Morphology and Microwave-Absorbing Performances of Rubber Blends with Multi-Walled Carbon Nanotubes and Molybdenum Disulfide
This study details microwave-absorbing materials made of natural rubber/nitrile butadiene rubber (NR/NBR) blends with multi-walled carbon nanotubes (MWCNTs) and molybdenum disulfide (MoS<sub<2</sub<). The mechanical blending method and the influences of fabrication on the morphology and...
Ausführliche Beschreibung
Autor*in: |
Le Huang [verfasserIn] Jingru Chen [verfasserIn] Bingjun Liu [verfasserIn] Pengfei Zhao [verfasserIn] Lusheng Liao [verfasserIn] Jinlong Tao [verfasserIn] Yueqiong Wang [verfasserIn] Bingbing Wang [verfasserIn] Jing Deng [verfasserIn] Yanfang Zhao [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Nanomaterials - MDPI AG, 2012, 13(2023), 10, p 1644 |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2023 ; number:10, p 1644 |
Links: |
---|
DOI / URN: |
10.3390/nano13101644 |
---|
Katalog-ID: |
DOAJ094329478 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ094329478 | ||
003 | DE-627 | ||
005 | 20240413033251.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/nano13101644 |2 doi | |
035 | |a (DE-627)DOAJ094329478 | ||
035 | |a (DE-599)DOAJfe882fa05b084c73804fd9c13976a687 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QD1-999 | |
100 | 0 | |a Le Huang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Morphology and Microwave-Absorbing Performances of Rubber Blends with Multi-Walled Carbon Nanotubes and Molybdenum Disulfide |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a This study details microwave-absorbing materials made of natural rubber/nitrile butadiene rubber (NR/NBR) blends with multi-walled carbon nanotubes (MWCNTs) and molybdenum disulfide (MoS<sub<2</sub<). The mechanical blending method and the influences of fabrication on the morphology and microwave-absorbing performance of resulting compounds were logically investigated. It was found that interfacial differences between the fillers and matrix promote the formation of MWCNTs and MoS<sub<2</sub< networks in NR/NBR blends, thus improving microwave-absorbing performance. Compared with direct compounding, masterbatch-based two-step blending is more conducive to forming interpenetrating networks of MWCNTs/MoS<sub<2</sub<, endowing the resulting composite with better microwave attenuation capacity. Composites with MWCNTs in NR and MoS<sub<2</sub< in NBR demonstrate the best microwave-absorbing performance, with a minimum reflection loss of −44.54 dB and an effective absorption bandwidth of 3.60 GHz. Exploring the relationship between morphology and electromagnetic loss behavior denotes that such improvement results from the selective distribution of dual fillers, inducing networking and multi-component-derived interfacial polarization enhancement. | ||
650 | 4 | |a molybdenum disulfide | |
650 | 4 | |a multi-walled carbon nanotubes | |
650 | 4 | |a natural rubber | |
650 | 4 | |a nitrile butadiene rubber | |
650 | 4 | |a electromagnetic loss | |
653 | 0 | |a Chemistry | |
700 | 0 | |a Jingru Chen |e verfasserin |4 aut | |
700 | 0 | |a Bingjun Liu |e verfasserin |4 aut | |
700 | 0 | |a Pengfei Zhao |e verfasserin |4 aut | |
700 | 0 | |a Lusheng Liao |e verfasserin |4 aut | |
700 | 0 | |a Jinlong Tao |e verfasserin |4 aut | |
700 | 0 | |a Yueqiong Wang |e verfasserin |4 aut | |
700 | 0 | |a Bingbing Wang |e verfasserin |4 aut | |
700 | 0 | |a Jing Deng |e verfasserin |4 aut | |
700 | 0 | |a Yanfang Zhao |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Nanomaterials |d MDPI AG, 2012 |g 13(2023), 10, p 1644 |w (DE-627)718627199 |w (DE-600)2662255-5 |x 20794991 |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2023 |g number:10, p 1644 |
856 | 4 | 0 | |u https://doi.org/10.3390/nano13101644 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/fe882fa05b084c73804fd9c13976a687 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2079-4991/13/10/1644 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2079-4991 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 13 |j 2023 |e 10, p 1644 |
author_variant |
l h lh j c jc b l bl p z pz l l ll j t jt y w yw b w bw j d jd y z yz |
---|---|
matchkey_str |
article:20794991:2023----::opooynmcoaebobnpromneorbebedwtmlialdabna |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
QD |
publishDate |
2023 |
allfields |
10.3390/nano13101644 doi (DE-627)DOAJ094329478 (DE-599)DOAJfe882fa05b084c73804fd9c13976a687 DE-627 ger DE-627 rakwb eng QD1-999 Le Huang verfasserin aut Morphology and Microwave-Absorbing Performances of Rubber Blends with Multi-Walled Carbon Nanotubes and Molybdenum Disulfide 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study details microwave-absorbing materials made of natural rubber/nitrile butadiene rubber (NR/NBR) blends with multi-walled carbon nanotubes (MWCNTs) and molybdenum disulfide (MoS<sub<2</sub<). The mechanical blending method and the influences of fabrication on the morphology and microwave-absorbing performance of resulting compounds were logically investigated. It was found that interfacial differences between the fillers and matrix promote the formation of MWCNTs and MoS<sub<2</sub< networks in NR/NBR blends, thus improving microwave-absorbing performance. Compared with direct compounding, masterbatch-based two-step blending is more conducive to forming interpenetrating networks of MWCNTs/MoS<sub<2</sub<, endowing the resulting composite with better microwave attenuation capacity. Composites with MWCNTs in NR and MoS<sub<2</sub< in NBR demonstrate the best microwave-absorbing performance, with a minimum reflection loss of −44.54 dB and an effective absorption bandwidth of 3.60 GHz. Exploring the relationship between morphology and electromagnetic loss behavior denotes that such improvement results from the selective distribution of dual fillers, inducing networking and multi-component-derived interfacial polarization enhancement. molybdenum disulfide multi-walled carbon nanotubes natural rubber nitrile butadiene rubber electromagnetic loss Chemistry Jingru Chen verfasserin aut Bingjun Liu verfasserin aut Pengfei Zhao verfasserin aut Lusheng Liao verfasserin aut Jinlong Tao verfasserin aut Yueqiong Wang verfasserin aut Bingbing Wang verfasserin aut Jing Deng verfasserin aut Yanfang Zhao verfasserin aut In Nanomaterials MDPI AG, 2012 13(2023), 10, p 1644 (DE-627)718627199 (DE-600)2662255-5 20794991 nnns volume:13 year:2023 number:10, p 1644 https://doi.org/10.3390/nano13101644 kostenfrei https://doaj.org/article/fe882fa05b084c73804fd9c13976a687 kostenfrei https://www.mdpi.com/2079-4991/13/10/1644 kostenfrei https://doaj.org/toc/2079-4991 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 10, p 1644 |
spelling |
10.3390/nano13101644 doi (DE-627)DOAJ094329478 (DE-599)DOAJfe882fa05b084c73804fd9c13976a687 DE-627 ger DE-627 rakwb eng QD1-999 Le Huang verfasserin aut Morphology and Microwave-Absorbing Performances of Rubber Blends with Multi-Walled Carbon Nanotubes and Molybdenum Disulfide 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study details microwave-absorbing materials made of natural rubber/nitrile butadiene rubber (NR/NBR) blends with multi-walled carbon nanotubes (MWCNTs) and molybdenum disulfide (MoS<sub<2</sub<). The mechanical blending method and the influences of fabrication on the morphology and microwave-absorbing performance of resulting compounds were logically investigated. It was found that interfacial differences between the fillers and matrix promote the formation of MWCNTs and MoS<sub<2</sub< networks in NR/NBR blends, thus improving microwave-absorbing performance. Compared with direct compounding, masterbatch-based two-step blending is more conducive to forming interpenetrating networks of MWCNTs/MoS<sub<2</sub<, endowing the resulting composite with better microwave attenuation capacity. Composites with MWCNTs in NR and MoS<sub<2</sub< in NBR demonstrate the best microwave-absorbing performance, with a minimum reflection loss of −44.54 dB and an effective absorption bandwidth of 3.60 GHz. Exploring the relationship between morphology and electromagnetic loss behavior denotes that such improvement results from the selective distribution of dual fillers, inducing networking and multi-component-derived interfacial polarization enhancement. molybdenum disulfide multi-walled carbon nanotubes natural rubber nitrile butadiene rubber electromagnetic loss Chemistry Jingru Chen verfasserin aut Bingjun Liu verfasserin aut Pengfei Zhao verfasserin aut Lusheng Liao verfasserin aut Jinlong Tao verfasserin aut Yueqiong Wang verfasserin aut Bingbing Wang verfasserin aut Jing Deng verfasserin aut Yanfang Zhao verfasserin aut In Nanomaterials MDPI AG, 2012 13(2023), 10, p 1644 (DE-627)718627199 (DE-600)2662255-5 20794991 nnns volume:13 year:2023 number:10, p 1644 https://doi.org/10.3390/nano13101644 kostenfrei https://doaj.org/article/fe882fa05b084c73804fd9c13976a687 kostenfrei https://www.mdpi.com/2079-4991/13/10/1644 kostenfrei https://doaj.org/toc/2079-4991 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 10, p 1644 |
allfields_unstemmed |
10.3390/nano13101644 doi (DE-627)DOAJ094329478 (DE-599)DOAJfe882fa05b084c73804fd9c13976a687 DE-627 ger DE-627 rakwb eng QD1-999 Le Huang verfasserin aut Morphology and Microwave-Absorbing Performances of Rubber Blends with Multi-Walled Carbon Nanotubes and Molybdenum Disulfide 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study details microwave-absorbing materials made of natural rubber/nitrile butadiene rubber (NR/NBR) blends with multi-walled carbon nanotubes (MWCNTs) and molybdenum disulfide (MoS<sub<2</sub<). The mechanical blending method and the influences of fabrication on the morphology and microwave-absorbing performance of resulting compounds were logically investigated. It was found that interfacial differences between the fillers and matrix promote the formation of MWCNTs and MoS<sub<2</sub< networks in NR/NBR blends, thus improving microwave-absorbing performance. Compared with direct compounding, masterbatch-based two-step blending is more conducive to forming interpenetrating networks of MWCNTs/MoS<sub<2</sub<, endowing the resulting composite with better microwave attenuation capacity. Composites with MWCNTs in NR and MoS<sub<2</sub< in NBR demonstrate the best microwave-absorbing performance, with a minimum reflection loss of −44.54 dB and an effective absorption bandwidth of 3.60 GHz. Exploring the relationship between morphology and electromagnetic loss behavior denotes that such improvement results from the selective distribution of dual fillers, inducing networking and multi-component-derived interfacial polarization enhancement. molybdenum disulfide multi-walled carbon nanotubes natural rubber nitrile butadiene rubber electromagnetic loss Chemistry Jingru Chen verfasserin aut Bingjun Liu verfasserin aut Pengfei Zhao verfasserin aut Lusheng Liao verfasserin aut Jinlong Tao verfasserin aut Yueqiong Wang verfasserin aut Bingbing Wang verfasserin aut Jing Deng verfasserin aut Yanfang Zhao verfasserin aut In Nanomaterials MDPI AG, 2012 13(2023), 10, p 1644 (DE-627)718627199 (DE-600)2662255-5 20794991 nnns volume:13 year:2023 number:10, p 1644 https://doi.org/10.3390/nano13101644 kostenfrei https://doaj.org/article/fe882fa05b084c73804fd9c13976a687 kostenfrei https://www.mdpi.com/2079-4991/13/10/1644 kostenfrei https://doaj.org/toc/2079-4991 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 10, p 1644 |
allfieldsGer |
10.3390/nano13101644 doi (DE-627)DOAJ094329478 (DE-599)DOAJfe882fa05b084c73804fd9c13976a687 DE-627 ger DE-627 rakwb eng QD1-999 Le Huang verfasserin aut Morphology and Microwave-Absorbing Performances of Rubber Blends with Multi-Walled Carbon Nanotubes and Molybdenum Disulfide 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study details microwave-absorbing materials made of natural rubber/nitrile butadiene rubber (NR/NBR) blends with multi-walled carbon nanotubes (MWCNTs) and molybdenum disulfide (MoS<sub<2</sub<). The mechanical blending method and the influences of fabrication on the morphology and microwave-absorbing performance of resulting compounds were logically investigated. It was found that interfacial differences between the fillers and matrix promote the formation of MWCNTs and MoS<sub<2</sub< networks in NR/NBR blends, thus improving microwave-absorbing performance. Compared with direct compounding, masterbatch-based two-step blending is more conducive to forming interpenetrating networks of MWCNTs/MoS<sub<2</sub<, endowing the resulting composite with better microwave attenuation capacity. Composites with MWCNTs in NR and MoS<sub<2</sub< in NBR demonstrate the best microwave-absorbing performance, with a minimum reflection loss of −44.54 dB and an effective absorption bandwidth of 3.60 GHz. Exploring the relationship between morphology and electromagnetic loss behavior denotes that such improvement results from the selective distribution of dual fillers, inducing networking and multi-component-derived interfacial polarization enhancement. molybdenum disulfide multi-walled carbon nanotubes natural rubber nitrile butadiene rubber electromagnetic loss Chemistry Jingru Chen verfasserin aut Bingjun Liu verfasserin aut Pengfei Zhao verfasserin aut Lusheng Liao verfasserin aut Jinlong Tao verfasserin aut Yueqiong Wang verfasserin aut Bingbing Wang verfasserin aut Jing Deng verfasserin aut Yanfang Zhao verfasserin aut In Nanomaterials MDPI AG, 2012 13(2023), 10, p 1644 (DE-627)718627199 (DE-600)2662255-5 20794991 nnns volume:13 year:2023 number:10, p 1644 https://doi.org/10.3390/nano13101644 kostenfrei https://doaj.org/article/fe882fa05b084c73804fd9c13976a687 kostenfrei https://www.mdpi.com/2079-4991/13/10/1644 kostenfrei https://doaj.org/toc/2079-4991 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 10, p 1644 |
allfieldsSound |
10.3390/nano13101644 doi (DE-627)DOAJ094329478 (DE-599)DOAJfe882fa05b084c73804fd9c13976a687 DE-627 ger DE-627 rakwb eng QD1-999 Le Huang verfasserin aut Morphology and Microwave-Absorbing Performances of Rubber Blends with Multi-Walled Carbon Nanotubes and Molybdenum Disulfide 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study details microwave-absorbing materials made of natural rubber/nitrile butadiene rubber (NR/NBR) blends with multi-walled carbon nanotubes (MWCNTs) and molybdenum disulfide (MoS<sub<2</sub<). The mechanical blending method and the influences of fabrication on the morphology and microwave-absorbing performance of resulting compounds were logically investigated. It was found that interfacial differences between the fillers and matrix promote the formation of MWCNTs and MoS<sub<2</sub< networks in NR/NBR blends, thus improving microwave-absorbing performance. Compared with direct compounding, masterbatch-based two-step blending is more conducive to forming interpenetrating networks of MWCNTs/MoS<sub<2</sub<, endowing the resulting composite with better microwave attenuation capacity. Composites with MWCNTs in NR and MoS<sub<2</sub< in NBR demonstrate the best microwave-absorbing performance, with a minimum reflection loss of −44.54 dB and an effective absorption bandwidth of 3.60 GHz. Exploring the relationship between morphology and electromagnetic loss behavior denotes that such improvement results from the selective distribution of dual fillers, inducing networking and multi-component-derived interfacial polarization enhancement. molybdenum disulfide multi-walled carbon nanotubes natural rubber nitrile butadiene rubber electromagnetic loss Chemistry Jingru Chen verfasserin aut Bingjun Liu verfasserin aut Pengfei Zhao verfasserin aut Lusheng Liao verfasserin aut Jinlong Tao verfasserin aut Yueqiong Wang verfasserin aut Bingbing Wang verfasserin aut Jing Deng verfasserin aut Yanfang Zhao verfasserin aut In Nanomaterials MDPI AG, 2012 13(2023), 10, p 1644 (DE-627)718627199 (DE-600)2662255-5 20794991 nnns volume:13 year:2023 number:10, p 1644 https://doi.org/10.3390/nano13101644 kostenfrei https://doaj.org/article/fe882fa05b084c73804fd9c13976a687 kostenfrei https://www.mdpi.com/2079-4991/13/10/1644 kostenfrei https://doaj.org/toc/2079-4991 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 10, p 1644 |
language |
English |
source |
In Nanomaterials 13(2023), 10, p 1644 volume:13 year:2023 number:10, p 1644 |
sourceStr |
In Nanomaterials 13(2023), 10, p 1644 volume:13 year:2023 number:10, p 1644 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
molybdenum disulfide multi-walled carbon nanotubes natural rubber nitrile butadiene rubber electromagnetic loss Chemistry |
isfreeaccess_bool |
true |
container_title |
Nanomaterials |
authorswithroles_txt_mv |
Le Huang @@aut@@ Jingru Chen @@aut@@ Bingjun Liu @@aut@@ Pengfei Zhao @@aut@@ Lusheng Liao @@aut@@ Jinlong Tao @@aut@@ Yueqiong Wang @@aut@@ Bingbing Wang @@aut@@ Jing Deng @@aut@@ Yanfang Zhao @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
718627199 |
id |
DOAJ094329478 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ094329478</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413033251.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/nano13101644</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ094329478</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJfe882fa05b084c73804fd9c13976a687</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Le Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Morphology and Microwave-Absorbing Performances of Rubber Blends with Multi-Walled Carbon Nanotubes and Molybdenum Disulfide</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This study details microwave-absorbing materials made of natural rubber/nitrile butadiene rubber (NR/NBR) blends with multi-walled carbon nanotubes (MWCNTs) and molybdenum disulfide (MoS<sub<2</sub<). The mechanical blending method and the influences of fabrication on the morphology and microwave-absorbing performance of resulting compounds were logically investigated. It was found that interfacial differences between the fillers and matrix promote the formation of MWCNTs and MoS<sub<2</sub< networks in NR/NBR blends, thus improving microwave-absorbing performance. Compared with direct compounding, masterbatch-based two-step blending is more conducive to forming interpenetrating networks of MWCNTs/MoS<sub<2</sub<, endowing the resulting composite with better microwave attenuation capacity. Composites with MWCNTs in NR and MoS<sub<2</sub< in NBR demonstrate the best microwave-absorbing performance, with a minimum reflection loss of −44.54 dB and an effective absorption bandwidth of 3.60 GHz. Exploring the relationship between morphology and electromagnetic loss behavior denotes that such improvement results from the selective distribution of dual fillers, inducing networking and multi-component-derived interfacial polarization enhancement.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">molybdenum disulfide</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multi-walled carbon nanotubes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">natural rubber</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nitrile butadiene rubber</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">electromagnetic loss</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jingru Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bingjun Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pengfei Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lusheng Liao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jinlong Tao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yueqiong Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bingbing Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jing Deng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yanfang Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Nanomaterials</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">13(2023), 10, p 1644</subfield><subfield code="w">(DE-627)718627199</subfield><subfield code="w">(DE-600)2662255-5</subfield><subfield code="x">20794991</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:10, p 1644</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/nano13101644</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/fe882fa05b084c73804fd9c13976a687</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2079-4991/13/10/1644</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2079-4991</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2023</subfield><subfield code="e">10, p 1644</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Le Huang |
spellingShingle |
Le Huang misc QD1-999 misc molybdenum disulfide misc multi-walled carbon nanotubes misc natural rubber misc nitrile butadiene rubber misc electromagnetic loss misc Chemistry Morphology and Microwave-Absorbing Performances of Rubber Blends with Multi-Walled Carbon Nanotubes and Molybdenum Disulfide |
authorStr |
Le Huang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)718627199 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QD1-999 |
illustrated |
Not Illustrated |
issn |
20794991 |
topic_title |
QD1-999 Morphology and Microwave-Absorbing Performances of Rubber Blends with Multi-Walled Carbon Nanotubes and Molybdenum Disulfide molybdenum disulfide multi-walled carbon nanotubes natural rubber nitrile butadiene rubber electromagnetic loss |
topic |
misc QD1-999 misc molybdenum disulfide misc multi-walled carbon nanotubes misc natural rubber misc nitrile butadiene rubber misc electromagnetic loss misc Chemistry |
topic_unstemmed |
misc QD1-999 misc molybdenum disulfide misc multi-walled carbon nanotubes misc natural rubber misc nitrile butadiene rubber misc electromagnetic loss misc Chemistry |
topic_browse |
misc QD1-999 misc molybdenum disulfide misc multi-walled carbon nanotubes misc natural rubber misc nitrile butadiene rubber misc electromagnetic loss misc Chemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Nanomaterials |
hierarchy_parent_id |
718627199 |
hierarchy_top_title |
Nanomaterials |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)718627199 (DE-600)2662255-5 |
title |
Morphology and Microwave-Absorbing Performances of Rubber Blends with Multi-Walled Carbon Nanotubes and Molybdenum Disulfide |
ctrlnum |
(DE-627)DOAJ094329478 (DE-599)DOAJfe882fa05b084c73804fd9c13976a687 |
title_full |
Morphology and Microwave-Absorbing Performances of Rubber Blends with Multi-Walled Carbon Nanotubes and Molybdenum Disulfide |
author_sort |
Le Huang |
journal |
Nanomaterials |
journalStr |
Nanomaterials |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Le Huang Jingru Chen Bingjun Liu Pengfei Zhao Lusheng Liao Jinlong Tao Yueqiong Wang Bingbing Wang Jing Deng Yanfang Zhao |
container_volume |
13 |
class |
QD1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Le Huang |
doi_str_mv |
10.3390/nano13101644 |
author2-role |
verfasserin |
title_sort |
morphology and microwave-absorbing performances of rubber blends with multi-walled carbon nanotubes and molybdenum disulfide |
callnumber |
QD1-999 |
title_auth |
Morphology and Microwave-Absorbing Performances of Rubber Blends with Multi-Walled Carbon Nanotubes and Molybdenum Disulfide |
abstract |
This study details microwave-absorbing materials made of natural rubber/nitrile butadiene rubber (NR/NBR) blends with multi-walled carbon nanotubes (MWCNTs) and molybdenum disulfide (MoS<sub<2</sub<). The mechanical blending method and the influences of fabrication on the morphology and microwave-absorbing performance of resulting compounds were logically investigated. It was found that interfacial differences between the fillers and matrix promote the formation of MWCNTs and MoS<sub<2</sub< networks in NR/NBR blends, thus improving microwave-absorbing performance. Compared with direct compounding, masterbatch-based two-step blending is more conducive to forming interpenetrating networks of MWCNTs/MoS<sub<2</sub<, endowing the resulting composite with better microwave attenuation capacity. Composites with MWCNTs in NR and MoS<sub<2</sub< in NBR demonstrate the best microwave-absorbing performance, with a minimum reflection loss of −44.54 dB and an effective absorption bandwidth of 3.60 GHz. Exploring the relationship between morphology and electromagnetic loss behavior denotes that such improvement results from the selective distribution of dual fillers, inducing networking and multi-component-derived interfacial polarization enhancement. |
abstractGer |
This study details microwave-absorbing materials made of natural rubber/nitrile butadiene rubber (NR/NBR) blends with multi-walled carbon nanotubes (MWCNTs) and molybdenum disulfide (MoS<sub<2</sub<). The mechanical blending method and the influences of fabrication on the morphology and microwave-absorbing performance of resulting compounds were logically investigated. It was found that interfacial differences between the fillers and matrix promote the formation of MWCNTs and MoS<sub<2</sub< networks in NR/NBR blends, thus improving microwave-absorbing performance. Compared with direct compounding, masterbatch-based two-step blending is more conducive to forming interpenetrating networks of MWCNTs/MoS<sub<2</sub<, endowing the resulting composite with better microwave attenuation capacity. Composites with MWCNTs in NR and MoS<sub<2</sub< in NBR demonstrate the best microwave-absorbing performance, with a minimum reflection loss of −44.54 dB and an effective absorption bandwidth of 3.60 GHz. Exploring the relationship between morphology and electromagnetic loss behavior denotes that such improvement results from the selective distribution of dual fillers, inducing networking and multi-component-derived interfacial polarization enhancement. |
abstract_unstemmed |
This study details microwave-absorbing materials made of natural rubber/nitrile butadiene rubber (NR/NBR) blends with multi-walled carbon nanotubes (MWCNTs) and molybdenum disulfide (MoS<sub<2</sub<). The mechanical blending method and the influences of fabrication on the morphology and microwave-absorbing performance of resulting compounds were logically investigated. It was found that interfacial differences between the fillers and matrix promote the formation of MWCNTs and MoS<sub<2</sub< networks in NR/NBR blends, thus improving microwave-absorbing performance. Compared with direct compounding, masterbatch-based two-step blending is more conducive to forming interpenetrating networks of MWCNTs/MoS<sub<2</sub<, endowing the resulting composite with better microwave attenuation capacity. Composites with MWCNTs in NR and MoS<sub<2</sub< in NBR demonstrate the best microwave-absorbing performance, with a minimum reflection loss of −44.54 dB and an effective absorption bandwidth of 3.60 GHz. Exploring the relationship between morphology and electromagnetic loss behavior denotes that such improvement results from the selective distribution of dual fillers, inducing networking and multi-component-derived interfacial polarization enhancement. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
10, p 1644 |
title_short |
Morphology and Microwave-Absorbing Performances of Rubber Blends with Multi-Walled Carbon Nanotubes and Molybdenum Disulfide |
url |
https://doi.org/10.3390/nano13101644 https://doaj.org/article/fe882fa05b084c73804fd9c13976a687 https://www.mdpi.com/2079-4991/13/10/1644 https://doaj.org/toc/2079-4991 |
remote_bool |
true |
author2 |
Jingru Chen Bingjun Liu Pengfei Zhao Lusheng Liao Jinlong Tao Yueqiong Wang Bingbing Wang Jing Deng Yanfang Zhao |
author2Str |
Jingru Chen Bingjun Liu Pengfei Zhao Lusheng Liao Jinlong Tao Yueqiong Wang Bingbing Wang Jing Deng Yanfang Zhao |
ppnlink |
718627199 |
callnumber-subject |
QD - Chemistry |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/nano13101644 |
callnumber-a |
QD1-999 |
up_date |
2024-07-03T22:33:49.802Z |
_version_ |
1803598985746710528 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ094329478</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413033251.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/nano13101644</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ094329478</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJfe882fa05b084c73804fd9c13976a687</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Le Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Morphology and Microwave-Absorbing Performances of Rubber Blends with Multi-Walled Carbon Nanotubes and Molybdenum Disulfide</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This study details microwave-absorbing materials made of natural rubber/nitrile butadiene rubber (NR/NBR) blends with multi-walled carbon nanotubes (MWCNTs) and molybdenum disulfide (MoS<sub<2</sub<). The mechanical blending method and the influences of fabrication on the morphology and microwave-absorbing performance of resulting compounds were logically investigated. It was found that interfacial differences between the fillers and matrix promote the formation of MWCNTs and MoS<sub<2</sub< networks in NR/NBR blends, thus improving microwave-absorbing performance. Compared with direct compounding, masterbatch-based two-step blending is more conducive to forming interpenetrating networks of MWCNTs/MoS<sub<2</sub<, endowing the resulting composite with better microwave attenuation capacity. Composites with MWCNTs in NR and MoS<sub<2</sub< in NBR demonstrate the best microwave-absorbing performance, with a minimum reflection loss of −44.54 dB and an effective absorption bandwidth of 3.60 GHz. Exploring the relationship between morphology and electromagnetic loss behavior denotes that such improvement results from the selective distribution of dual fillers, inducing networking and multi-component-derived interfacial polarization enhancement.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">molybdenum disulfide</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multi-walled carbon nanotubes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">natural rubber</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nitrile butadiene rubber</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">electromagnetic loss</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jingru Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bingjun Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pengfei Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lusheng Liao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jinlong Tao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yueqiong Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bingbing Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jing Deng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yanfang Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Nanomaterials</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">13(2023), 10, p 1644</subfield><subfield code="w">(DE-627)718627199</subfield><subfield code="w">(DE-600)2662255-5</subfield><subfield code="x">20794991</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:10, p 1644</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/nano13101644</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/fe882fa05b084c73804fd9c13976a687</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2079-4991/13/10/1644</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2079-4991</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2023</subfield><subfield code="e">10, p 1644</subfield></datafield></record></collection>
|
score |
7.4012585 |