Epigenetic Signatures in Hypertension
Clear epigenetic signatures were found in hypertensive and pre-hypertensive patients using DNA methylation data and neural networks in a classification algorithm. It is shown how by selecting an appropriate subset of CpGs it is possible to achieve a mean accuracy classification of 86% for distinguis...
Ausführliche Beschreibung
Autor*in: |
Gerardo Alfonso Perez [verfasserIn] Victor Delgado Martinez [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Journal of Personalized Medicine - MDPI AG, 2012, 13(2023), 5, p 787 |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2023 ; number:5, p 787 |
Links: |
---|
DOI / URN: |
10.3390/jpm13050787 |
---|
Katalog-ID: |
DOAJ094355444 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ094355444 | ||
003 | DE-627 | ||
005 | 20240413033652.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/jpm13050787 |2 doi | |
035 | |a (DE-627)DOAJ094355444 | ||
035 | |a (DE-599)DOAJ62418a2e4ca44abc841d7953cef0e257 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Gerardo Alfonso Perez |e verfasserin |4 aut | |
245 | 1 | 0 | |a Epigenetic Signatures in Hypertension |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Clear epigenetic signatures were found in hypertensive and pre-hypertensive patients using DNA methylation data and neural networks in a classification algorithm. It is shown how by selecting an appropriate subset of CpGs it is possible to achieve a mean accuracy classification of 86% for distinguishing control and hypertensive (and pre-hypertensive) patients using only 2239 CpGs. Furthermore, it is also possible to obtain a statistically comparable model achieving an 83% mean accuracy using only 22 CpGs. Both of these approaches represent a substantial improvement over using the entire amount of available CpGs, which resulted in the neural network not generating accurate classifications. An optimization approach is followed to select the CpGs to be used as the base for a model distinguishing between hypertensive and pre-hypertensive individuals. It is shown that it is possible to find methylation signatures using machine learning techniques, which can be applied to distinguish between control (healthy) individuals, pre-hypertensive individuals and hypertensive individuals, illustrating an associated epigenetic impact. Identifying epigenetic signatures might lead to more targeted treatments for patients in the future. | ||
650 | 4 | |a hypertensive | |
650 | 4 | |a pre-hypertensive | |
650 | 4 | |a machine learning | |
653 | 0 | |a Medicine | |
653 | 0 | |a R | |
700 | 0 | |a Victor Delgado Martinez |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Journal of Personalized Medicine |d MDPI AG, 2012 |g 13(2023), 5, p 787 |w (DE-627)71862713X |w (DE-600)2662248-8 |x 20754426 |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2023 |g number:5, p 787 |
856 | 4 | 0 | |u https://doi.org/10.3390/jpm13050787 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/62418a2e4ca44abc841d7953cef0e257 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2075-4426/13/5/787 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2075-4426 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 13 |j 2023 |e 5, p 787 |
author_variant |
g a p gap v d m vdm |
---|---|
matchkey_str |
article:20754426:2023----::pgntcintrsny |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.3390/jpm13050787 doi (DE-627)DOAJ094355444 (DE-599)DOAJ62418a2e4ca44abc841d7953cef0e257 DE-627 ger DE-627 rakwb eng Gerardo Alfonso Perez verfasserin aut Epigenetic Signatures in Hypertension 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Clear epigenetic signatures were found in hypertensive and pre-hypertensive patients using DNA methylation data and neural networks in a classification algorithm. It is shown how by selecting an appropriate subset of CpGs it is possible to achieve a mean accuracy classification of 86% for distinguishing control and hypertensive (and pre-hypertensive) patients using only 2239 CpGs. Furthermore, it is also possible to obtain a statistically comparable model achieving an 83% mean accuracy using only 22 CpGs. Both of these approaches represent a substantial improvement over using the entire amount of available CpGs, which resulted in the neural network not generating accurate classifications. An optimization approach is followed to select the CpGs to be used as the base for a model distinguishing between hypertensive and pre-hypertensive individuals. It is shown that it is possible to find methylation signatures using machine learning techniques, which can be applied to distinguish between control (healthy) individuals, pre-hypertensive individuals and hypertensive individuals, illustrating an associated epigenetic impact. Identifying epigenetic signatures might lead to more targeted treatments for patients in the future. hypertensive pre-hypertensive machine learning Medicine R Victor Delgado Martinez verfasserin aut In Journal of Personalized Medicine MDPI AG, 2012 13(2023), 5, p 787 (DE-627)71862713X (DE-600)2662248-8 20754426 nnns volume:13 year:2023 number:5, p 787 https://doi.org/10.3390/jpm13050787 kostenfrei https://doaj.org/article/62418a2e4ca44abc841d7953cef0e257 kostenfrei https://www.mdpi.com/2075-4426/13/5/787 kostenfrei https://doaj.org/toc/2075-4426 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 5, p 787 |
spelling |
10.3390/jpm13050787 doi (DE-627)DOAJ094355444 (DE-599)DOAJ62418a2e4ca44abc841d7953cef0e257 DE-627 ger DE-627 rakwb eng Gerardo Alfonso Perez verfasserin aut Epigenetic Signatures in Hypertension 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Clear epigenetic signatures were found in hypertensive and pre-hypertensive patients using DNA methylation data and neural networks in a classification algorithm. It is shown how by selecting an appropriate subset of CpGs it is possible to achieve a mean accuracy classification of 86% for distinguishing control and hypertensive (and pre-hypertensive) patients using only 2239 CpGs. Furthermore, it is also possible to obtain a statistically comparable model achieving an 83% mean accuracy using only 22 CpGs. Both of these approaches represent a substantial improvement over using the entire amount of available CpGs, which resulted in the neural network not generating accurate classifications. An optimization approach is followed to select the CpGs to be used as the base for a model distinguishing between hypertensive and pre-hypertensive individuals. It is shown that it is possible to find methylation signatures using machine learning techniques, which can be applied to distinguish between control (healthy) individuals, pre-hypertensive individuals and hypertensive individuals, illustrating an associated epigenetic impact. Identifying epigenetic signatures might lead to more targeted treatments for patients in the future. hypertensive pre-hypertensive machine learning Medicine R Victor Delgado Martinez verfasserin aut In Journal of Personalized Medicine MDPI AG, 2012 13(2023), 5, p 787 (DE-627)71862713X (DE-600)2662248-8 20754426 nnns volume:13 year:2023 number:5, p 787 https://doi.org/10.3390/jpm13050787 kostenfrei https://doaj.org/article/62418a2e4ca44abc841d7953cef0e257 kostenfrei https://www.mdpi.com/2075-4426/13/5/787 kostenfrei https://doaj.org/toc/2075-4426 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 5, p 787 |
allfields_unstemmed |
10.3390/jpm13050787 doi (DE-627)DOAJ094355444 (DE-599)DOAJ62418a2e4ca44abc841d7953cef0e257 DE-627 ger DE-627 rakwb eng Gerardo Alfonso Perez verfasserin aut Epigenetic Signatures in Hypertension 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Clear epigenetic signatures were found in hypertensive and pre-hypertensive patients using DNA methylation data and neural networks in a classification algorithm. It is shown how by selecting an appropriate subset of CpGs it is possible to achieve a mean accuracy classification of 86% for distinguishing control and hypertensive (and pre-hypertensive) patients using only 2239 CpGs. Furthermore, it is also possible to obtain a statistically comparable model achieving an 83% mean accuracy using only 22 CpGs. Both of these approaches represent a substantial improvement over using the entire amount of available CpGs, which resulted in the neural network not generating accurate classifications. An optimization approach is followed to select the CpGs to be used as the base for a model distinguishing between hypertensive and pre-hypertensive individuals. It is shown that it is possible to find methylation signatures using machine learning techniques, which can be applied to distinguish between control (healthy) individuals, pre-hypertensive individuals and hypertensive individuals, illustrating an associated epigenetic impact. Identifying epigenetic signatures might lead to more targeted treatments for patients in the future. hypertensive pre-hypertensive machine learning Medicine R Victor Delgado Martinez verfasserin aut In Journal of Personalized Medicine MDPI AG, 2012 13(2023), 5, p 787 (DE-627)71862713X (DE-600)2662248-8 20754426 nnns volume:13 year:2023 number:5, p 787 https://doi.org/10.3390/jpm13050787 kostenfrei https://doaj.org/article/62418a2e4ca44abc841d7953cef0e257 kostenfrei https://www.mdpi.com/2075-4426/13/5/787 kostenfrei https://doaj.org/toc/2075-4426 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 5, p 787 |
allfieldsGer |
10.3390/jpm13050787 doi (DE-627)DOAJ094355444 (DE-599)DOAJ62418a2e4ca44abc841d7953cef0e257 DE-627 ger DE-627 rakwb eng Gerardo Alfonso Perez verfasserin aut Epigenetic Signatures in Hypertension 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Clear epigenetic signatures were found in hypertensive and pre-hypertensive patients using DNA methylation data and neural networks in a classification algorithm. It is shown how by selecting an appropriate subset of CpGs it is possible to achieve a mean accuracy classification of 86% for distinguishing control and hypertensive (and pre-hypertensive) patients using only 2239 CpGs. Furthermore, it is also possible to obtain a statistically comparable model achieving an 83% mean accuracy using only 22 CpGs. Both of these approaches represent a substantial improvement over using the entire amount of available CpGs, which resulted in the neural network not generating accurate classifications. An optimization approach is followed to select the CpGs to be used as the base for a model distinguishing between hypertensive and pre-hypertensive individuals. It is shown that it is possible to find methylation signatures using machine learning techniques, which can be applied to distinguish between control (healthy) individuals, pre-hypertensive individuals and hypertensive individuals, illustrating an associated epigenetic impact. Identifying epigenetic signatures might lead to more targeted treatments for patients in the future. hypertensive pre-hypertensive machine learning Medicine R Victor Delgado Martinez verfasserin aut In Journal of Personalized Medicine MDPI AG, 2012 13(2023), 5, p 787 (DE-627)71862713X (DE-600)2662248-8 20754426 nnns volume:13 year:2023 number:5, p 787 https://doi.org/10.3390/jpm13050787 kostenfrei https://doaj.org/article/62418a2e4ca44abc841d7953cef0e257 kostenfrei https://www.mdpi.com/2075-4426/13/5/787 kostenfrei https://doaj.org/toc/2075-4426 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 5, p 787 |
allfieldsSound |
10.3390/jpm13050787 doi (DE-627)DOAJ094355444 (DE-599)DOAJ62418a2e4ca44abc841d7953cef0e257 DE-627 ger DE-627 rakwb eng Gerardo Alfonso Perez verfasserin aut Epigenetic Signatures in Hypertension 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Clear epigenetic signatures were found in hypertensive and pre-hypertensive patients using DNA methylation data and neural networks in a classification algorithm. It is shown how by selecting an appropriate subset of CpGs it is possible to achieve a mean accuracy classification of 86% for distinguishing control and hypertensive (and pre-hypertensive) patients using only 2239 CpGs. Furthermore, it is also possible to obtain a statistically comparable model achieving an 83% mean accuracy using only 22 CpGs. Both of these approaches represent a substantial improvement over using the entire amount of available CpGs, which resulted in the neural network not generating accurate classifications. An optimization approach is followed to select the CpGs to be used as the base for a model distinguishing between hypertensive and pre-hypertensive individuals. It is shown that it is possible to find methylation signatures using machine learning techniques, which can be applied to distinguish between control (healthy) individuals, pre-hypertensive individuals and hypertensive individuals, illustrating an associated epigenetic impact. Identifying epigenetic signatures might lead to more targeted treatments for patients in the future. hypertensive pre-hypertensive machine learning Medicine R Victor Delgado Martinez verfasserin aut In Journal of Personalized Medicine MDPI AG, 2012 13(2023), 5, p 787 (DE-627)71862713X (DE-600)2662248-8 20754426 nnns volume:13 year:2023 number:5, p 787 https://doi.org/10.3390/jpm13050787 kostenfrei https://doaj.org/article/62418a2e4ca44abc841d7953cef0e257 kostenfrei https://www.mdpi.com/2075-4426/13/5/787 kostenfrei https://doaj.org/toc/2075-4426 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 5, p 787 |
language |
English |
source |
In Journal of Personalized Medicine 13(2023), 5, p 787 volume:13 year:2023 number:5, p 787 |
sourceStr |
In Journal of Personalized Medicine 13(2023), 5, p 787 volume:13 year:2023 number:5, p 787 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
hypertensive pre-hypertensive machine learning Medicine R |
isfreeaccess_bool |
true |
container_title |
Journal of Personalized Medicine |
authorswithroles_txt_mv |
Gerardo Alfonso Perez @@aut@@ Victor Delgado Martinez @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
71862713X |
id |
DOAJ094355444 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ094355444</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413033652.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/jpm13050787</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ094355444</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ62418a2e4ca44abc841d7953cef0e257</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Gerardo Alfonso Perez</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Epigenetic Signatures in Hypertension</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Clear epigenetic signatures were found in hypertensive and pre-hypertensive patients using DNA methylation data and neural networks in a classification algorithm. It is shown how by selecting an appropriate subset of CpGs it is possible to achieve a mean accuracy classification of 86% for distinguishing control and hypertensive (and pre-hypertensive) patients using only 2239 CpGs. Furthermore, it is also possible to obtain a statistically comparable model achieving an 83% mean accuracy using only 22 CpGs. Both of these approaches represent a substantial improvement over using the entire amount of available CpGs, which resulted in the neural network not generating accurate classifications. An optimization approach is followed to select the CpGs to be used as the base for a model distinguishing between hypertensive and pre-hypertensive individuals. It is shown that it is possible to find methylation signatures using machine learning techniques, which can be applied to distinguish between control (healthy) individuals, pre-hypertensive individuals and hypertensive individuals, illustrating an associated epigenetic impact. Identifying epigenetic signatures might lead to more targeted treatments for patients in the future.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hypertensive</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">pre-hypertensive</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">machine learning</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Victor Delgado Martinez</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Personalized Medicine</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">13(2023), 5, p 787</subfield><subfield code="w">(DE-627)71862713X</subfield><subfield code="w">(DE-600)2662248-8</subfield><subfield code="x">20754426</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:5, p 787</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/jpm13050787</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/62418a2e4ca44abc841d7953cef0e257</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2075-4426/13/5/787</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2075-4426</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2023</subfield><subfield code="e">5, p 787</subfield></datafield></record></collection>
|
author |
Gerardo Alfonso Perez |
spellingShingle |
Gerardo Alfonso Perez misc hypertensive misc pre-hypertensive misc machine learning misc Medicine misc R Epigenetic Signatures in Hypertension |
authorStr |
Gerardo Alfonso Perez |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)71862713X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
20754426 |
topic_title |
Epigenetic Signatures in Hypertension hypertensive pre-hypertensive machine learning |
topic |
misc hypertensive misc pre-hypertensive misc machine learning misc Medicine misc R |
topic_unstemmed |
misc hypertensive misc pre-hypertensive misc machine learning misc Medicine misc R |
topic_browse |
misc hypertensive misc pre-hypertensive misc machine learning misc Medicine misc R |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of Personalized Medicine |
hierarchy_parent_id |
71862713X |
hierarchy_top_title |
Journal of Personalized Medicine |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)71862713X (DE-600)2662248-8 |
title |
Epigenetic Signatures in Hypertension |
ctrlnum |
(DE-627)DOAJ094355444 (DE-599)DOAJ62418a2e4ca44abc841d7953cef0e257 |
title_full |
Epigenetic Signatures in Hypertension |
author_sort |
Gerardo Alfonso Perez |
journal |
Journal of Personalized Medicine |
journalStr |
Journal of Personalized Medicine |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Gerardo Alfonso Perez Victor Delgado Martinez |
container_volume |
13 |
format_se |
Elektronische Aufsätze |
author-letter |
Gerardo Alfonso Perez |
doi_str_mv |
10.3390/jpm13050787 |
author2-role |
verfasserin |
title_sort |
epigenetic signatures in hypertension |
title_auth |
Epigenetic Signatures in Hypertension |
abstract |
Clear epigenetic signatures were found in hypertensive and pre-hypertensive patients using DNA methylation data and neural networks in a classification algorithm. It is shown how by selecting an appropriate subset of CpGs it is possible to achieve a mean accuracy classification of 86% for distinguishing control and hypertensive (and pre-hypertensive) patients using only 2239 CpGs. Furthermore, it is also possible to obtain a statistically comparable model achieving an 83% mean accuracy using only 22 CpGs. Both of these approaches represent a substantial improvement over using the entire amount of available CpGs, which resulted in the neural network not generating accurate classifications. An optimization approach is followed to select the CpGs to be used as the base for a model distinguishing between hypertensive and pre-hypertensive individuals. It is shown that it is possible to find methylation signatures using machine learning techniques, which can be applied to distinguish between control (healthy) individuals, pre-hypertensive individuals and hypertensive individuals, illustrating an associated epigenetic impact. Identifying epigenetic signatures might lead to more targeted treatments for patients in the future. |
abstractGer |
Clear epigenetic signatures were found in hypertensive and pre-hypertensive patients using DNA methylation data and neural networks in a classification algorithm. It is shown how by selecting an appropriate subset of CpGs it is possible to achieve a mean accuracy classification of 86% for distinguishing control and hypertensive (and pre-hypertensive) patients using only 2239 CpGs. Furthermore, it is also possible to obtain a statistically comparable model achieving an 83% mean accuracy using only 22 CpGs. Both of these approaches represent a substantial improvement over using the entire amount of available CpGs, which resulted in the neural network not generating accurate classifications. An optimization approach is followed to select the CpGs to be used as the base for a model distinguishing between hypertensive and pre-hypertensive individuals. It is shown that it is possible to find methylation signatures using machine learning techniques, which can be applied to distinguish between control (healthy) individuals, pre-hypertensive individuals and hypertensive individuals, illustrating an associated epigenetic impact. Identifying epigenetic signatures might lead to more targeted treatments for patients in the future. |
abstract_unstemmed |
Clear epigenetic signatures were found in hypertensive and pre-hypertensive patients using DNA methylation data and neural networks in a classification algorithm. It is shown how by selecting an appropriate subset of CpGs it is possible to achieve a mean accuracy classification of 86% for distinguishing control and hypertensive (and pre-hypertensive) patients using only 2239 CpGs. Furthermore, it is also possible to obtain a statistically comparable model achieving an 83% mean accuracy using only 22 CpGs. Both of these approaches represent a substantial improvement over using the entire amount of available CpGs, which resulted in the neural network not generating accurate classifications. An optimization approach is followed to select the CpGs to be used as the base for a model distinguishing between hypertensive and pre-hypertensive individuals. It is shown that it is possible to find methylation signatures using machine learning techniques, which can be applied to distinguish between control (healthy) individuals, pre-hypertensive individuals and hypertensive individuals, illustrating an associated epigenetic impact. Identifying epigenetic signatures might lead to more targeted treatments for patients in the future. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
5, p 787 |
title_short |
Epigenetic Signatures in Hypertension |
url |
https://doi.org/10.3390/jpm13050787 https://doaj.org/article/62418a2e4ca44abc841d7953cef0e257 https://www.mdpi.com/2075-4426/13/5/787 https://doaj.org/toc/2075-4426 |
remote_bool |
true |
author2 |
Victor Delgado Martinez |
author2Str |
Victor Delgado Martinez |
ppnlink |
71862713X |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/jpm13050787 |
up_date |
2024-07-03T22:42:21.518Z |
_version_ |
1803599522324021248 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ094355444</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413033652.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/jpm13050787</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ094355444</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ62418a2e4ca44abc841d7953cef0e257</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Gerardo Alfonso Perez</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Epigenetic Signatures in Hypertension</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Clear epigenetic signatures were found in hypertensive and pre-hypertensive patients using DNA methylation data and neural networks in a classification algorithm. It is shown how by selecting an appropriate subset of CpGs it is possible to achieve a mean accuracy classification of 86% for distinguishing control and hypertensive (and pre-hypertensive) patients using only 2239 CpGs. Furthermore, it is also possible to obtain a statistically comparable model achieving an 83% mean accuracy using only 22 CpGs. Both of these approaches represent a substantial improvement over using the entire amount of available CpGs, which resulted in the neural network not generating accurate classifications. An optimization approach is followed to select the CpGs to be used as the base for a model distinguishing between hypertensive and pre-hypertensive individuals. It is shown that it is possible to find methylation signatures using machine learning techniques, which can be applied to distinguish between control (healthy) individuals, pre-hypertensive individuals and hypertensive individuals, illustrating an associated epigenetic impact. Identifying epigenetic signatures might lead to more targeted treatments for patients in the future.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hypertensive</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">pre-hypertensive</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">machine learning</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Victor Delgado Martinez</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Personalized Medicine</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">13(2023), 5, p 787</subfield><subfield code="w">(DE-627)71862713X</subfield><subfield code="w">(DE-600)2662248-8</subfield><subfield code="x">20754426</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:5, p 787</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/jpm13050787</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/62418a2e4ca44abc841d7953cef0e257</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2075-4426/13/5/787</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2075-4426</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2023</subfield><subfield code="e">5, p 787</subfield></datafield></record></collection>
|
score |
7.402545 |