AWdpCNER: Automated Wdp Chinese Named Entity Recognition from Wheat Diseases and Pests Text
Chinese named entity recognition of wheat diseases and pests is an initial and key step in constructing knowledge graphs. In the field of wheat diseases and pests, there are problems, such as lack of training data, nested entities, fuzzy entity boundaries, diverse entity categories, and uneven entit...
Ausführliche Beschreibung
Autor*in: |
Demeng Zhang [verfasserIn] Guang Zheng [verfasserIn] Hebing Liu [verfasserIn] Xinming Ma [verfasserIn] Lei Xi [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Agriculture - MDPI AG, 2012, 13(2023), 6, p 1220 |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2023 ; number:6, p 1220 |
Links: |
---|
DOI / URN: |
10.3390/agriculture13061220 |
---|
Katalog-ID: |
DOAJ094228221 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ094228221 | ||
003 | DE-627 | ||
005 | 20240413031635.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/agriculture13061220 |2 doi | |
035 | |a (DE-627)DOAJ094228221 | ||
035 | |a (DE-599)DOAJ7f7e9684636d4d428abb4db608776bc4 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a S1-972 | |
100 | 0 | |a Demeng Zhang |e verfasserin |4 aut | |
245 | 1 | 0 | |a AWdpCNER: Automated Wdp Chinese Named Entity Recognition from Wheat Diseases and Pests Text |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Chinese named entity recognition of wheat diseases and pests is an initial and key step in constructing knowledge graphs. In the field of wheat diseases and pests, there are problems, such as lack of training data, nested entities, fuzzy entity boundaries, diverse entity categories, and uneven entity distribution. To solve the above problems, two data augmentation methods were proposed to expand sentence semantic information on the premise of fully mining hidden knowledge. Then, a wheat diseases and pests dataset (WdpDs) for Chinese named entity recognition was constructed containing 21 types of entities and its domain dictionary (WdpDict), using a combination of manual and dictionary-based approaches, to better support the entity recognition task. Furthermore, an automated Wdp Chinese named entity recognition model (AWdpCNER) was proposed. This model was based on ALBERT-BiLSTM-CRF for entity recognition, and defined specific rules to calibrate entity boundaries after recognition. The model fusing ALBERT-BiLSTM-CRF and rules amendment achieved the best recognition results, with a precision of 94.76%, a recall of 95.64%, and an F1-score of 95.29%. Compared with the recognition results without rules amendment, the precision, recall, and F1-score was increased by 0.88 percentage points, 0.44 percentage points, and 0.75 percentage points, respectively. The experimental results showed that the proposed model could effectively identify Chinese named entities in the field of wheat diseases and pests, and this model achieved state-of-the-art recognition performance, outperforming several existing models, which provides a reference for other fields of named entities recognition such as food safety and biology. | ||
650 | 4 | |a Chinese named entity recognition | |
650 | 4 | |a wheat diseases and pests | |
650 | 4 | |a data augmentation | |
650 | 4 | |a ALBERT-BiLSTM-CRF | |
650 | 4 | |a rules amendment | |
653 | 0 | |a Agriculture (General) | |
700 | 0 | |a Guang Zheng |e verfasserin |4 aut | |
700 | 0 | |a Hebing Liu |e verfasserin |4 aut | |
700 | 0 | |a Xinming Ma |e verfasserin |4 aut | |
700 | 0 | |a Lei Xi |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Agriculture |d MDPI AG, 2012 |g 13(2023), 6, p 1220 |w (DE-627)686948173 |w (DE-600)2651678-0 |x 20770472 |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2023 |g number:6, p 1220 |
856 | 4 | 0 | |u https://doi.org/10.3390/agriculture13061220 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/7f7e9684636d4d428abb4db608776bc4 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2077-0472/13/6/1220 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2077-0472 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 13 |j 2023 |e 6, p 1220 |
author_variant |
d z dz g z gz h l hl x m xm l x lx |
---|---|
matchkey_str |
article:20770472:2023----::wpnruoaewphnsnmdniyeontofowe |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
S |
publishDate |
2023 |
allfields |
10.3390/agriculture13061220 doi (DE-627)DOAJ094228221 (DE-599)DOAJ7f7e9684636d4d428abb4db608776bc4 DE-627 ger DE-627 rakwb eng S1-972 Demeng Zhang verfasserin aut AWdpCNER: Automated Wdp Chinese Named Entity Recognition from Wheat Diseases and Pests Text 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Chinese named entity recognition of wheat diseases and pests is an initial and key step in constructing knowledge graphs. In the field of wheat diseases and pests, there are problems, such as lack of training data, nested entities, fuzzy entity boundaries, diverse entity categories, and uneven entity distribution. To solve the above problems, two data augmentation methods were proposed to expand sentence semantic information on the premise of fully mining hidden knowledge. Then, a wheat diseases and pests dataset (WdpDs) for Chinese named entity recognition was constructed containing 21 types of entities and its domain dictionary (WdpDict), using a combination of manual and dictionary-based approaches, to better support the entity recognition task. Furthermore, an automated Wdp Chinese named entity recognition model (AWdpCNER) was proposed. This model was based on ALBERT-BiLSTM-CRF for entity recognition, and defined specific rules to calibrate entity boundaries after recognition. The model fusing ALBERT-BiLSTM-CRF and rules amendment achieved the best recognition results, with a precision of 94.76%, a recall of 95.64%, and an F1-score of 95.29%. Compared with the recognition results without rules amendment, the precision, recall, and F1-score was increased by 0.88 percentage points, 0.44 percentage points, and 0.75 percentage points, respectively. The experimental results showed that the proposed model could effectively identify Chinese named entities in the field of wheat diseases and pests, and this model achieved state-of-the-art recognition performance, outperforming several existing models, which provides a reference for other fields of named entities recognition such as food safety and biology. Chinese named entity recognition wheat diseases and pests data augmentation ALBERT-BiLSTM-CRF rules amendment Agriculture (General) Guang Zheng verfasserin aut Hebing Liu verfasserin aut Xinming Ma verfasserin aut Lei Xi verfasserin aut In Agriculture MDPI AG, 2012 13(2023), 6, p 1220 (DE-627)686948173 (DE-600)2651678-0 20770472 nnns volume:13 year:2023 number:6, p 1220 https://doi.org/10.3390/agriculture13061220 kostenfrei https://doaj.org/article/7f7e9684636d4d428abb4db608776bc4 kostenfrei https://www.mdpi.com/2077-0472/13/6/1220 kostenfrei https://doaj.org/toc/2077-0472 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 6, p 1220 |
spelling |
10.3390/agriculture13061220 doi (DE-627)DOAJ094228221 (DE-599)DOAJ7f7e9684636d4d428abb4db608776bc4 DE-627 ger DE-627 rakwb eng S1-972 Demeng Zhang verfasserin aut AWdpCNER: Automated Wdp Chinese Named Entity Recognition from Wheat Diseases and Pests Text 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Chinese named entity recognition of wheat diseases and pests is an initial and key step in constructing knowledge graphs. In the field of wheat diseases and pests, there are problems, such as lack of training data, nested entities, fuzzy entity boundaries, diverse entity categories, and uneven entity distribution. To solve the above problems, two data augmentation methods were proposed to expand sentence semantic information on the premise of fully mining hidden knowledge. Then, a wheat diseases and pests dataset (WdpDs) for Chinese named entity recognition was constructed containing 21 types of entities and its domain dictionary (WdpDict), using a combination of manual and dictionary-based approaches, to better support the entity recognition task. Furthermore, an automated Wdp Chinese named entity recognition model (AWdpCNER) was proposed. This model was based on ALBERT-BiLSTM-CRF for entity recognition, and defined specific rules to calibrate entity boundaries after recognition. The model fusing ALBERT-BiLSTM-CRF and rules amendment achieved the best recognition results, with a precision of 94.76%, a recall of 95.64%, and an F1-score of 95.29%. Compared with the recognition results without rules amendment, the precision, recall, and F1-score was increased by 0.88 percentage points, 0.44 percentage points, and 0.75 percentage points, respectively. The experimental results showed that the proposed model could effectively identify Chinese named entities in the field of wheat diseases and pests, and this model achieved state-of-the-art recognition performance, outperforming several existing models, which provides a reference for other fields of named entities recognition such as food safety and biology. Chinese named entity recognition wheat diseases and pests data augmentation ALBERT-BiLSTM-CRF rules amendment Agriculture (General) Guang Zheng verfasserin aut Hebing Liu verfasserin aut Xinming Ma verfasserin aut Lei Xi verfasserin aut In Agriculture MDPI AG, 2012 13(2023), 6, p 1220 (DE-627)686948173 (DE-600)2651678-0 20770472 nnns volume:13 year:2023 number:6, p 1220 https://doi.org/10.3390/agriculture13061220 kostenfrei https://doaj.org/article/7f7e9684636d4d428abb4db608776bc4 kostenfrei https://www.mdpi.com/2077-0472/13/6/1220 kostenfrei https://doaj.org/toc/2077-0472 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 6, p 1220 |
allfields_unstemmed |
10.3390/agriculture13061220 doi (DE-627)DOAJ094228221 (DE-599)DOAJ7f7e9684636d4d428abb4db608776bc4 DE-627 ger DE-627 rakwb eng S1-972 Demeng Zhang verfasserin aut AWdpCNER: Automated Wdp Chinese Named Entity Recognition from Wheat Diseases and Pests Text 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Chinese named entity recognition of wheat diseases and pests is an initial and key step in constructing knowledge graphs. In the field of wheat diseases and pests, there are problems, such as lack of training data, nested entities, fuzzy entity boundaries, diverse entity categories, and uneven entity distribution. To solve the above problems, two data augmentation methods were proposed to expand sentence semantic information on the premise of fully mining hidden knowledge. Then, a wheat diseases and pests dataset (WdpDs) for Chinese named entity recognition was constructed containing 21 types of entities and its domain dictionary (WdpDict), using a combination of manual and dictionary-based approaches, to better support the entity recognition task. Furthermore, an automated Wdp Chinese named entity recognition model (AWdpCNER) was proposed. This model was based on ALBERT-BiLSTM-CRF for entity recognition, and defined specific rules to calibrate entity boundaries after recognition. The model fusing ALBERT-BiLSTM-CRF and rules amendment achieved the best recognition results, with a precision of 94.76%, a recall of 95.64%, and an F1-score of 95.29%. Compared with the recognition results without rules amendment, the precision, recall, and F1-score was increased by 0.88 percentage points, 0.44 percentage points, and 0.75 percentage points, respectively. The experimental results showed that the proposed model could effectively identify Chinese named entities in the field of wheat diseases and pests, and this model achieved state-of-the-art recognition performance, outperforming several existing models, which provides a reference for other fields of named entities recognition such as food safety and biology. Chinese named entity recognition wheat diseases and pests data augmentation ALBERT-BiLSTM-CRF rules amendment Agriculture (General) Guang Zheng verfasserin aut Hebing Liu verfasserin aut Xinming Ma verfasserin aut Lei Xi verfasserin aut In Agriculture MDPI AG, 2012 13(2023), 6, p 1220 (DE-627)686948173 (DE-600)2651678-0 20770472 nnns volume:13 year:2023 number:6, p 1220 https://doi.org/10.3390/agriculture13061220 kostenfrei https://doaj.org/article/7f7e9684636d4d428abb4db608776bc4 kostenfrei https://www.mdpi.com/2077-0472/13/6/1220 kostenfrei https://doaj.org/toc/2077-0472 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 6, p 1220 |
allfieldsGer |
10.3390/agriculture13061220 doi (DE-627)DOAJ094228221 (DE-599)DOAJ7f7e9684636d4d428abb4db608776bc4 DE-627 ger DE-627 rakwb eng S1-972 Demeng Zhang verfasserin aut AWdpCNER: Automated Wdp Chinese Named Entity Recognition from Wheat Diseases and Pests Text 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Chinese named entity recognition of wheat diseases and pests is an initial and key step in constructing knowledge graphs. In the field of wheat diseases and pests, there are problems, such as lack of training data, nested entities, fuzzy entity boundaries, diverse entity categories, and uneven entity distribution. To solve the above problems, two data augmentation methods were proposed to expand sentence semantic information on the premise of fully mining hidden knowledge. Then, a wheat diseases and pests dataset (WdpDs) for Chinese named entity recognition was constructed containing 21 types of entities and its domain dictionary (WdpDict), using a combination of manual and dictionary-based approaches, to better support the entity recognition task. Furthermore, an automated Wdp Chinese named entity recognition model (AWdpCNER) was proposed. This model was based on ALBERT-BiLSTM-CRF for entity recognition, and defined specific rules to calibrate entity boundaries after recognition. The model fusing ALBERT-BiLSTM-CRF and rules amendment achieved the best recognition results, with a precision of 94.76%, a recall of 95.64%, and an F1-score of 95.29%. Compared with the recognition results without rules amendment, the precision, recall, and F1-score was increased by 0.88 percentage points, 0.44 percentage points, and 0.75 percentage points, respectively. The experimental results showed that the proposed model could effectively identify Chinese named entities in the field of wheat diseases and pests, and this model achieved state-of-the-art recognition performance, outperforming several existing models, which provides a reference for other fields of named entities recognition such as food safety and biology. Chinese named entity recognition wheat diseases and pests data augmentation ALBERT-BiLSTM-CRF rules amendment Agriculture (General) Guang Zheng verfasserin aut Hebing Liu verfasserin aut Xinming Ma verfasserin aut Lei Xi verfasserin aut In Agriculture MDPI AG, 2012 13(2023), 6, p 1220 (DE-627)686948173 (DE-600)2651678-0 20770472 nnns volume:13 year:2023 number:6, p 1220 https://doi.org/10.3390/agriculture13061220 kostenfrei https://doaj.org/article/7f7e9684636d4d428abb4db608776bc4 kostenfrei https://www.mdpi.com/2077-0472/13/6/1220 kostenfrei https://doaj.org/toc/2077-0472 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 6, p 1220 |
allfieldsSound |
10.3390/agriculture13061220 doi (DE-627)DOAJ094228221 (DE-599)DOAJ7f7e9684636d4d428abb4db608776bc4 DE-627 ger DE-627 rakwb eng S1-972 Demeng Zhang verfasserin aut AWdpCNER: Automated Wdp Chinese Named Entity Recognition from Wheat Diseases and Pests Text 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Chinese named entity recognition of wheat diseases and pests is an initial and key step in constructing knowledge graphs. In the field of wheat diseases and pests, there are problems, such as lack of training data, nested entities, fuzzy entity boundaries, diverse entity categories, and uneven entity distribution. To solve the above problems, two data augmentation methods were proposed to expand sentence semantic information on the premise of fully mining hidden knowledge. Then, a wheat diseases and pests dataset (WdpDs) for Chinese named entity recognition was constructed containing 21 types of entities and its domain dictionary (WdpDict), using a combination of manual and dictionary-based approaches, to better support the entity recognition task. Furthermore, an automated Wdp Chinese named entity recognition model (AWdpCNER) was proposed. This model was based on ALBERT-BiLSTM-CRF for entity recognition, and defined specific rules to calibrate entity boundaries after recognition. The model fusing ALBERT-BiLSTM-CRF and rules amendment achieved the best recognition results, with a precision of 94.76%, a recall of 95.64%, and an F1-score of 95.29%. Compared with the recognition results without rules amendment, the precision, recall, and F1-score was increased by 0.88 percentage points, 0.44 percentage points, and 0.75 percentage points, respectively. The experimental results showed that the proposed model could effectively identify Chinese named entities in the field of wheat diseases and pests, and this model achieved state-of-the-art recognition performance, outperforming several existing models, which provides a reference for other fields of named entities recognition such as food safety and biology. Chinese named entity recognition wheat diseases and pests data augmentation ALBERT-BiLSTM-CRF rules amendment Agriculture (General) Guang Zheng verfasserin aut Hebing Liu verfasserin aut Xinming Ma verfasserin aut Lei Xi verfasserin aut In Agriculture MDPI AG, 2012 13(2023), 6, p 1220 (DE-627)686948173 (DE-600)2651678-0 20770472 nnns volume:13 year:2023 number:6, p 1220 https://doi.org/10.3390/agriculture13061220 kostenfrei https://doaj.org/article/7f7e9684636d4d428abb4db608776bc4 kostenfrei https://www.mdpi.com/2077-0472/13/6/1220 kostenfrei https://doaj.org/toc/2077-0472 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 6, p 1220 |
language |
English |
source |
In Agriculture 13(2023), 6, p 1220 volume:13 year:2023 number:6, p 1220 |
sourceStr |
In Agriculture 13(2023), 6, p 1220 volume:13 year:2023 number:6, p 1220 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Chinese named entity recognition wheat diseases and pests data augmentation ALBERT-BiLSTM-CRF rules amendment Agriculture (General) |
isfreeaccess_bool |
true |
container_title |
Agriculture |
authorswithroles_txt_mv |
Demeng Zhang @@aut@@ Guang Zheng @@aut@@ Hebing Liu @@aut@@ Xinming Ma @@aut@@ Lei Xi @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
686948173 |
id |
DOAJ094228221 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ094228221</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413031635.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/agriculture13061220</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ094228221</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ7f7e9684636d4d428abb4db608776bc4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">S1-972</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Demeng Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">AWdpCNER: Automated Wdp Chinese Named Entity Recognition from Wheat Diseases and Pests Text</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Chinese named entity recognition of wheat diseases and pests is an initial and key step in constructing knowledge graphs. In the field of wheat diseases and pests, there are problems, such as lack of training data, nested entities, fuzzy entity boundaries, diverse entity categories, and uneven entity distribution. To solve the above problems, two data augmentation methods were proposed to expand sentence semantic information on the premise of fully mining hidden knowledge. Then, a wheat diseases and pests dataset (WdpDs) for Chinese named entity recognition was constructed containing 21 types of entities and its domain dictionary (WdpDict), using a combination of manual and dictionary-based approaches, to better support the entity recognition task. Furthermore, an automated Wdp Chinese named entity recognition model (AWdpCNER) was proposed. This model was based on ALBERT-BiLSTM-CRF for entity recognition, and defined specific rules to calibrate entity boundaries after recognition. The model fusing ALBERT-BiLSTM-CRF and rules amendment achieved the best recognition results, with a precision of 94.76%, a recall of 95.64%, and an F1-score of 95.29%. Compared with the recognition results without rules amendment, the precision, recall, and F1-score was increased by 0.88 percentage points, 0.44 percentage points, and 0.75 percentage points, respectively. The experimental results showed that the proposed model could effectively identify Chinese named entities in the field of wheat diseases and pests, and this model achieved state-of-the-art recognition performance, outperforming several existing models, which provides a reference for other fields of named entities recognition such as food safety and biology.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chinese named entity recognition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wheat diseases and pests</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">data augmentation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ALBERT-BiLSTM-CRF</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">rules amendment</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Agriculture (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Guang Zheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hebing Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xinming Ma</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lei Xi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Agriculture</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">13(2023), 6, p 1220</subfield><subfield code="w">(DE-627)686948173</subfield><subfield code="w">(DE-600)2651678-0</subfield><subfield code="x">20770472</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:6, p 1220</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/agriculture13061220</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/7f7e9684636d4d428abb4db608776bc4</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2077-0472/13/6/1220</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2077-0472</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2023</subfield><subfield code="e">6, p 1220</subfield></datafield></record></collection>
|
callnumber-first |
S - Agriculture |
author |
Demeng Zhang |
spellingShingle |
Demeng Zhang misc S1-972 misc Chinese named entity recognition misc wheat diseases and pests misc data augmentation misc ALBERT-BiLSTM-CRF misc rules amendment misc Agriculture (General) AWdpCNER: Automated Wdp Chinese Named Entity Recognition from Wheat Diseases and Pests Text |
authorStr |
Demeng Zhang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)686948173 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
S1-972 |
illustrated |
Not Illustrated |
issn |
20770472 |
topic_title |
S1-972 AWdpCNER: Automated Wdp Chinese Named Entity Recognition from Wheat Diseases and Pests Text Chinese named entity recognition wheat diseases and pests data augmentation ALBERT-BiLSTM-CRF rules amendment |
topic |
misc S1-972 misc Chinese named entity recognition misc wheat diseases and pests misc data augmentation misc ALBERT-BiLSTM-CRF misc rules amendment misc Agriculture (General) |
topic_unstemmed |
misc S1-972 misc Chinese named entity recognition misc wheat diseases and pests misc data augmentation misc ALBERT-BiLSTM-CRF misc rules amendment misc Agriculture (General) |
topic_browse |
misc S1-972 misc Chinese named entity recognition misc wheat diseases and pests misc data augmentation misc ALBERT-BiLSTM-CRF misc rules amendment misc Agriculture (General) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Agriculture |
hierarchy_parent_id |
686948173 |
hierarchy_top_title |
Agriculture |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)686948173 (DE-600)2651678-0 |
title |
AWdpCNER: Automated Wdp Chinese Named Entity Recognition from Wheat Diseases and Pests Text |
ctrlnum |
(DE-627)DOAJ094228221 (DE-599)DOAJ7f7e9684636d4d428abb4db608776bc4 |
title_full |
AWdpCNER: Automated Wdp Chinese Named Entity Recognition from Wheat Diseases and Pests Text |
author_sort |
Demeng Zhang |
journal |
Agriculture |
journalStr |
Agriculture |
callnumber-first-code |
S |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Demeng Zhang Guang Zheng Hebing Liu Xinming Ma Lei Xi |
container_volume |
13 |
class |
S1-972 |
format_se |
Elektronische Aufsätze |
author-letter |
Demeng Zhang |
doi_str_mv |
10.3390/agriculture13061220 |
author2-role |
verfasserin |
title_sort |
awdpcner: automated wdp chinese named entity recognition from wheat diseases and pests text |
callnumber |
S1-972 |
title_auth |
AWdpCNER: Automated Wdp Chinese Named Entity Recognition from Wheat Diseases and Pests Text |
abstract |
Chinese named entity recognition of wheat diseases and pests is an initial and key step in constructing knowledge graphs. In the field of wheat diseases and pests, there are problems, such as lack of training data, nested entities, fuzzy entity boundaries, diverse entity categories, and uneven entity distribution. To solve the above problems, two data augmentation methods were proposed to expand sentence semantic information on the premise of fully mining hidden knowledge. Then, a wheat diseases and pests dataset (WdpDs) for Chinese named entity recognition was constructed containing 21 types of entities and its domain dictionary (WdpDict), using a combination of manual and dictionary-based approaches, to better support the entity recognition task. Furthermore, an automated Wdp Chinese named entity recognition model (AWdpCNER) was proposed. This model was based on ALBERT-BiLSTM-CRF for entity recognition, and defined specific rules to calibrate entity boundaries after recognition. The model fusing ALBERT-BiLSTM-CRF and rules amendment achieved the best recognition results, with a precision of 94.76%, a recall of 95.64%, and an F1-score of 95.29%. Compared with the recognition results without rules amendment, the precision, recall, and F1-score was increased by 0.88 percentage points, 0.44 percentage points, and 0.75 percentage points, respectively. The experimental results showed that the proposed model could effectively identify Chinese named entities in the field of wheat diseases and pests, and this model achieved state-of-the-art recognition performance, outperforming several existing models, which provides a reference for other fields of named entities recognition such as food safety and biology. |
abstractGer |
Chinese named entity recognition of wheat diseases and pests is an initial and key step in constructing knowledge graphs. In the field of wheat diseases and pests, there are problems, such as lack of training data, nested entities, fuzzy entity boundaries, diverse entity categories, and uneven entity distribution. To solve the above problems, two data augmentation methods were proposed to expand sentence semantic information on the premise of fully mining hidden knowledge. Then, a wheat diseases and pests dataset (WdpDs) for Chinese named entity recognition was constructed containing 21 types of entities and its domain dictionary (WdpDict), using a combination of manual and dictionary-based approaches, to better support the entity recognition task. Furthermore, an automated Wdp Chinese named entity recognition model (AWdpCNER) was proposed. This model was based on ALBERT-BiLSTM-CRF for entity recognition, and defined specific rules to calibrate entity boundaries after recognition. The model fusing ALBERT-BiLSTM-CRF and rules amendment achieved the best recognition results, with a precision of 94.76%, a recall of 95.64%, and an F1-score of 95.29%. Compared with the recognition results without rules amendment, the precision, recall, and F1-score was increased by 0.88 percentage points, 0.44 percentage points, and 0.75 percentage points, respectively. The experimental results showed that the proposed model could effectively identify Chinese named entities in the field of wheat diseases and pests, and this model achieved state-of-the-art recognition performance, outperforming several existing models, which provides a reference for other fields of named entities recognition such as food safety and biology. |
abstract_unstemmed |
Chinese named entity recognition of wheat diseases and pests is an initial and key step in constructing knowledge graphs. In the field of wheat diseases and pests, there are problems, such as lack of training data, nested entities, fuzzy entity boundaries, diverse entity categories, and uneven entity distribution. To solve the above problems, two data augmentation methods were proposed to expand sentence semantic information on the premise of fully mining hidden knowledge. Then, a wheat diseases and pests dataset (WdpDs) for Chinese named entity recognition was constructed containing 21 types of entities and its domain dictionary (WdpDict), using a combination of manual and dictionary-based approaches, to better support the entity recognition task. Furthermore, an automated Wdp Chinese named entity recognition model (AWdpCNER) was proposed. This model was based on ALBERT-BiLSTM-CRF for entity recognition, and defined specific rules to calibrate entity boundaries after recognition. The model fusing ALBERT-BiLSTM-CRF and rules amendment achieved the best recognition results, with a precision of 94.76%, a recall of 95.64%, and an F1-score of 95.29%. Compared with the recognition results without rules amendment, the precision, recall, and F1-score was increased by 0.88 percentage points, 0.44 percentage points, and 0.75 percentage points, respectively. The experimental results showed that the proposed model could effectively identify Chinese named entities in the field of wheat diseases and pests, and this model achieved state-of-the-art recognition performance, outperforming several existing models, which provides a reference for other fields of named entities recognition such as food safety and biology. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
6, p 1220 |
title_short |
AWdpCNER: Automated Wdp Chinese Named Entity Recognition from Wheat Diseases and Pests Text |
url |
https://doi.org/10.3390/agriculture13061220 https://doaj.org/article/7f7e9684636d4d428abb4db608776bc4 https://www.mdpi.com/2077-0472/13/6/1220 https://doaj.org/toc/2077-0472 |
remote_bool |
true |
author2 |
Guang Zheng Hebing Liu Xinming Ma Lei Xi |
author2Str |
Guang Zheng Hebing Liu Xinming Ma Lei Xi |
ppnlink |
686948173 |
callnumber-subject |
S - General Agriculture |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/agriculture13061220 |
callnumber-a |
S1-972 |
up_date |
2024-07-03T21:59:52.168Z |
_version_ |
1803596849133649920 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ094228221</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413031635.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/agriculture13061220</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ094228221</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ7f7e9684636d4d428abb4db608776bc4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">S1-972</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Demeng Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">AWdpCNER: Automated Wdp Chinese Named Entity Recognition from Wheat Diseases and Pests Text</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Chinese named entity recognition of wheat diseases and pests is an initial and key step in constructing knowledge graphs. In the field of wheat diseases and pests, there are problems, such as lack of training data, nested entities, fuzzy entity boundaries, diverse entity categories, and uneven entity distribution. To solve the above problems, two data augmentation methods were proposed to expand sentence semantic information on the premise of fully mining hidden knowledge. Then, a wheat diseases and pests dataset (WdpDs) for Chinese named entity recognition was constructed containing 21 types of entities and its domain dictionary (WdpDict), using a combination of manual and dictionary-based approaches, to better support the entity recognition task. Furthermore, an automated Wdp Chinese named entity recognition model (AWdpCNER) was proposed. This model was based on ALBERT-BiLSTM-CRF for entity recognition, and defined specific rules to calibrate entity boundaries after recognition. The model fusing ALBERT-BiLSTM-CRF and rules amendment achieved the best recognition results, with a precision of 94.76%, a recall of 95.64%, and an F1-score of 95.29%. Compared with the recognition results without rules amendment, the precision, recall, and F1-score was increased by 0.88 percentage points, 0.44 percentage points, and 0.75 percentage points, respectively. The experimental results showed that the proposed model could effectively identify Chinese named entities in the field of wheat diseases and pests, and this model achieved state-of-the-art recognition performance, outperforming several existing models, which provides a reference for other fields of named entities recognition such as food safety and biology.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chinese named entity recognition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wheat diseases and pests</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">data augmentation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ALBERT-BiLSTM-CRF</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">rules amendment</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Agriculture (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Guang Zheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hebing Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xinming Ma</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lei Xi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Agriculture</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">13(2023), 6, p 1220</subfield><subfield code="w">(DE-627)686948173</subfield><subfield code="w">(DE-600)2651678-0</subfield><subfield code="x">20770472</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:6, p 1220</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/agriculture13061220</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/7f7e9684636d4d428abb4db608776bc4</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2077-0472/13/6/1220</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2077-0472</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2023</subfield><subfield code="e">6, p 1220</subfield></datafield></record></collection>
|
score |
7.399584 |