Exploring Volatile Organic Compounds in Rhizomes and Leaves of <i<Kaempferia parviflora</i< Wall. Ex Baker Using HS-SPME and GC–TOF/MS Combined with Multivariate Analysis
Volatile organic compounds (VOCs) play an important role in the biological activities of the medicinal Zingiberaceae species. In commercial preparations of VOCs from <i<Kaempferia parviflora</i< rhizomes, its leaves are wasted as by-products. The foliage could be an alternative source to...
Ausführliche Beschreibung
Autor*in: |
May San Thawtar [verfasserIn] Miyako Kusano [verfasserIn] Li Yingtao [verfasserIn] Wunna [verfasserIn] Min San Thein [verfasserIn] Keisuke Tanaka [verfasserIn] Marlon Rivera [verfasserIn] Miao Shi [verfasserIn] Kazuo N. Watanabe [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
volatile organic compounds (VOCs) headspace solid-phase microextraction (HS-SPME) gas chromatography/time-of-flight mass spectrometry (GC-TOF-MS) |
---|
Übergeordnetes Werk: |
In: Metabolites - MDPI AG, 2012, 13(2023), 5, p 651 |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2023 ; number:5, p 651 |
Links: |
---|
DOI / URN: |
10.3390/metabo13050651 |
---|
Katalog-ID: |
DOAJ09434096X |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ09434096X | ||
003 | DE-627 | ||
005 | 20240413033436.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/metabo13050651 |2 doi | |
035 | |a (DE-627)DOAJ09434096X | ||
035 | |a (DE-599)DOAJ8ab46d02b59a4da899238a9fbad62f7e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QR1-502 | |
100 | 0 | |a May San Thawtar |e verfasserin |4 aut | |
245 | 1 | 0 | |a Exploring Volatile Organic Compounds in Rhizomes and Leaves of <i<Kaempferia parviflora</i< Wall. Ex Baker Using HS-SPME and GC–TOF/MS Combined with Multivariate Analysis |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Volatile organic compounds (VOCs) play an important role in the biological activities of the medicinal Zingiberaceae species. In commercial preparations of VOCs from <i<Kaempferia parviflora</i< rhizomes, its leaves are wasted as by-products. The foliage could be an alternative source to rhizome, but its VOCs composition has not been explored previously. In this study, the VOCs in the leaves and rhizomes of <i<K. parviflora</i< plants grown in a growth room and in the field were analyzed using the headspace solid-phase microextraction (HS-SPME) method coupled with gas chromatography and time-of-flight mass spectrometry (GC-TOF-MS). The results showed a total of 75 and 78 VOCs identified from the leaves and rhizomes, respectively, of plants grown in the growth room. In the field samples, 96 VOCs were detected from the leaves and 98 from the rhizomes. These numbers are higher compared to the previous reports, which can be attributed to the analytical techniques used. It was also observed that monoterpenes were dominant in leaves, whereas sesquiterpenes were more abundant in rhizomes. Principal component analysis (PCA) revealed significantly higher abundance and diversity of VOCs in plants grown in the field than in the growth room. A high level of similarity of identified VOCs between the two tissues was also observed, as they shared 68 and 94 VOCs in the growth room and field samples, respectively. The difference lies in the relative abundance of VOCs, as most of them are abundant in rhizomes. Overall, the current study showed that the leaves of <i<K. parviflora</i<, grown in any growth conditions, can be further utilized as an alternative source of VOCs for rhizomes. | ||
650 | 4 | |a <i<Kaempferia parviflora</i< | |
650 | 4 | |a volatile organic compounds (VOCs) | |
650 | 4 | |a growth room | |
650 | 4 | |a field | |
650 | 4 | |a headspace solid-phase microextraction (HS-SPME) | |
650 | 4 | |a gas chromatography/time-of-flight mass spectrometry (GC-TOF-MS) | |
653 | 0 | |a Microbiology | |
700 | 0 | |a Miyako Kusano |e verfasserin |4 aut | |
700 | 0 | |a Li Yingtao |e verfasserin |4 aut | |
700 | 0 | |a Wunna |e verfasserin |4 aut | |
700 | 0 | |a Min San Thein |e verfasserin |4 aut | |
700 | 0 | |a Keisuke Tanaka |e verfasserin |4 aut | |
700 | 0 | |a Marlon Rivera |e verfasserin |4 aut | |
700 | 0 | |a Miao Shi |e verfasserin |4 aut | |
700 | 0 | |a Kazuo N. Watanabe |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Metabolites |d MDPI AG, 2012 |g 13(2023), 5, p 651 |w (DE-627)718627164 |w (DE-600)2662251-8 |x 22181989 |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2023 |g number:5, p 651 |
856 | 4 | 0 | |u https://doi.org/10.3390/metabo13050651 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/8ab46d02b59a4da899238a9fbad62f7e |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2218-1989/13/5/651 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2218-1989 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 13 |j 2023 |e 5, p 651 |
author_variant |
m s t mst m k mk l y ly w m s t mst k t kt m r mr m s ms k n w knw |
---|---|
matchkey_str |
article:22181989:2023----::xlrnvltlogncopudirioeadevsfkepeiprilrialxaeuigspengt |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
QR |
publishDate |
2023 |
allfields |
10.3390/metabo13050651 doi (DE-627)DOAJ09434096X (DE-599)DOAJ8ab46d02b59a4da899238a9fbad62f7e DE-627 ger DE-627 rakwb eng QR1-502 May San Thawtar verfasserin aut Exploring Volatile Organic Compounds in Rhizomes and Leaves of <i<Kaempferia parviflora</i< Wall. Ex Baker Using HS-SPME and GC–TOF/MS Combined with Multivariate Analysis 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Volatile organic compounds (VOCs) play an important role in the biological activities of the medicinal Zingiberaceae species. In commercial preparations of VOCs from <i<Kaempferia parviflora</i< rhizomes, its leaves are wasted as by-products. The foliage could be an alternative source to rhizome, but its VOCs composition has not been explored previously. In this study, the VOCs in the leaves and rhizomes of <i<K. parviflora</i< plants grown in a growth room and in the field were analyzed using the headspace solid-phase microextraction (HS-SPME) method coupled with gas chromatography and time-of-flight mass spectrometry (GC-TOF-MS). The results showed a total of 75 and 78 VOCs identified from the leaves and rhizomes, respectively, of plants grown in the growth room. In the field samples, 96 VOCs were detected from the leaves and 98 from the rhizomes. These numbers are higher compared to the previous reports, which can be attributed to the analytical techniques used. It was also observed that monoterpenes were dominant in leaves, whereas sesquiterpenes were more abundant in rhizomes. Principal component analysis (PCA) revealed significantly higher abundance and diversity of VOCs in plants grown in the field than in the growth room. A high level of similarity of identified VOCs between the two tissues was also observed, as they shared 68 and 94 VOCs in the growth room and field samples, respectively. The difference lies in the relative abundance of VOCs, as most of them are abundant in rhizomes. Overall, the current study showed that the leaves of <i<K. parviflora</i<, grown in any growth conditions, can be further utilized as an alternative source of VOCs for rhizomes. <i<Kaempferia parviflora</i< volatile organic compounds (VOCs) growth room field headspace solid-phase microextraction (HS-SPME) gas chromatography/time-of-flight mass spectrometry (GC-TOF-MS) Microbiology Miyako Kusano verfasserin aut Li Yingtao verfasserin aut Wunna verfasserin aut Min San Thein verfasserin aut Keisuke Tanaka verfasserin aut Marlon Rivera verfasserin aut Miao Shi verfasserin aut Kazuo N. Watanabe verfasserin aut In Metabolites MDPI AG, 2012 13(2023), 5, p 651 (DE-627)718627164 (DE-600)2662251-8 22181989 nnns volume:13 year:2023 number:5, p 651 https://doi.org/10.3390/metabo13050651 kostenfrei https://doaj.org/article/8ab46d02b59a4da899238a9fbad62f7e kostenfrei https://www.mdpi.com/2218-1989/13/5/651 kostenfrei https://doaj.org/toc/2218-1989 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 5, p 651 |
spelling |
10.3390/metabo13050651 doi (DE-627)DOAJ09434096X (DE-599)DOAJ8ab46d02b59a4da899238a9fbad62f7e DE-627 ger DE-627 rakwb eng QR1-502 May San Thawtar verfasserin aut Exploring Volatile Organic Compounds in Rhizomes and Leaves of <i<Kaempferia parviflora</i< Wall. Ex Baker Using HS-SPME and GC–TOF/MS Combined with Multivariate Analysis 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Volatile organic compounds (VOCs) play an important role in the biological activities of the medicinal Zingiberaceae species. In commercial preparations of VOCs from <i<Kaempferia parviflora</i< rhizomes, its leaves are wasted as by-products. The foliage could be an alternative source to rhizome, but its VOCs composition has not been explored previously. In this study, the VOCs in the leaves and rhizomes of <i<K. parviflora</i< plants grown in a growth room and in the field were analyzed using the headspace solid-phase microextraction (HS-SPME) method coupled with gas chromatography and time-of-flight mass spectrometry (GC-TOF-MS). The results showed a total of 75 and 78 VOCs identified from the leaves and rhizomes, respectively, of plants grown in the growth room. In the field samples, 96 VOCs were detected from the leaves and 98 from the rhizomes. These numbers are higher compared to the previous reports, which can be attributed to the analytical techniques used. It was also observed that monoterpenes were dominant in leaves, whereas sesquiterpenes were more abundant in rhizomes. Principal component analysis (PCA) revealed significantly higher abundance and diversity of VOCs in plants grown in the field than in the growth room. A high level of similarity of identified VOCs between the two tissues was also observed, as they shared 68 and 94 VOCs in the growth room and field samples, respectively. The difference lies in the relative abundance of VOCs, as most of them are abundant in rhizomes. Overall, the current study showed that the leaves of <i<K. parviflora</i<, grown in any growth conditions, can be further utilized as an alternative source of VOCs for rhizomes. <i<Kaempferia parviflora</i< volatile organic compounds (VOCs) growth room field headspace solid-phase microextraction (HS-SPME) gas chromatography/time-of-flight mass spectrometry (GC-TOF-MS) Microbiology Miyako Kusano verfasserin aut Li Yingtao verfasserin aut Wunna verfasserin aut Min San Thein verfasserin aut Keisuke Tanaka verfasserin aut Marlon Rivera verfasserin aut Miao Shi verfasserin aut Kazuo N. Watanabe verfasserin aut In Metabolites MDPI AG, 2012 13(2023), 5, p 651 (DE-627)718627164 (DE-600)2662251-8 22181989 nnns volume:13 year:2023 number:5, p 651 https://doi.org/10.3390/metabo13050651 kostenfrei https://doaj.org/article/8ab46d02b59a4da899238a9fbad62f7e kostenfrei https://www.mdpi.com/2218-1989/13/5/651 kostenfrei https://doaj.org/toc/2218-1989 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 5, p 651 |
allfields_unstemmed |
10.3390/metabo13050651 doi (DE-627)DOAJ09434096X (DE-599)DOAJ8ab46d02b59a4da899238a9fbad62f7e DE-627 ger DE-627 rakwb eng QR1-502 May San Thawtar verfasserin aut Exploring Volatile Organic Compounds in Rhizomes and Leaves of <i<Kaempferia parviflora</i< Wall. Ex Baker Using HS-SPME and GC–TOF/MS Combined with Multivariate Analysis 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Volatile organic compounds (VOCs) play an important role in the biological activities of the medicinal Zingiberaceae species. In commercial preparations of VOCs from <i<Kaempferia parviflora</i< rhizomes, its leaves are wasted as by-products. The foliage could be an alternative source to rhizome, but its VOCs composition has not been explored previously. In this study, the VOCs in the leaves and rhizomes of <i<K. parviflora</i< plants grown in a growth room and in the field were analyzed using the headspace solid-phase microextraction (HS-SPME) method coupled with gas chromatography and time-of-flight mass spectrometry (GC-TOF-MS). The results showed a total of 75 and 78 VOCs identified from the leaves and rhizomes, respectively, of plants grown in the growth room. In the field samples, 96 VOCs were detected from the leaves and 98 from the rhizomes. These numbers are higher compared to the previous reports, which can be attributed to the analytical techniques used. It was also observed that monoterpenes were dominant in leaves, whereas sesquiterpenes were more abundant in rhizomes. Principal component analysis (PCA) revealed significantly higher abundance and diversity of VOCs in plants grown in the field than in the growth room. A high level of similarity of identified VOCs between the two tissues was also observed, as they shared 68 and 94 VOCs in the growth room and field samples, respectively. The difference lies in the relative abundance of VOCs, as most of them are abundant in rhizomes. Overall, the current study showed that the leaves of <i<K. parviflora</i<, grown in any growth conditions, can be further utilized as an alternative source of VOCs for rhizomes. <i<Kaempferia parviflora</i< volatile organic compounds (VOCs) growth room field headspace solid-phase microextraction (HS-SPME) gas chromatography/time-of-flight mass spectrometry (GC-TOF-MS) Microbiology Miyako Kusano verfasserin aut Li Yingtao verfasserin aut Wunna verfasserin aut Min San Thein verfasserin aut Keisuke Tanaka verfasserin aut Marlon Rivera verfasserin aut Miao Shi verfasserin aut Kazuo N. Watanabe verfasserin aut In Metabolites MDPI AG, 2012 13(2023), 5, p 651 (DE-627)718627164 (DE-600)2662251-8 22181989 nnns volume:13 year:2023 number:5, p 651 https://doi.org/10.3390/metabo13050651 kostenfrei https://doaj.org/article/8ab46d02b59a4da899238a9fbad62f7e kostenfrei https://www.mdpi.com/2218-1989/13/5/651 kostenfrei https://doaj.org/toc/2218-1989 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 5, p 651 |
allfieldsGer |
10.3390/metabo13050651 doi (DE-627)DOAJ09434096X (DE-599)DOAJ8ab46d02b59a4da899238a9fbad62f7e DE-627 ger DE-627 rakwb eng QR1-502 May San Thawtar verfasserin aut Exploring Volatile Organic Compounds in Rhizomes and Leaves of <i<Kaempferia parviflora</i< Wall. Ex Baker Using HS-SPME and GC–TOF/MS Combined with Multivariate Analysis 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Volatile organic compounds (VOCs) play an important role in the biological activities of the medicinal Zingiberaceae species. In commercial preparations of VOCs from <i<Kaempferia parviflora</i< rhizomes, its leaves are wasted as by-products. The foliage could be an alternative source to rhizome, but its VOCs composition has not been explored previously. In this study, the VOCs in the leaves and rhizomes of <i<K. parviflora</i< plants grown in a growth room and in the field were analyzed using the headspace solid-phase microextraction (HS-SPME) method coupled with gas chromatography and time-of-flight mass spectrometry (GC-TOF-MS). The results showed a total of 75 and 78 VOCs identified from the leaves and rhizomes, respectively, of plants grown in the growth room. In the field samples, 96 VOCs were detected from the leaves and 98 from the rhizomes. These numbers are higher compared to the previous reports, which can be attributed to the analytical techniques used. It was also observed that monoterpenes were dominant in leaves, whereas sesquiterpenes were more abundant in rhizomes. Principal component analysis (PCA) revealed significantly higher abundance and diversity of VOCs in plants grown in the field than in the growth room. A high level of similarity of identified VOCs between the two tissues was also observed, as they shared 68 and 94 VOCs in the growth room and field samples, respectively. The difference lies in the relative abundance of VOCs, as most of them are abundant in rhizomes. Overall, the current study showed that the leaves of <i<K. parviflora</i<, grown in any growth conditions, can be further utilized as an alternative source of VOCs for rhizomes. <i<Kaempferia parviflora</i< volatile organic compounds (VOCs) growth room field headspace solid-phase microextraction (HS-SPME) gas chromatography/time-of-flight mass spectrometry (GC-TOF-MS) Microbiology Miyako Kusano verfasserin aut Li Yingtao verfasserin aut Wunna verfasserin aut Min San Thein verfasserin aut Keisuke Tanaka verfasserin aut Marlon Rivera verfasserin aut Miao Shi verfasserin aut Kazuo N. Watanabe verfasserin aut In Metabolites MDPI AG, 2012 13(2023), 5, p 651 (DE-627)718627164 (DE-600)2662251-8 22181989 nnns volume:13 year:2023 number:5, p 651 https://doi.org/10.3390/metabo13050651 kostenfrei https://doaj.org/article/8ab46d02b59a4da899238a9fbad62f7e kostenfrei https://www.mdpi.com/2218-1989/13/5/651 kostenfrei https://doaj.org/toc/2218-1989 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 5, p 651 |
allfieldsSound |
10.3390/metabo13050651 doi (DE-627)DOAJ09434096X (DE-599)DOAJ8ab46d02b59a4da899238a9fbad62f7e DE-627 ger DE-627 rakwb eng QR1-502 May San Thawtar verfasserin aut Exploring Volatile Organic Compounds in Rhizomes and Leaves of <i<Kaempferia parviflora</i< Wall. Ex Baker Using HS-SPME and GC–TOF/MS Combined with Multivariate Analysis 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Volatile organic compounds (VOCs) play an important role in the biological activities of the medicinal Zingiberaceae species. In commercial preparations of VOCs from <i<Kaempferia parviflora</i< rhizomes, its leaves are wasted as by-products. The foliage could be an alternative source to rhizome, but its VOCs composition has not been explored previously. In this study, the VOCs in the leaves and rhizomes of <i<K. parviflora</i< plants grown in a growth room and in the field were analyzed using the headspace solid-phase microextraction (HS-SPME) method coupled with gas chromatography and time-of-flight mass spectrometry (GC-TOF-MS). The results showed a total of 75 and 78 VOCs identified from the leaves and rhizomes, respectively, of plants grown in the growth room. In the field samples, 96 VOCs were detected from the leaves and 98 from the rhizomes. These numbers are higher compared to the previous reports, which can be attributed to the analytical techniques used. It was also observed that monoterpenes were dominant in leaves, whereas sesquiterpenes were more abundant in rhizomes. Principal component analysis (PCA) revealed significantly higher abundance and diversity of VOCs in plants grown in the field than in the growth room. A high level of similarity of identified VOCs between the two tissues was also observed, as they shared 68 and 94 VOCs in the growth room and field samples, respectively. The difference lies in the relative abundance of VOCs, as most of them are abundant in rhizomes. Overall, the current study showed that the leaves of <i<K. parviflora</i<, grown in any growth conditions, can be further utilized as an alternative source of VOCs for rhizomes. <i<Kaempferia parviflora</i< volatile organic compounds (VOCs) growth room field headspace solid-phase microextraction (HS-SPME) gas chromatography/time-of-flight mass spectrometry (GC-TOF-MS) Microbiology Miyako Kusano verfasserin aut Li Yingtao verfasserin aut Wunna verfasserin aut Min San Thein verfasserin aut Keisuke Tanaka verfasserin aut Marlon Rivera verfasserin aut Miao Shi verfasserin aut Kazuo N. Watanabe verfasserin aut In Metabolites MDPI AG, 2012 13(2023), 5, p 651 (DE-627)718627164 (DE-600)2662251-8 22181989 nnns volume:13 year:2023 number:5, p 651 https://doi.org/10.3390/metabo13050651 kostenfrei https://doaj.org/article/8ab46d02b59a4da899238a9fbad62f7e kostenfrei https://www.mdpi.com/2218-1989/13/5/651 kostenfrei https://doaj.org/toc/2218-1989 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 5, p 651 |
language |
English |
source |
In Metabolites 13(2023), 5, p 651 volume:13 year:2023 number:5, p 651 |
sourceStr |
In Metabolites 13(2023), 5, p 651 volume:13 year:2023 number:5, p 651 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
<i<Kaempferia parviflora</i< volatile organic compounds (VOCs) growth room field headspace solid-phase microextraction (HS-SPME) gas chromatography/time-of-flight mass spectrometry (GC-TOF-MS) Microbiology |
isfreeaccess_bool |
true |
container_title |
Metabolites |
authorswithroles_txt_mv |
May San Thawtar @@aut@@ Miyako Kusano @@aut@@ Li Yingtao @@aut@@ Wunna @@aut@@ Min San Thein @@aut@@ Keisuke Tanaka @@aut@@ Marlon Rivera @@aut@@ Miao Shi @@aut@@ Kazuo N. Watanabe @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
718627164 |
id |
DOAJ09434096X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ09434096X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413033436.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/metabo13050651</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ09434096X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ8ab46d02b59a4da899238a9fbad62f7e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QR1-502</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">May San Thawtar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Exploring Volatile Organic Compounds in Rhizomes and Leaves of <i<Kaempferia parviflora</i< Wall. Ex Baker Using HS-SPME and GC–TOF/MS Combined with Multivariate Analysis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Volatile organic compounds (VOCs) play an important role in the biological activities of the medicinal Zingiberaceae species. In commercial preparations of VOCs from <i<Kaempferia parviflora</i< rhizomes, its leaves are wasted as by-products. The foliage could be an alternative source to rhizome, but its VOCs composition has not been explored previously. In this study, the VOCs in the leaves and rhizomes of <i<K. parviflora</i< plants grown in a growth room and in the field were analyzed using the headspace solid-phase microextraction (HS-SPME) method coupled with gas chromatography and time-of-flight mass spectrometry (GC-TOF-MS). The results showed a total of 75 and 78 VOCs identified from the leaves and rhizomes, respectively, of plants grown in the growth room. In the field samples, 96 VOCs were detected from the leaves and 98 from the rhizomes. These numbers are higher compared to the previous reports, which can be attributed to the analytical techniques used. It was also observed that monoterpenes were dominant in leaves, whereas sesquiterpenes were more abundant in rhizomes. Principal component analysis (PCA) revealed significantly higher abundance and diversity of VOCs in plants grown in the field than in the growth room. A high level of similarity of identified VOCs between the two tissues was also observed, as they shared 68 and 94 VOCs in the growth room and field samples, respectively. The difference lies in the relative abundance of VOCs, as most of them are abundant in rhizomes. Overall, the current study showed that the leaves of <i<K. parviflora</i<, grown in any growth conditions, can be further utilized as an alternative source of VOCs for rhizomes.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><i<Kaempferia parviflora</i<</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">volatile organic compounds (VOCs)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">growth room</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">field</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">headspace solid-phase microextraction (HS-SPME)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">gas chromatography/time-of-flight mass spectrometry (GC-TOF-MS)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Microbiology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Miyako Kusano</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Li Yingtao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wunna</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Min San Thein</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Keisuke Tanaka</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marlon Rivera</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Miao Shi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kazuo N. Watanabe</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Metabolites</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">13(2023), 5, p 651</subfield><subfield code="w">(DE-627)718627164</subfield><subfield code="w">(DE-600)2662251-8</subfield><subfield code="x">22181989</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:5, p 651</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/metabo13050651</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/8ab46d02b59a4da899238a9fbad62f7e</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2218-1989/13/5/651</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2218-1989</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2023</subfield><subfield code="e">5, p 651</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
May San Thawtar |
spellingShingle |
May San Thawtar misc QR1-502 misc <i<Kaempferia parviflora</i< misc volatile organic compounds (VOCs) misc growth room misc field misc headspace solid-phase microextraction (HS-SPME) misc gas chromatography/time-of-flight mass spectrometry (GC-TOF-MS) misc Microbiology Exploring Volatile Organic Compounds in Rhizomes and Leaves of <i<Kaempferia parviflora</i< Wall. Ex Baker Using HS-SPME and GC–TOF/MS Combined with Multivariate Analysis |
authorStr |
May San Thawtar |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)718627164 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QR1-502 |
illustrated |
Not Illustrated |
issn |
22181989 |
topic_title |
QR1-502 Exploring Volatile Organic Compounds in Rhizomes and Leaves of <i<Kaempferia parviflora</i< Wall. Ex Baker Using HS-SPME and GC–TOF/MS Combined with Multivariate Analysis <i<Kaempferia parviflora</i< volatile organic compounds (VOCs) growth room field headspace solid-phase microextraction (HS-SPME) gas chromatography/time-of-flight mass spectrometry (GC-TOF-MS) |
topic |
misc QR1-502 misc <i<Kaempferia parviflora</i< misc volatile organic compounds (VOCs) misc growth room misc field misc headspace solid-phase microextraction (HS-SPME) misc gas chromatography/time-of-flight mass spectrometry (GC-TOF-MS) misc Microbiology |
topic_unstemmed |
misc QR1-502 misc <i<Kaempferia parviflora</i< misc volatile organic compounds (VOCs) misc growth room misc field misc headspace solid-phase microextraction (HS-SPME) misc gas chromatography/time-of-flight mass spectrometry (GC-TOF-MS) misc Microbiology |
topic_browse |
misc QR1-502 misc <i<Kaempferia parviflora</i< misc volatile organic compounds (VOCs) misc growth room misc field misc headspace solid-phase microextraction (HS-SPME) misc gas chromatography/time-of-flight mass spectrometry (GC-TOF-MS) misc Microbiology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Metabolites |
hierarchy_parent_id |
718627164 |
hierarchy_top_title |
Metabolites |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)718627164 (DE-600)2662251-8 |
title |
Exploring Volatile Organic Compounds in Rhizomes and Leaves of <i<Kaempferia parviflora</i< Wall. Ex Baker Using HS-SPME and GC–TOF/MS Combined with Multivariate Analysis |
ctrlnum |
(DE-627)DOAJ09434096X (DE-599)DOAJ8ab46d02b59a4da899238a9fbad62f7e |
title_full |
Exploring Volatile Organic Compounds in Rhizomes and Leaves of <i<Kaempferia parviflora</i< Wall. Ex Baker Using HS-SPME and GC–TOF/MS Combined with Multivariate Analysis |
author_sort |
May San Thawtar |
journal |
Metabolites |
journalStr |
Metabolites |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
May San Thawtar Miyako Kusano Li Yingtao Wunna Min San Thein Keisuke Tanaka Marlon Rivera Miao Shi Kazuo N. Watanabe |
container_volume |
13 |
class |
QR1-502 |
format_se |
Elektronische Aufsätze |
author-letter |
May San Thawtar |
doi_str_mv |
10.3390/metabo13050651 |
author2-role |
verfasserin |
title_sort |
exploring volatile organic compounds in rhizomes and leaves of <i<kaempferia parviflora</i< wall. ex baker using hs-spme and gc–tof/ms combined with multivariate analysis |
callnumber |
QR1-502 |
title_auth |
Exploring Volatile Organic Compounds in Rhizomes and Leaves of <i<Kaempferia parviflora</i< Wall. Ex Baker Using HS-SPME and GC–TOF/MS Combined with Multivariate Analysis |
abstract |
Volatile organic compounds (VOCs) play an important role in the biological activities of the medicinal Zingiberaceae species. In commercial preparations of VOCs from <i<Kaempferia parviflora</i< rhizomes, its leaves are wasted as by-products. The foliage could be an alternative source to rhizome, but its VOCs composition has not been explored previously. In this study, the VOCs in the leaves and rhizomes of <i<K. parviflora</i< plants grown in a growth room and in the field were analyzed using the headspace solid-phase microextraction (HS-SPME) method coupled with gas chromatography and time-of-flight mass spectrometry (GC-TOF-MS). The results showed a total of 75 and 78 VOCs identified from the leaves and rhizomes, respectively, of plants grown in the growth room. In the field samples, 96 VOCs were detected from the leaves and 98 from the rhizomes. These numbers are higher compared to the previous reports, which can be attributed to the analytical techniques used. It was also observed that monoterpenes were dominant in leaves, whereas sesquiterpenes were more abundant in rhizomes. Principal component analysis (PCA) revealed significantly higher abundance and diversity of VOCs in plants grown in the field than in the growth room. A high level of similarity of identified VOCs between the two tissues was also observed, as they shared 68 and 94 VOCs in the growth room and field samples, respectively. The difference lies in the relative abundance of VOCs, as most of them are abundant in rhizomes. Overall, the current study showed that the leaves of <i<K. parviflora</i<, grown in any growth conditions, can be further utilized as an alternative source of VOCs for rhizomes. |
abstractGer |
Volatile organic compounds (VOCs) play an important role in the biological activities of the medicinal Zingiberaceae species. In commercial preparations of VOCs from <i<Kaempferia parviflora</i< rhizomes, its leaves are wasted as by-products. The foliage could be an alternative source to rhizome, but its VOCs composition has not been explored previously. In this study, the VOCs in the leaves and rhizomes of <i<K. parviflora</i< plants grown in a growth room and in the field were analyzed using the headspace solid-phase microextraction (HS-SPME) method coupled with gas chromatography and time-of-flight mass spectrometry (GC-TOF-MS). The results showed a total of 75 and 78 VOCs identified from the leaves and rhizomes, respectively, of plants grown in the growth room. In the field samples, 96 VOCs were detected from the leaves and 98 from the rhizomes. These numbers are higher compared to the previous reports, which can be attributed to the analytical techniques used. It was also observed that monoterpenes were dominant in leaves, whereas sesquiterpenes were more abundant in rhizomes. Principal component analysis (PCA) revealed significantly higher abundance and diversity of VOCs in plants grown in the field than in the growth room. A high level of similarity of identified VOCs between the two tissues was also observed, as they shared 68 and 94 VOCs in the growth room and field samples, respectively. The difference lies in the relative abundance of VOCs, as most of them are abundant in rhizomes. Overall, the current study showed that the leaves of <i<K. parviflora</i<, grown in any growth conditions, can be further utilized as an alternative source of VOCs for rhizomes. |
abstract_unstemmed |
Volatile organic compounds (VOCs) play an important role in the biological activities of the medicinal Zingiberaceae species. In commercial preparations of VOCs from <i<Kaempferia parviflora</i< rhizomes, its leaves are wasted as by-products. The foliage could be an alternative source to rhizome, but its VOCs composition has not been explored previously. In this study, the VOCs in the leaves and rhizomes of <i<K. parviflora</i< plants grown in a growth room and in the field were analyzed using the headspace solid-phase microextraction (HS-SPME) method coupled with gas chromatography and time-of-flight mass spectrometry (GC-TOF-MS). The results showed a total of 75 and 78 VOCs identified from the leaves and rhizomes, respectively, of plants grown in the growth room. In the field samples, 96 VOCs were detected from the leaves and 98 from the rhizomes. These numbers are higher compared to the previous reports, which can be attributed to the analytical techniques used. It was also observed that monoterpenes were dominant in leaves, whereas sesquiterpenes were more abundant in rhizomes. Principal component analysis (PCA) revealed significantly higher abundance and diversity of VOCs in plants grown in the field than in the growth room. A high level of similarity of identified VOCs between the two tissues was also observed, as they shared 68 and 94 VOCs in the growth room and field samples, respectively. The difference lies in the relative abundance of VOCs, as most of them are abundant in rhizomes. Overall, the current study showed that the leaves of <i<K. parviflora</i<, grown in any growth conditions, can be further utilized as an alternative source of VOCs for rhizomes. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
5, p 651 |
title_short |
Exploring Volatile Organic Compounds in Rhizomes and Leaves of <i<Kaempferia parviflora</i< Wall. Ex Baker Using HS-SPME and GC–TOF/MS Combined with Multivariate Analysis |
url |
https://doi.org/10.3390/metabo13050651 https://doaj.org/article/8ab46d02b59a4da899238a9fbad62f7e https://www.mdpi.com/2218-1989/13/5/651 https://doaj.org/toc/2218-1989 |
remote_bool |
true |
author2 |
Miyako Kusano Li Yingtao Wunna Min San Thein Keisuke Tanaka Marlon Rivera Miao Shi Kazuo N. Watanabe |
author2Str |
Miyako Kusano Li Yingtao Wunna Min San Thein Keisuke Tanaka Marlon Rivera Miao Shi Kazuo N. Watanabe |
ppnlink |
718627164 |
callnumber-subject |
QR - Microbiology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/metabo13050651 |
callnumber-a |
QR1-502 |
up_date |
2024-07-03T22:37:32.598Z |
_version_ |
1803599219366297600 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ09434096X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413033436.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/metabo13050651</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ09434096X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ8ab46d02b59a4da899238a9fbad62f7e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QR1-502</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">May San Thawtar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Exploring Volatile Organic Compounds in Rhizomes and Leaves of <i<Kaempferia parviflora</i< Wall. Ex Baker Using HS-SPME and GC–TOF/MS Combined with Multivariate Analysis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Volatile organic compounds (VOCs) play an important role in the biological activities of the medicinal Zingiberaceae species. In commercial preparations of VOCs from <i<Kaempferia parviflora</i< rhizomes, its leaves are wasted as by-products. The foliage could be an alternative source to rhizome, but its VOCs composition has not been explored previously. In this study, the VOCs in the leaves and rhizomes of <i<K. parviflora</i< plants grown in a growth room and in the field were analyzed using the headspace solid-phase microextraction (HS-SPME) method coupled with gas chromatography and time-of-flight mass spectrometry (GC-TOF-MS). The results showed a total of 75 and 78 VOCs identified from the leaves and rhizomes, respectively, of plants grown in the growth room. In the field samples, 96 VOCs were detected from the leaves and 98 from the rhizomes. These numbers are higher compared to the previous reports, which can be attributed to the analytical techniques used. It was also observed that monoterpenes were dominant in leaves, whereas sesquiterpenes were more abundant in rhizomes. Principal component analysis (PCA) revealed significantly higher abundance and diversity of VOCs in plants grown in the field than in the growth room. A high level of similarity of identified VOCs between the two tissues was also observed, as they shared 68 and 94 VOCs in the growth room and field samples, respectively. The difference lies in the relative abundance of VOCs, as most of them are abundant in rhizomes. Overall, the current study showed that the leaves of <i<K. parviflora</i<, grown in any growth conditions, can be further utilized as an alternative source of VOCs for rhizomes.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><i<Kaempferia parviflora</i<</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">volatile organic compounds (VOCs)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">growth room</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">field</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">headspace solid-phase microextraction (HS-SPME)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">gas chromatography/time-of-flight mass spectrometry (GC-TOF-MS)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Microbiology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Miyako Kusano</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Li Yingtao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wunna</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Min San Thein</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Keisuke Tanaka</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marlon Rivera</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Miao Shi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kazuo N. Watanabe</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Metabolites</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">13(2023), 5, p 651</subfield><subfield code="w">(DE-627)718627164</subfield><subfield code="w">(DE-600)2662251-8</subfield><subfield code="x">22181989</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:5, p 651</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/metabo13050651</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/8ab46d02b59a4da899238a9fbad62f7e</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2218-1989/13/5/651</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2218-1989</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2023</subfield><subfield code="e">5, p 651</subfield></datafield></record></collection>
|
score |
7.400962 |