A Deep Learning Approach to Analyze NMR Spectra of SH-SY5Y Cells for Alzheimer’s Disease Diagnosis
The SH-SY5Y neuroblastoma cell line is often used as an in vitro model of neuronal function and is widely applied to study the molecular events leading to Alzheimer’s disease (AD). Indeed, recently, basic research on SH-SY5Y cells has provided interesting insights for the discovery of new drugs and...
Ausführliche Beschreibung
Autor*in: |
Filippo Costanti [verfasserIn] Arian Kola [verfasserIn] Franco Scarselli [verfasserIn] Daniela Valensin [verfasserIn] Monica Bianchini [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Mathematics - MDPI AG, 2013, 11(2023), 12, p 2664 |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:2023 ; number:12, p 2664 |
Links: |
---|
DOI / URN: |
10.3390/math11122664 |
---|
Katalog-ID: |
DOAJ094106762 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ094106762 | ||
003 | DE-627 | ||
005 | 20240413025746.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/math11122664 |2 doi | |
035 | |a (DE-627)DOAJ094106762 | ||
035 | |a (DE-599)DOAJ06d8a6108bc74534aaf4741c0f58fc46 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QA1-939 | |
100 | 0 | |a Filippo Costanti |e verfasserin |4 aut | |
245 | 1 | 2 | |a A Deep Learning Approach to Analyze NMR Spectra of SH-SY5Y Cells for Alzheimer’s Disease Diagnosis |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The SH-SY5Y neuroblastoma cell line is often used as an in vitro model of neuronal function and is widely applied to study the molecular events leading to Alzheimer’s disease (AD). Indeed, recently, basic research on SH-SY5Y cells has provided interesting insights for the discovery of new drugs and biomarkers for improved AD treatment and diagnosis. At the same time, untargeted NMR metabolomics is widely applied to metabolic profile analysis and screening for differential metabolites, to discover new biomarkers. In this paper, a compression technique based on convolutional autoencoders is proposed, which can perform a high dimensionality reduction in the spectral signal (up to more than 300 times), maintaining informative features (guaranteed by a reconstruction error always smaller than 5%). Moreover, before compression, an <i<ad hoc</i< preprocessing method was devised to remedy the scarcity of available data. The compressed spectral data were then used to train some SVM classifiers to distinguish diseased from healthy cells, achieving an accuracy close to 78%, a significantly better performance with respect to using standard PCA-compressed data. | ||
650 | 4 | |a Alzheimer’s disease | |
650 | 4 | |a SH-SY5Y cells | |
650 | 4 | |a nuclear magnetic resonance (NMR) | |
650 | 4 | |a convolutional autoencoders | |
650 | 4 | |a embedding of NMR spectra | |
653 | 0 | |a Mathematics | |
700 | 0 | |a Arian Kola |e verfasserin |4 aut | |
700 | 0 | |a Franco Scarselli |e verfasserin |4 aut | |
700 | 0 | |a Daniela Valensin |e verfasserin |4 aut | |
700 | 0 | |a Monica Bianchini |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Mathematics |d MDPI AG, 2013 |g 11(2023), 12, p 2664 |w (DE-627)737287764 |w (DE-600)2704244-3 |x 22277390 |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:2023 |g number:12, p 2664 |
856 | 4 | 0 | |u https://doi.org/10.3390/math11122664 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/06d8a6108bc74534aaf4741c0f58fc46 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2227-7390/11/12/2664 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2227-7390 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 11 |j 2023 |e 12, p 2664 |
author_variant |
f c fc a k ak f s fs d v dv m b mb |
---|---|
matchkey_str |
article:22277390:2023----::delannapoctaayemsetafhyyelfrlh |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
QA |
publishDate |
2023 |
allfields |
10.3390/math11122664 doi (DE-627)DOAJ094106762 (DE-599)DOAJ06d8a6108bc74534aaf4741c0f58fc46 DE-627 ger DE-627 rakwb eng QA1-939 Filippo Costanti verfasserin aut A Deep Learning Approach to Analyze NMR Spectra of SH-SY5Y Cells for Alzheimer’s Disease Diagnosis 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The SH-SY5Y neuroblastoma cell line is often used as an in vitro model of neuronal function and is widely applied to study the molecular events leading to Alzheimer’s disease (AD). Indeed, recently, basic research on SH-SY5Y cells has provided interesting insights for the discovery of new drugs and biomarkers for improved AD treatment and diagnosis. At the same time, untargeted NMR metabolomics is widely applied to metabolic profile analysis and screening for differential metabolites, to discover new biomarkers. In this paper, a compression technique based on convolutional autoencoders is proposed, which can perform a high dimensionality reduction in the spectral signal (up to more than 300 times), maintaining informative features (guaranteed by a reconstruction error always smaller than 5%). Moreover, before compression, an <i<ad hoc</i< preprocessing method was devised to remedy the scarcity of available data. The compressed spectral data were then used to train some SVM classifiers to distinguish diseased from healthy cells, achieving an accuracy close to 78%, a significantly better performance with respect to using standard PCA-compressed data. Alzheimer’s disease SH-SY5Y cells nuclear magnetic resonance (NMR) convolutional autoencoders embedding of NMR spectra Mathematics Arian Kola verfasserin aut Franco Scarselli verfasserin aut Daniela Valensin verfasserin aut Monica Bianchini verfasserin aut In Mathematics MDPI AG, 2013 11(2023), 12, p 2664 (DE-627)737287764 (DE-600)2704244-3 22277390 nnns volume:11 year:2023 number:12, p 2664 https://doi.org/10.3390/math11122664 kostenfrei https://doaj.org/article/06d8a6108bc74534aaf4741c0f58fc46 kostenfrei https://www.mdpi.com/2227-7390/11/12/2664 kostenfrei https://doaj.org/toc/2227-7390 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 12, p 2664 |
spelling |
10.3390/math11122664 doi (DE-627)DOAJ094106762 (DE-599)DOAJ06d8a6108bc74534aaf4741c0f58fc46 DE-627 ger DE-627 rakwb eng QA1-939 Filippo Costanti verfasserin aut A Deep Learning Approach to Analyze NMR Spectra of SH-SY5Y Cells for Alzheimer’s Disease Diagnosis 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The SH-SY5Y neuroblastoma cell line is often used as an in vitro model of neuronal function and is widely applied to study the molecular events leading to Alzheimer’s disease (AD). Indeed, recently, basic research on SH-SY5Y cells has provided interesting insights for the discovery of new drugs and biomarkers for improved AD treatment and diagnosis. At the same time, untargeted NMR metabolomics is widely applied to metabolic profile analysis and screening for differential metabolites, to discover new biomarkers. In this paper, a compression technique based on convolutional autoencoders is proposed, which can perform a high dimensionality reduction in the spectral signal (up to more than 300 times), maintaining informative features (guaranteed by a reconstruction error always smaller than 5%). Moreover, before compression, an <i<ad hoc</i< preprocessing method was devised to remedy the scarcity of available data. The compressed spectral data were then used to train some SVM classifiers to distinguish diseased from healthy cells, achieving an accuracy close to 78%, a significantly better performance with respect to using standard PCA-compressed data. Alzheimer’s disease SH-SY5Y cells nuclear magnetic resonance (NMR) convolutional autoencoders embedding of NMR spectra Mathematics Arian Kola verfasserin aut Franco Scarselli verfasserin aut Daniela Valensin verfasserin aut Monica Bianchini verfasserin aut In Mathematics MDPI AG, 2013 11(2023), 12, p 2664 (DE-627)737287764 (DE-600)2704244-3 22277390 nnns volume:11 year:2023 number:12, p 2664 https://doi.org/10.3390/math11122664 kostenfrei https://doaj.org/article/06d8a6108bc74534aaf4741c0f58fc46 kostenfrei https://www.mdpi.com/2227-7390/11/12/2664 kostenfrei https://doaj.org/toc/2227-7390 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 12, p 2664 |
allfields_unstemmed |
10.3390/math11122664 doi (DE-627)DOAJ094106762 (DE-599)DOAJ06d8a6108bc74534aaf4741c0f58fc46 DE-627 ger DE-627 rakwb eng QA1-939 Filippo Costanti verfasserin aut A Deep Learning Approach to Analyze NMR Spectra of SH-SY5Y Cells for Alzheimer’s Disease Diagnosis 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The SH-SY5Y neuroblastoma cell line is often used as an in vitro model of neuronal function and is widely applied to study the molecular events leading to Alzheimer’s disease (AD). Indeed, recently, basic research on SH-SY5Y cells has provided interesting insights for the discovery of new drugs and biomarkers for improved AD treatment and diagnosis. At the same time, untargeted NMR metabolomics is widely applied to metabolic profile analysis and screening for differential metabolites, to discover new biomarkers. In this paper, a compression technique based on convolutional autoencoders is proposed, which can perform a high dimensionality reduction in the spectral signal (up to more than 300 times), maintaining informative features (guaranteed by a reconstruction error always smaller than 5%). Moreover, before compression, an <i<ad hoc</i< preprocessing method was devised to remedy the scarcity of available data. The compressed spectral data were then used to train some SVM classifiers to distinguish diseased from healthy cells, achieving an accuracy close to 78%, a significantly better performance with respect to using standard PCA-compressed data. Alzheimer’s disease SH-SY5Y cells nuclear magnetic resonance (NMR) convolutional autoencoders embedding of NMR spectra Mathematics Arian Kola verfasserin aut Franco Scarselli verfasserin aut Daniela Valensin verfasserin aut Monica Bianchini verfasserin aut In Mathematics MDPI AG, 2013 11(2023), 12, p 2664 (DE-627)737287764 (DE-600)2704244-3 22277390 nnns volume:11 year:2023 number:12, p 2664 https://doi.org/10.3390/math11122664 kostenfrei https://doaj.org/article/06d8a6108bc74534aaf4741c0f58fc46 kostenfrei https://www.mdpi.com/2227-7390/11/12/2664 kostenfrei https://doaj.org/toc/2227-7390 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 12, p 2664 |
allfieldsGer |
10.3390/math11122664 doi (DE-627)DOAJ094106762 (DE-599)DOAJ06d8a6108bc74534aaf4741c0f58fc46 DE-627 ger DE-627 rakwb eng QA1-939 Filippo Costanti verfasserin aut A Deep Learning Approach to Analyze NMR Spectra of SH-SY5Y Cells for Alzheimer’s Disease Diagnosis 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The SH-SY5Y neuroblastoma cell line is often used as an in vitro model of neuronal function and is widely applied to study the molecular events leading to Alzheimer’s disease (AD). Indeed, recently, basic research on SH-SY5Y cells has provided interesting insights for the discovery of new drugs and biomarkers for improved AD treatment and diagnosis. At the same time, untargeted NMR metabolomics is widely applied to metabolic profile analysis and screening for differential metabolites, to discover new biomarkers. In this paper, a compression technique based on convolutional autoencoders is proposed, which can perform a high dimensionality reduction in the spectral signal (up to more than 300 times), maintaining informative features (guaranteed by a reconstruction error always smaller than 5%). Moreover, before compression, an <i<ad hoc</i< preprocessing method was devised to remedy the scarcity of available data. The compressed spectral data were then used to train some SVM classifiers to distinguish diseased from healthy cells, achieving an accuracy close to 78%, a significantly better performance with respect to using standard PCA-compressed data. Alzheimer’s disease SH-SY5Y cells nuclear magnetic resonance (NMR) convolutional autoencoders embedding of NMR spectra Mathematics Arian Kola verfasserin aut Franco Scarselli verfasserin aut Daniela Valensin verfasserin aut Monica Bianchini verfasserin aut In Mathematics MDPI AG, 2013 11(2023), 12, p 2664 (DE-627)737287764 (DE-600)2704244-3 22277390 nnns volume:11 year:2023 number:12, p 2664 https://doi.org/10.3390/math11122664 kostenfrei https://doaj.org/article/06d8a6108bc74534aaf4741c0f58fc46 kostenfrei https://www.mdpi.com/2227-7390/11/12/2664 kostenfrei https://doaj.org/toc/2227-7390 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 12, p 2664 |
allfieldsSound |
10.3390/math11122664 doi (DE-627)DOAJ094106762 (DE-599)DOAJ06d8a6108bc74534aaf4741c0f58fc46 DE-627 ger DE-627 rakwb eng QA1-939 Filippo Costanti verfasserin aut A Deep Learning Approach to Analyze NMR Spectra of SH-SY5Y Cells for Alzheimer’s Disease Diagnosis 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The SH-SY5Y neuroblastoma cell line is often used as an in vitro model of neuronal function and is widely applied to study the molecular events leading to Alzheimer’s disease (AD). Indeed, recently, basic research on SH-SY5Y cells has provided interesting insights for the discovery of new drugs and biomarkers for improved AD treatment and diagnosis. At the same time, untargeted NMR metabolomics is widely applied to metabolic profile analysis and screening for differential metabolites, to discover new biomarkers. In this paper, a compression technique based on convolutional autoencoders is proposed, which can perform a high dimensionality reduction in the spectral signal (up to more than 300 times), maintaining informative features (guaranteed by a reconstruction error always smaller than 5%). Moreover, before compression, an <i<ad hoc</i< preprocessing method was devised to remedy the scarcity of available data. The compressed spectral data were then used to train some SVM classifiers to distinguish diseased from healthy cells, achieving an accuracy close to 78%, a significantly better performance with respect to using standard PCA-compressed data. Alzheimer’s disease SH-SY5Y cells nuclear magnetic resonance (NMR) convolutional autoencoders embedding of NMR spectra Mathematics Arian Kola verfasserin aut Franco Scarselli verfasserin aut Daniela Valensin verfasserin aut Monica Bianchini verfasserin aut In Mathematics MDPI AG, 2013 11(2023), 12, p 2664 (DE-627)737287764 (DE-600)2704244-3 22277390 nnns volume:11 year:2023 number:12, p 2664 https://doi.org/10.3390/math11122664 kostenfrei https://doaj.org/article/06d8a6108bc74534aaf4741c0f58fc46 kostenfrei https://www.mdpi.com/2227-7390/11/12/2664 kostenfrei https://doaj.org/toc/2227-7390 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 12, p 2664 |
language |
English |
source |
In Mathematics 11(2023), 12, p 2664 volume:11 year:2023 number:12, p 2664 |
sourceStr |
In Mathematics 11(2023), 12, p 2664 volume:11 year:2023 number:12, p 2664 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Alzheimer’s disease SH-SY5Y cells nuclear magnetic resonance (NMR) convolutional autoencoders embedding of NMR spectra Mathematics |
isfreeaccess_bool |
true |
container_title |
Mathematics |
authorswithroles_txt_mv |
Filippo Costanti @@aut@@ Arian Kola @@aut@@ Franco Scarselli @@aut@@ Daniela Valensin @@aut@@ Monica Bianchini @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
737287764 |
id |
DOAJ094106762 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ094106762</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413025746.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/math11122664</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ094106762</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ06d8a6108bc74534aaf4741c0f58fc46</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Filippo Costanti</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Deep Learning Approach to Analyze NMR Spectra of SH-SY5Y Cells for Alzheimer’s Disease Diagnosis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The SH-SY5Y neuroblastoma cell line is often used as an in vitro model of neuronal function and is widely applied to study the molecular events leading to Alzheimer’s disease (AD). Indeed, recently, basic research on SH-SY5Y cells has provided interesting insights for the discovery of new drugs and biomarkers for improved AD treatment and diagnosis. At the same time, untargeted NMR metabolomics is widely applied to metabolic profile analysis and screening for differential metabolites, to discover new biomarkers. In this paper, a compression technique based on convolutional autoencoders is proposed, which can perform a high dimensionality reduction in the spectral signal (up to more than 300 times), maintaining informative features (guaranteed by a reconstruction error always smaller than 5%). Moreover, before compression, an <i<ad hoc</i< preprocessing method was devised to remedy the scarcity of available data. The compressed spectral data were then used to train some SVM classifiers to distinguish diseased from healthy cells, achieving an accuracy close to 78%, a significantly better performance with respect to using standard PCA-compressed data.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Alzheimer’s disease</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SH-SY5Y cells</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nuclear magnetic resonance (NMR)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">convolutional autoencoders</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">embedding of NMR spectra</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Arian Kola</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Franco Scarselli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Daniela Valensin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Monica Bianchini</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Mathematics</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">11(2023), 12, p 2664</subfield><subfield code="w">(DE-627)737287764</subfield><subfield code="w">(DE-600)2704244-3</subfield><subfield code="x">22277390</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:12, p 2664</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/math11122664</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/06d8a6108bc74534aaf4741c0f58fc46</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2227-7390/11/12/2664</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2227-7390</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2023</subfield><subfield code="e">12, p 2664</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Filippo Costanti |
spellingShingle |
Filippo Costanti misc QA1-939 misc Alzheimer’s disease misc SH-SY5Y cells misc nuclear magnetic resonance (NMR) misc convolutional autoencoders misc embedding of NMR spectra misc Mathematics A Deep Learning Approach to Analyze NMR Spectra of SH-SY5Y Cells for Alzheimer’s Disease Diagnosis |
authorStr |
Filippo Costanti |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)737287764 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QA1-939 |
illustrated |
Not Illustrated |
issn |
22277390 |
topic_title |
QA1-939 A Deep Learning Approach to Analyze NMR Spectra of SH-SY5Y Cells for Alzheimer’s Disease Diagnosis Alzheimer’s disease SH-SY5Y cells nuclear magnetic resonance (NMR) convolutional autoencoders embedding of NMR spectra |
topic |
misc QA1-939 misc Alzheimer’s disease misc SH-SY5Y cells misc nuclear magnetic resonance (NMR) misc convolutional autoencoders misc embedding of NMR spectra misc Mathematics |
topic_unstemmed |
misc QA1-939 misc Alzheimer’s disease misc SH-SY5Y cells misc nuclear magnetic resonance (NMR) misc convolutional autoencoders misc embedding of NMR spectra misc Mathematics |
topic_browse |
misc QA1-939 misc Alzheimer’s disease misc SH-SY5Y cells misc nuclear magnetic resonance (NMR) misc convolutional autoencoders misc embedding of NMR spectra misc Mathematics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Mathematics |
hierarchy_parent_id |
737287764 |
hierarchy_top_title |
Mathematics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)737287764 (DE-600)2704244-3 |
title |
A Deep Learning Approach to Analyze NMR Spectra of SH-SY5Y Cells for Alzheimer’s Disease Diagnosis |
ctrlnum |
(DE-627)DOAJ094106762 (DE-599)DOAJ06d8a6108bc74534aaf4741c0f58fc46 |
title_full |
A Deep Learning Approach to Analyze NMR Spectra of SH-SY5Y Cells for Alzheimer’s Disease Diagnosis |
author_sort |
Filippo Costanti |
journal |
Mathematics |
journalStr |
Mathematics |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Filippo Costanti Arian Kola Franco Scarselli Daniela Valensin Monica Bianchini |
container_volume |
11 |
class |
QA1-939 |
format_se |
Elektronische Aufsätze |
author-letter |
Filippo Costanti |
doi_str_mv |
10.3390/math11122664 |
author2-role |
verfasserin |
title_sort |
deep learning approach to analyze nmr spectra of sh-sy5y cells for alzheimer’s disease diagnosis |
callnumber |
QA1-939 |
title_auth |
A Deep Learning Approach to Analyze NMR Spectra of SH-SY5Y Cells for Alzheimer’s Disease Diagnosis |
abstract |
The SH-SY5Y neuroblastoma cell line is often used as an in vitro model of neuronal function and is widely applied to study the molecular events leading to Alzheimer’s disease (AD). Indeed, recently, basic research on SH-SY5Y cells has provided interesting insights for the discovery of new drugs and biomarkers for improved AD treatment and diagnosis. At the same time, untargeted NMR metabolomics is widely applied to metabolic profile analysis and screening for differential metabolites, to discover new biomarkers. In this paper, a compression technique based on convolutional autoencoders is proposed, which can perform a high dimensionality reduction in the spectral signal (up to more than 300 times), maintaining informative features (guaranteed by a reconstruction error always smaller than 5%). Moreover, before compression, an <i<ad hoc</i< preprocessing method was devised to remedy the scarcity of available data. The compressed spectral data were then used to train some SVM classifiers to distinguish diseased from healthy cells, achieving an accuracy close to 78%, a significantly better performance with respect to using standard PCA-compressed data. |
abstractGer |
The SH-SY5Y neuroblastoma cell line is often used as an in vitro model of neuronal function and is widely applied to study the molecular events leading to Alzheimer’s disease (AD). Indeed, recently, basic research on SH-SY5Y cells has provided interesting insights for the discovery of new drugs and biomarkers for improved AD treatment and diagnosis. At the same time, untargeted NMR metabolomics is widely applied to metabolic profile analysis and screening for differential metabolites, to discover new biomarkers. In this paper, a compression technique based on convolutional autoencoders is proposed, which can perform a high dimensionality reduction in the spectral signal (up to more than 300 times), maintaining informative features (guaranteed by a reconstruction error always smaller than 5%). Moreover, before compression, an <i<ad hoc</i< preprocessing method was devised to remedy the scarcity of available data. The compressed spectral data were then used to train some SVM classifiers to distinguish diseased from healthy cells, achieving an accuracy close to 78%, a significantly better performance with respect to using standard PCA-compressed data. |
abstract_unstemmed |
The SH-SY5Y neuroblastoma cell line is often used as an in vitro model of neuronal function and is widely applied to study the molecular events leading to Alzheimer’s disease (AD). Indeed, recently, basic research on SH-SY5Y cells has provided interesting insights for the discovery of new drugs and biomarkers for improved AD treatment and diagnosis. At the same time, untargeted NMR metabolomics is widely applied to metabolic profile analysis and screening for differential metabolites, to discover new biomarkers. In this paper, a compression technique based on convolutional autoencoders is proposed, which can perform a high dimensionality reduction in the spectral signal (up to more than 300 times), maintaining informative features (guaranteed by a reconstruction error always smaller than 5%). Moreover, before compression, an <i<ad hoc</i< preprocessing method was devised to remedy the scarcity of available data. The compressed spectral data were then used to train some SVM classifiers to distinguish diseased from healthy cells, achieving an accuracy close to 78%, a significantly better performance with respect to using standard PCA-compressed data. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
12, p 2664 |
title_short |
A Deep Learning Approach to Analyze NMR Spectra of SH-SY5Y Cells for Alzheimer’s Disease Diagnosis |
url |
https://doi.org/10.3390/math11122664 https://doaj.org/article/06d8a6108bc74534aaf4741c0f58fc46 https://www.mdpi.com/2227-7390/11/12/2664 https://doaj.org/toc/2227-7390 |
remote_bool |
true |
author2 |
Arian Kola Franco Scarselli Daniela Valensin Monica Bianchini |
author2Str |
Arian Kola Franco Scarselli Daniela Valensin Monica Bianchini |
ppnlink |
737287764 |
callnumber-subject |
QA - Mathematics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/math11122664 |
callnumber-a |
QA1-939 |
up_date |
2024-07-03T21:17:46.282Z |
_version_ |
1803594200550211584 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ094106762</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413025746.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/math11122664</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ094106762</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ06d8a6108bc74534aaf4741c0f58fc46</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Filippo Costanti</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Deep Learning Approach to Analyze NMR Spectra of SH-SY5Y Cells for Alzheimer’s Disease Diagnosis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The SH-SY5Y neuroblastoma cell line is often used as an in vitro model of neuronal function and is widely applied to study the molecular events leading to Alzheimer’s disease (AD). Indeed, recently, basic research on SH-SY5Y cells has provided interesting insights for the discovery of new drugs and biomarkers for improved AD treatment and diagnosis. At the same time, untargeted NMR metabolomics is widely applied to metabolic profile analysis and screening for differential metabolites, to discover new biomarkers. In this paper, a compression technique based on convolutional autoencoders is proposed, which can perform a high dimensionality reduction in the spectral signal (up to more than 300 times), maintaining informative features (guaranteed by a reconstruction error always smaller than 5%). Moreover, before compression, an <i<ad hoc</i< preprocessing method was devised to remedy the scarcity of available data. The compressed spectral data were then used to train some SVM classifiers to distinguish diseased from healthy cells, achieving an accuracy close to 78%, a significantly better performance with respect to using standard PCA-compressed data.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Alzheimer’s disease</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SH-SY5Y cells</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nuclear magnetic resonance (NMR)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">convolutional autoencoders</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">embedding of NMR spectra</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Arian Kola</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Franco Scarselli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Daniela Valensin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Monica Bianchini</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Mathematics</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">11(2023), 12, p 2664</subfield><subfield code="w">(DE-627)737287764</subfield><subfield code="w">(DE-600)2704244-3</subfield><subfield code="x">22277390</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:12, p 2664</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/math11122664</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/06d8a6108bc74534aaf4741c0f58fc46</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2227-7390/11/12/2664</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2227-7390</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2023</subfield><subfield code="e">12, p 2664</subfield></datafield></record></collection>
|
score |
7.401696 |