chen |e verfasserin |4 aut | |
700 | 0 | |a Yonghong Zhou |e verfasserin |4 aut | |
700 | 0 | |a Houyang Kang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Plants |d MDPI AG, 2013 |g 12(2023), 12, p 2311 |w (DE-627)737288345 |w (DE-600)2704341-1 |x 22237747 |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2023 |g number:12, p 2311 |
856 | 4 | 0 | |u https://doi.org/10.3390/plants12122311 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/5dbd20ceaf2543888265f310acddb9fc |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2223-7747/12/12/2311 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2223-7747 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 12 |j 2023 |e 12, p 2311 |
author_variant |
b g bg l z lz c z cz w z wz l x lx d w dw y c yc y w yw j z jz x f xf l s ls h z hz g c gc y z yz h k hk |
---|---|
matchkey_str |
article:22237747:2023----::eeomnadhrceiainfnvlhattaliihnprmlnauiedioisbtttolnwt |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
QK |
publishDate |
2023 |
allfields |
10.3390/plants12122311 doi (DE-627)DOAJ094076499 (DE-599)DOAJ5dbd20ceaf2543888265f310acddb9fc DE-627 ger DE-627 rakwb eng QK1-989 Biran Gong verfasserin aut Development and Characterization of a Novel Wheat–Tetraploid <i<Thinopyrum elongatum</i< 6E (6D) Disomic Substitution Line with Stripe Rust Resistance at the Adult Stage 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Stripe rust, which is caused by <i<Puccinia striiformis</i< f. sp. <i<tritici</i<, is one of the most devastating foliar diseases of common wheat worldwide. Breeding new wheat varieties with durable resistance is the most effective way of controlling the disease. Tetraploid <i<Thinopyrum elongatum</i< (2n = 4x = 28, EEEE) carries a variety of genes conferring resistance to multiple diseases, including stripe rust, Fusarium head blight, and powdery mildew, which makes it a valuable tertiary genetic resource for enhancing wheat cultivar improvement. Here, a novel wheat–tetraploid <i<Th. elongatum</i< 6E (6D) disomic substitution line (K17-1065-4) was characterized using genomic in situ hybridization and fluorescence in situ hybridization chromosome painting analyses. The evaluation of disease responses revealed that K17-1065-4 is highly resistant to stripe rust at the adult stage. By analyzing the whole-genome sequence of diploid <i<Th. elongatum</i<, we detected 3382 specific SSR sequences on chromosome 6E. Sixty SSR markers were developed, and thirty-three of them can accurately trace chromosome 6E of tetraploid <i<Th. elongatum,</i< which were linked to the disease resistance gene(s) in the wheat genetic background. The molecular marker analysis indicated that 10 markers may be used to distinguish <i<Th. elongatum</i< from other wheat-related species. Thus, K17-1065-4 carrying the stripe rust resistance gene(s) is a novel germplasm useful for breeding disease-resistant wheat cultivars. The molecular markers developed in this study may facilitate the mapping of the stripe rust resistance gene on chromosome 6E of tetraploid <i<Th. elongatum</i<. chromosomal substitution molecular markers stripe rust tetraploid <i<Thinopyrum elongatum</i< Botany Lei Zhao verfasserin aut Chunyan Zeng verfasserin aut Wei Zhu verfasserin aut Lili Xu verfasserin aut Dandan Wu verfasserin aut Yiran Cheng verfasserin aut Yi Wang verfasserin aut Jian Zeng verfasserin aut Xing Fan verfasserin aut Lina Sha verfasserin aut Haiqin Zhang verfasserin aut Guoyue Chen verfasserin aut Yonghong Zhou verfasserin aut Houyang Kang verfasserin aut In Plants MDPI AG, 2013 12(2023), 12, p 2311 (DE-627)737288345 (DE-600)2704341-1 22237747 nnns volume:12 year:2023 number:12, p 2311 https://doi.org/10.3390/plants12122311 kostenfrei https://doaj.org/article/5dbd20ceaf2543888265f310acddb9fc kostenfrei https://www.mdpi.com/2223-7747/12/12/2311 kostenfrei https://doaj.org/toc/2223-7747 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2023 12, p 2311 |
spelling |
10.3390/plants12122311 doi (DE-627)DOAJ094076499 (DE-599)DOAJ5dbd20ceaf2543888265f310acddb9fc DE-627 ger DE-627 rakwb eng QK1-989 Biran Gong verfasserin aut Development and Characterization of a Novel Wheat–Tetraploid <i<Thinopyrum elongatum</i< 6E (6D) Disomic Substitution Line with Stripe Rust Resistance at the Adult Stage 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Stripe rust, which is caused by <i<Puccinia striiformis</i< f. sp. <i<tritici</i<, is one of the most devastating foliar diseases of common wheat worldwide. Breeding new wheat varieties with durable resistance is the most effective way of controlling the disease. Tetraploid <i<Thinopyrum elongatum</i< (2n = 4x = 28, EEEE) carries a variety of genes conferring resistance to multiple diseases, including stripe rust, Fusarium head blight, and powdery mildew, which makes it a valuable tertiary genetic resource for enhancing wheat cultivar improvement. Here, a novel wheat–tetraploid <i<Th. elongatum</i< 6E (6D) disomic substitution line (K17-1065-4) was characterized using genomic in situ hybridization and fluorescence in situ hybridization chromosome painting analyses. The evaluation of disease responses revealed that K17-1065-4 is highly resistant to stripe rust at the adult stage. By analyzing the whole-genome sequence of diploid <i<Th. elongatum</i<, we detected 3382 specific SSR sequences on chromosome 6E. Sixty SSR markers were developed, and thirty-three of them can accurately trace chromosome 6E of tetraploid <i<Th. elongatum,</i< which were linked to the disease resistance gene(s) in the wheat genetic background. The molecular marker analysis indicated that 10 markers may be used to distinguish <i<Th. elongatum</i< from other wheat-related species. Thus, K17-1065-4 carrying the stripe rust resistance gene(s) is a novel germplasm useful for breeding disease-resistant wheat cultivars. The molecular markers developed in this study may facilitate the mapping of the stripe rust resistance gene on chromosome 6E of tetraploid <i<Th. elongatum</i<. chromosomal substitution molecular markers stripe rust tetraploid <i<Thinopyrum elongatum</i< Botany Lei Zhao verfasserin aut Chunyan Zeng verfasserin aut Wei Zhu verfasserin aut Lili Xu verfasserin aut Dandan Wu verfasserin aut Yiran Cheng verfasserin aut Yi Wang verfasserin aut Jian Zeng verfasserin aut Xing Fan verfasserin aut Lina Sha verfasserin aut Haiqin Zhang verfasserin aut Guoyue Chen verfasserin aut Yonghong Zhou verfasserin aut Houyang Kang verfasserin aut In Plants MDPI AG, 2013 12(2023), 12, p 2311 (DE-627)737288345 (DE-600)2704341-1 22237747 nnns volume:12 year:2023 number:12, p 2311 https://doi.org/10.3390/plants12122311 kostenfrei https://doaj.org/article/5dbd20ceaf2543888265f310acddb9fc kostenfrei https://www.mdpi.com/2223-7747/12/12/2311 kostenfrei https://doaj.org/toc/2223-7747 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2023 12, p 2311 |
allfields_unstemmed |
10.3390/plants12122311 doi (DE-627)DOAJ094076499 (DE-599)DOAJ5dbd20ceaf2543888265f310acddb9fc DE-627 ger DE-627 rakwb eng QK1-989 Biran Gong verfasserin aut Development and Characterization of a Novel Wheat–Tetraploid <i<Thinopyrum elongatum</i< 6E (6D) Disomic Substitution Line with Stripe Rust Resistance at the Adult Stage 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Stripe rust, which is caused by <i<Puccinia striiformis</i< f. sp. <i<tritici</i<, is one of the most devastating foliar diseases of common wheat worldwide. Breeding new wheat varieties with durable resistance is the most effective way of controlling the disease. Tetraploid <i<Thinopyrum elongatum</i< (2n = 4x = 28, EEEE) carries a variety of genes conferring resistance to multiple diseases, including stripe rust, Fusarium head blight, and powdery mildew, which makes it a valuable tertiary genetic resource for enhancing wheat cultivar improvement. Here, a novel wheat–tetraploid <i<Th. elongatum</i< 6E (6D) disomic substitution line (K17-1065-4) was characterized using genomic in situ hybridization and fluorescence in situ hybridization chromosome painting analyses. The evaluation of disease responses revealed that K17-1065-4 is highly resistant to stripe rust at the adult stage. By analyzing the whole-genome sequence of diploid <i<Th. elongatum</i<, we detected 3382 specific SSR sequences on chromosome 6E. Sixty SSR markers were developed, and thirty-three of them can accurately trace chromosome 6E of tetraploid <i<Th. elongatum,</i< which were linked to the disease resistance gene(s) in the wheat genetic background. The molecular marker analysis indicated that 10 markers may be used to distinguish <i<Th. elongatum</i< from other wheat-related species. Thus, K17-1065-4 carrying the stripe rust resistance gene(s) is a novel germplasm useful for breeding disease-resistant wheat cultivars. The molecular markers developed in this study may facilitate the mapping of the stripe rust resistance gene on chromosome 6E of tetraploid <i<Th. elongatum</i<. chromosomal substitution molecular markers stripe rust tetraploid <i<Thinopyrum elongatum</i< Botany Lei Zhao verfasserin aut Chunyan Zeng verfasserin aut Wei Zhu verfasserin aut Lili Xu verfasserin aut Dandan Wu verfasserin aut Yiran Cheng verfasserin aut Yi Wang verfasserin aut Jian Zeng verfasserin aut Xing Fan verfasserin aut Lina Sha verfasserin aut Haiqin Zhang verfasserin aut Guoyue Chen verfasserin aut Yonghong Zhou verfasserin aut Houyang Kang verfasserin aut In Plants MDPI AG, 2013 12(2023), 12, p 2311 (DE-627)737288345 (DE-600)2704341-1 22237747 nnns volume:12 year:2023 number:12, p 2311 https://doi.org/10.3390/plants12122311 kostenfrei https://doaj.org/article/5dbd20ceaf2543888265f310acddb9fc kostenfrei https://www.mdpi.com/2223-7747/12/12/2311 kostenfrei https://doaj.org/toc/2223-7747 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2023 12, p 2311 |
allfieldsGer |
10.3390/plants12122311 doi (DE-627)DOAJ094076499 (DE-599)DOAJ5dbd20ceaf2543888265f310acddb9fc DE-627 ger DE-627 rakwb eng QK1-989 Biran Gong verfasserin aut Development and Characterization of a Novel Wheat–Tetraploid <i<Thinopyrum elongatum</i< 6E (6D) Disomic Substitution Line with Stripe Rust Resistance at the Adult Stage 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Stripe rust, which is caused by <i<Puccinia striiformis</i< f. sp. <i<tritici</i<, is one of the most devastating foliar diseases of common wheat worldwide. Breeding new wheat varieties with durable resistance is the most effective way of controlling the disease. Tetraploid <i<Thinopyrum elongatum</i< (2n = 4x = 28, EEEE) carries a variety of genes conferring resistance to multiple diseases, including stripe rust, Fusarium head blight, and powdery mildew, which makes it a valuable tertiary genetic resource for enhancing wheat cultivar improvement. Here, a novel wheat–tetraploid <i<Th. elongatum</i< 6E (6D) disomic substitution line (K17-1065-4) was characterized using genomic in situ hybridization and fluorescence in situ hybridization chromosome painting analyses. The evaluation of disease responses revealed that K17-1065-4 is highly resistant to stripe rust at the adult stage. By analyzing the whole-genome sequence of diploid <i<Th. elongatum</i<, we detected 3382 specific SSR sequences on chromosome 6E. Sixty SSR markers were developed, and thirty-three of them can accurately trace chromosome 6E of tetraploid <i<Th. elongatum,</i< which were linked to the disease resistance gene(s) in the wheat genetic background. The molecular marker analysis indicated that 10 markers may be used to distinguish <i<Th. elongatum</i< from other wheat-related species. Thus, K17-1065-4 carrying the stripe rust resistance gene(s) is a novel germplasm useful for breeding disease-resistant wheat cultivars. The molecular markers developed in this study may facilitate the mapping of the stripe rust resistance gene on chromosome 6E of tetraploid <i<Th. elongatum</i<. chromosomal substitution molecular markers stripe rust tetraploid <i<Thinopyrum elongatum</i< Botany Lei Zhao verfasserin aut Chunyan Zeng verfasserin aut Wei Zhu verfasserin aut Lili Xu verfasserin aut Dandan Wu verfasserin aut Yiran Cheng verfasserin aut Yi Wang verfasserin aut Jian Zeng verfasserin aut Xing Fan verfasserin aut Lina Sha verfasserin aut Haiqin Zhang verfasserin aut Guoyue Chen verfasserin aut Yonghong Zhou verfasserin aut Houyang Kang verfasserin aut In Plants MDPI AG, 2013 12(2023), 12, p 2311 (DE-627)737288345 (DE-600)2704341-1 22237747 nnns volume:12 year:2023 number:12, p 2311 https://doi.org/10.3390/plants12122311 kostenfrei https://doaj.org/article/5dbd20ceaf2543888265f310acddb9fc kostenfrei https://www.mdpi.com/2223-7747/12/12/2311 kostenfrei https://doaj.org/toc/2223-7747 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2023 12, p 2311 |
allfieldsSound |
10.3390/plants12122311 doi (DE-627)DOAJ094076499 (DE-599)DOAJ5dbd20ceaf2543888265f310acddb9fc DE-627 ger DE-627 rakwb eng QK1-989 Biran Gong verfasserin aut Development and Characterization of a Novel Wheat–Tetraploid <i<Thinopyrum elongatum</i< 6E (6D) Disomic Substitution Line with Stripe Rust Resistance at the Adult Stage 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Stripe rust, which is caused by <i<Puccinia striiformis</i< f. sp. <i<tritici</i<, is one of the most devastating foliar diseases of common wheat worldwide. Breeding new wheat varieties with durable resistance is the most effective way of controlling the disease. Tetraploid <i<Thinopyrum elongatum</i< (2n = 4x = 28, EEEE) carries a variety of genes conferring resistance to multiple diseases, including stripe rust, Fusarium head blight, and powdery mildew, which makes it a valuable tertiary genetic resource for enhancing wheat cultivar improvement. Here, a novel wheat–tetraploid <i<Th. elongatum</i< 6E (6D) disomic substitution line (K17-1065-4) was characterized using genomic in situ hybridization and fluorescence in situ hybridization chromosome painting analyses. The evaluation of disease responses revealed that K17-1065-4 is highly resistant to stripe rust at the adult stage. By analyzing the whole-genome sequence of diploid <i<Th. elongatum</i<, we detected 3382 specific SSR sequences on chromosome 6E. Sixty SSR markers were developed, and thirty-three of them can accurately trace chromosome 6E of tetraploid <i<Th. elongatum,</i< which were linked to the disease resistance gene(s) in the wheat genetic background. The molecular marker analysis indicated that 10 markers may be used to distinguish <i<Th. elongatum</i< from other wheat-related species. Thus, K17-1065-4 carrying the stripe rust resistance gene(s) is a novel germplasm useful for breeding disease-resistant wheat cultivars. The molecular markers developed in this study may facilitate the mapping of the stripe rust resistance gene on chromosome 6E of tetraploid <i<Th. elongatum</i<. chromosomal substitution molecular markers stripe rust tetraploid <i<Thinopyrum elongatum</i< Botany Lei Zhao verfasserin aut Chunyan Zeng verfasserin aut Wei Zhu verfasserin aut Lili Xu verfasserin aut Dandan Wu verfasserin aut Yiran Cheng verfasserin aut Yi Wang verfasserin aut Jian Zeng verfasserin aut Xing Fan verfasserin aut Lina Sha verfasserin aut Haiqin Zhang verfasserin aut Guoyue Chen verfasserin aut Yonghong Zhou verfasserin aut Houyang Kang verfasserin aut In Plants MDPI AG, 2013 12(2023), 12, p 2311 (DE-627)737288345 (DE-600)2704341-1 22237747 nnns volume:12 year:2023 number:12, p 2311 https://doi.org/10.3390/plants12122311 kostenfrei https://doaj.org/article/5dbd20ceaf2543888265f310acddb9fc kostenfrei https://www.mdpi.com/2223-7747/12/12/2311 kostenfrei https://doaj.org/toc/2223-7747 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2023 12, p 2311 |
language |
English |
source |
In Plants 12(2023), 12, p 2311 volume:12 year:2023 number:12, p 2311 |
sourceStr |
In Plants 12(2023), 12, p 2311 volume:12 year:2023 number:12, p 2311 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
chromosomal substitution molecular markers stripe rust tetraploid <i<Thinopyrum elongatum</i< Botany |
isfreeaccess_bool |
true |
container_title |
Plants |
authorswithroles_txt_mv |
Biran Gong @@aut@@ Lei Zhao @@aut@@ Chunyan Zeng @@aut@@ Wei Zhu @@aut@@ Lili Xu @@aut@@ Dandan Wu @@aut@@ Yiran Cheng @@aut@@ Yi Wang @@aut@@ Jian Zeng @@aut@@ Xing Fan @@aut@@ Lina Sha @@aut@@ Haiqin Zhang @@aut@@ Guoyue Chen @@aut@@ Yonghong Zhou @@aut@@ Houyang Kang @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
737288345 |
id |
DOAJ094076499 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ094076499</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413025300.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/plants12122311</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ094076499</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ5dbd20ceaf2543888265f310acddb9fc</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QK1-989</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Biran Gong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Development and Characterization of a Novel Wheat–Tetraploid <i<Thinopyrum elongatum</i< 6E (6D) Disomic Substitution Line with Stripe Rust Resistance at the Adult Stage</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Stripe rust, which is caused by <i<Puccinia striiformis</i< f. sp. <i<tritici</i<, is one of the most devastating foliar diseases of common wheat worldwide. Breeding new wheat varieties with durable resistance is the most effective way of controlling the disease. Tetraploid <i<Thinopyrum elongatum</i< (2n = 4x = 28, EEEE) carries a variety of genes conferring resistance to multiple diseases, including stripe rust, Fusarium head blight, and powdery mildew, which makes it a valuable tertiary genetic resource for enhancing wheat cultivar improvement. Here, a novel wheat–tetraploid <i<Th. elongatum</i< 6E (6D) disomic substitution line (K17-1065-4) was characterized using genomic in situ hybridization and fluorescence in situ hybridization chromosome painting analyses. The evaluation of disease responses revealed that K17-1065-4 is highly resistant to stripe rust at the adult stage. By analyzing the whole-genome sequence of diploid <i<Th. elongatum</i<, we detected 3382 specific SSR sequences on chromosome 6E. Sixty SSR markers were developed, and thirty-three of them can accurately trace chromosome 6E of tetraploid <i<Th. elongatum,</i< which were linked to the disease resistance gene(s) in the wheat genetic background. The molecular marker analysis indicated that 10 markers may be used to distinguish <i<Th. elongatum</i< from other wheat-related species. Thus, K17-1065-4 carrying the stripe rust resistance gene(s) is a novel germplasm useful for breeding disease-resistant wheat cultivars. The molecular markers developed in this study may facilitate the mapping of the stripe rust resistance gene on chromosome 6E of tetraploid <i<Th. elongatum</i<.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">chromosomal substitution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">molecular markers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stripe rust</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">tetraploid <i<Thinopyrum elongatum</i<</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Botany</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lei Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chunyan Zeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wei Zhu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lili Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dandan Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yiran Cheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yi Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jian Zeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xing Fan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lina Sha</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haiqin Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Guoyue Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yonghong Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Houyang Kang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Plants</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">12(2023), 12, p 2311</subfield><subfield code="w">(DE-627)737288345</subfield><subfield code="w">(DE-600)2704341-1</subfield><subfield code="x">22237747</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:12, p 2311</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/plants12122311</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/5dbd20ceaf2543888265f310acddb9fc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2223-7747/12/12/2311</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2223-7747</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2023</subfield><subfield code="e">12, p 2311</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Biran Gong |
spellingShingle |
Biran Gong misc QK1-989 misc chromosomal substitution misc molecular markers misc stripe rust misc tetraploid <i<Thinopyrum elongatum</i< misc Botany Development and Characterization of a Novel Wheat–Tetraploid <i<Thinopyrum elongatum</i< 6E (6D) Disomic Substitution Line with Stripe Rust Resistance at the Adult Stage |
authorStr |
Biran Gong |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)737288345 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QK1-989 |
illustrated |
Not Illustrated |
issn |
22237747 |
topic_title |
QK1-989 Development and Characterization of a Novel Wheat–Tetraploid <i<Thinopyrum elongatum</i< 6E (6D) Disomic Substitution Line with Stripe Rust Resistance at the Adult Stage chromosomal substitution molecular markers stripe rust tetraploid <i<Thinopyrum elongatum</i< |
topic |
misc QK1-989 misc chromosomal substitution misc molecular markers misc stripe rust misc tetraploid <i<Thinopyrum elongatum</i< misc Botany |
topic_unstemmed |
misc QK1-989 misc chromosomal substitution misc molecular markers misc stripe rust misc tetraploid <i<Thinopyrum elongatum</i< misc Botany |
topic_browse |
misc QK1-989 misc chromosomal substitution misc molecular markers misc stripe rust misc tetraploid <i<Thinopyrum elongatum</i< misc Botany |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Plants |
hierarchy_parent_id |
737288345 |
hierarchy_top_title |
Plants |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)737288345 (DE-600)2704341-1 |
title |
Development and Characterization of a Novel Wheat–Tetraploid <i<Thinopyrum elongatum</i< 6E (6D) Disomic Substitution Line with Stripe Rust Resistance at the Adult Stage |
ctrlnum |
(DE-627)DOAJ094076499 (DE-599)DOAJ5dbd20ceaf2543888265f310acddb9fc |
title_full |
Development and Characterization of a Novel Wheat–Tetraploid <i<Thinopyrum elongatum</i< 6E (6D) Disomic Substitution Line with Stripe Rust Resistance at the Adult Stage |
author_sort |
Biran Gong |
journal |
Plants |
journalStr |
Plants |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Biran Gong Lei Zhao Chunyan Zeng Wei Zhu Lili Xu Dandan Wu Yiran Cheng Yi Wang Jian Zeng Xing Fan Lina Sha Haiqin Zhang Guoyue Chen Yonghong Zhou Houyang Kang |
container_volume |
12 |
class |
QK1-989 |
format_se |
Elektronische Aufsätze |
author-letter |
Biran Gong |
doi_str_mv |
10.3390/plants12122311 |
author2-role |
verfasserin |
title_sort |
development and characterization of a novel wheat–tetraploid <i<thinopyrum elongatum</i< 6e (6d) disomic substitution line with stripe rust resistance at the adult stage |
callnumber |
QK1-989 |
title_auth |
Development and Characterization of a Novel Wheat–Tetraploid <i<Thinopyrum elongatum</i< 6E (6D) Disomic Substitution Line with Stripe Rust Resistance at the Adult Stage |
abstract |
Stripe rust, which is caused by <i<Puccinia striiformis</i< f. sp. <i<tritici</i<, is one of the most devastating foliar diseases of common wheat worldwide. Breeding new wheat varieties with durable resistance is the most effective way of controlling the disease. Tetraploid <i<Thinopyrum elongatum</i< (2n = 4x = 28, EEEE) carries a variety of genes conferring resistance to multiple diseases, including stripe rust, Fusarium head blight, and powdery mildew, which makes it a valuable tertiary genetic resource for enhancing wheat cultivar improvement. Here, a novel wheat–tetraploid <i<Th. elongatum</i< 6E (6D) disomic substitution line (K17-1065-4) was characterized using genomic in situ hybridization and fluorescence in situ hybridization chromosome painting analyses. The evaluation of disease responses revealed that K17-1065-4 is highly resistant to stripe rust at the adult stage. By analyzing the whole-genome sequence of diploid <i<Th. elongatum</i<, we detected 3382 specific SSR sequences on chromosome 6E. Sixty SSR markers were developed, and thirty-three of them can accurately trace chromosome 6E of tetraploid <i<Th. elongatum,</i< which were linked to the disease resistance gene(s) in the wheat genetic background. The molecular marker analysis indicated that 10 markers may be used to distinguish <i<Th. elongatum</i< from other wheat-related species. Thus, K17-1065-4 carrying the stripe rust resistance gene(s) is a novel germplasm useful for breeding disease-resistant wheat cultivars. The molecular markers developed in this study may facilitate the mapping of the stripe rust resistance gene on chromosome 6E of tetraploid <i<Th. elongatum</i<. |
abstractGer |
Stripe rust, which is caused by <i<Puccinia striiformis</i< f. sp. <i<tritici</i<, is one of the most devastating foliar diseases of common wheat worldwide. Breeding new wheat varieties with durable resistance is the most effective way of controlling the disease. Tetraploid <i<Thinopyrum elongatum</i< (2n = 4x = 28, EEEE) carries a variety of genes conferring resistance to multiple diseases, including stripe rust, Fusarium head blight, and powdery mildew, which makes it a valuable tertiary genetic resource for enhancing wheat cultivar improvement. Here, a novel wheat–tetraploid <i<Th. elongatum</i< 6E (6D) disomic substitution line (K17-1065-4) was characterized using genomic in situ hybridization and fluorescence in situ hybridization chromosome painting analyses. The evaluation of disease responses revealed that K17-1065-4 is highly resistant to stripe rust at the adult stage. By analyzing the whole-genome sequence of diploid <i<Th. elongatum</i<, we detected 3382 specific SSR sequences on chromosome 6E. Sixty SSR markers were developed, and thirty-three of them can accurately trace chromosome 6E of tetraploid <i<Th. elongatum,</i< which were linked to the disease resistance gene(s) in the wheat genetic background. The molecular marker analysis indicated that 10 markers may be used to distinguish <i<Th. elongatum</i< from other wheat-related species. Thus, K17-1065-4 carrying the stripe rust resistance gene(s) is a novel germplasm useful for breeding disease-resistant wheat cultivars. The molecular markers developed in this study may facilitate the mapping of the stripe rust resistance gene on chromosome 6E of tetraploid <i<Th. elongatum</i<. |
abstract_unstemmed |
Stripe rust, which is caused by <i<Puccinia striiformis</i< f. sp. <i<tritici</i<, is one of the most devastating foliar diseases of common wheat worldwide. Breeding new wheat varieties with durable resistance is the most effective way of controlling the disease. Tetraploid <i<Thinopyrum elongatum</i< (2n = 4x = 28, EEEE) carries a variety of genes conferring resistance to multiple diseases, including stripe rust, Fusarium head blight, and powdery mildew, which makes it a valuable tertiary genetic resource for enhancing wheat cultivar improvement. Here, a novel wheat–tetraploid <i<Th. elongatum</i< 6E (6D) disomic substitution line (K17-1065-4) was characterized using genomic in situ hybridization and fluorescence in situ hybridization chromosome painting analyses. The evaluation of disease responses revealed that K17-1065-4 is highly resistant to stripe rust at the adult stage. By analyzing the whole-genome sequence of diploid <i<Th. elongatum</i<, we detected 3382 specific SSR sequences on chromosome 6E. Sixty SSR markers were developed, and thirty-three of them can accurately trace chromosome 6E of tetraploid <i<Th. elongatum,</i< which were linked to the disease resistance gene(s) in the wheat genetic background. The molecular marker analysis indicated that 10 markers may be used to distinguish <i<Th. elongatum</i< from other wheat-related species. Thus, K17-1065-4 carrying the stripe rust resistance gene(s) is a novel germplasm useful for breeding disease-resistant wheat cultivars. The molecular markers developed in this study may facilitate the mapping of the stripe rust resistance gene on chromosome 6E of tetraploid <i<Th. elongatum</i<. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
12, p 2311 |
title_short |
Development and Characterization of a Novel Wheat–Tetraploid <i<Thinopyrum elongatum</i< 6E (6D) Disomic Substitution Line with Stripe Rust Resistance at the Adult Stage |
url |
https://doi.org/10.3390/plants12122311 https://doaj.org/article/5dbd20ceaf2543888265f310acddb9fc https://www.mdpi.com/2223-7747/12/12/2311 https://doaj.org/toc/2223-7747 |
remote_bool |
true |
author2 |
Lei Zhao Chunyan Zeng Wei Zhu Lili Xu Dandan Wu Yiran Cheng Yi Wang Jian Zeng Xing Fan Lina Sha Haiqin Zhang Guoyue Chen Yonghong Zhou Houyang Kang |
author2Str |
Lei Zhao Chunyan Zeng Wei Zhu Lili Xu Dandan Wu Yiran Cheng Yi Wang Jian Zeng Xing Fan Lina Sha Haiqin Zhang Guoyue Chen Yonghong Zhou Houyang Kang |
ppnlink |
737288345 |
callnumber-subject |
QK - Botany |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/plants12122311 |
callnumber-a |
QK1-989 |
up_date |
2024-07-03T21:07:01.629Z |
_version_ |
1803593524583596032 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ094076499</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413025300.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/plants12122311</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ094076499</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ5dbd20ceaf2543888265f310acddb9fc</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QK1-989</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Biran Gong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Development and Characterization of a Novel Wheat–Tetraploid <i<Thinopyrum elongatum</i< 6E (6D) Disomic Substitution Line with Stripe Rust Resistance at the Adult Stage</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Stripe rust, which is caused by <i<Puccinia striiformis</i< f. sp. <i<tritici</i<, is one of the most devastating foliar diseases of common wheat worldwide. Breeding new wheat varieties with durable resistance is the most effective way of controlling the disease. Tetraploid <i<Thinopyrum elongatum</i< (2n = 4x = 28, EEEE) carries a variety of genes conferring resistance to multiple diseases, including stripe rust, Fusarium head blight, and powdery mildew, which makes it a valuable tertiary genetic resource for enhancing wheat cultivar improvement. Here, a novel wheat–tetraploid <i<Th. elongatum</i< 6E (6D) disomic substitution line (K17-1065-4) was characterized using genomic in situ hybridization and fluorescence in situ hybridization chromosome painting analyses. The evaluation of disease responses revealed that K17-1065-4 is highly resistant to stripe rust at the adult stage. By analyzing the whole-genome sequence of diploid <i<Th. elongatum</i<, we detected 3382 specific SSR sequences on chromosome 6E. Sixty SSR markers were developed, and thirty-three of them can accurately trace chromosome 6E of tetraploid <i<Th. elongatum,</i< which were linked to the disease resistance gene(s) in the wheat genetic background. The molecular marker analysis indicated that 10 markers may be used to distinguish <i<Th. elongatum</i< from other wheat-related species. Thus, K17-1065-4 carrying the stripe rust resistance gene(s) is a novel germplasm useful for breeding disease-resistant wheat cultivars. The molecular markers developed in this study may facilitate the mapping of the stripe rust resistance gene on chromosome 6E of tetraploid <i<Th. elongatum</i<.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">chromosomal substitution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">molecular markers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stripe rust</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">tetraploid <i<Thinopyrum elongatum</i<</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Botany</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lei Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chunyan Zeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wei Zhu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lili Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dandan Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yiran Cheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yi Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jian Zeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xing Fan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lina Sha</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haiqin Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Guoyue Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yonghong Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Houyang Kang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Plants</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">12(2023), 12, p 2311</subfield><subfield code="w">(DE-627)737288345</subfield><subfield code="w">(DE-600)2704341-1</subfield><subfield code="x">22237747</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:12, p 2311</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/plants12122311</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/5dbd20ceaf2543888265f310acddb9fc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2223-7747/12/12/2311</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2223-7747</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2023</subfield><subfield code="e">12, p 2311</subfield></datafield></record></collection>
|
score |
7.4019384 |